C.-N.E. Anagnostopoulos, License plate recognition: a brief tutorial. IEEE Intell. Transp. Syst. Mag. 6(1), 59–67 (2014). https://doi.org/10.1109/MITS.2013.2292652
Article
Google Scholar
M.R. Asif, Q. Chun, S. Hussain, M.S. Fareed, Multiple licence plate detection for Chinese vehicles in dense traffic scenarios. IET Intell. Transp. Syst. 10(8), 535–544 (2016). https://doi.org/10.1049/iet-its.2016.0008
Article
Google Scholar
Shen-Zheng Wang and Hsi-Jian Lee, “Detection and recognition of license plate characters with different appearances,” in Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, (2003), vol. 2, pp. 979–984. https://doi.org/10.1109/ITSC.2003.1252632
M.A. Massoud, M. Sabee, M. Gergais, R. Bakhit, Automated new license plate recognition in Egypt. Alex. Eng. J. 52(3), 319–326 (2013). https://doi.org/10.1016/j.aej.2013.02.005
Article
Google Scholar
T. Ibrahim, K. Kirami, License plate recognition system using artificial neural networks. ETRI J. 39(2), 163–172 (2017). https://doi.org/10.4218/etrij.17.0115.0766
Article
Google Scholar
Md. Mostafa Kamal Sarke, Sook Yoon, and Dong Sun Park, A fast and robust license plate detection algorithm based on two-stage cascade AdaBoost, 8(10): 3490–3507. https://doi.org/10.3837/tiis.2014.10.012
W.T. Ho, H.W. Lim, and Y.H. Tay, “Two-stage license plate detection using gentle adaboost and SIFT-SVM,” in 2009 First Asian Conference on Intelligent Information and Database Systems, (2009), pp. 109–114. https://doi.org/10.1109/ACIIDS.2009.25
C. Yan, B. Shao, H. Zhao, R. Ning, Y. Zhang, F. Xu, 3D room layout estimation from a single RGB image. IEEE Trans. Multimed. 22(11), 3014–3024 (2020). https://doi.org/10.1109/TMM.2020.2967645
Article
Google Scholar
“A Single Neural Network for Mixed Style License Plate Detection and Recognition | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/document/9337806 (accessed Jul. 16, 2021)
S. A. Radzi and M. Khalil-Hani, “Character recognition of license plate number using convolutional neural network,” in Visual Informatics: Sustaining Research and Innovations, Berlin, Heidelberg, (2011), pp. 45–55. https://doi.org/10.1007/978-3-642-25191-7_6
C. Gerber, M. Chung, Number plate detection with a multi-convolutional neural network approach with optical character recognition for mobile devices. J. Inf. Process. Syst. 12, 100–108 (2016). https://doi.org/10.3745/JIPS.04.0022
Article
Google Scholar
K. Khan, M.-R. Choi, Automatic license plate detection and recognition framework to enhance security applications. J. Electron. Imaging 28(1), 013036 (2019). https://doi.org/10.1117/1.JEI.28.1.013036
Article
Google Scholar
S.-K. Park, D.-G. Sim, New MCT-based face recognition under varying lighting conditions. Int. J. Control Autom. Syst. 9(3), 542–549 (2011). https://doi.org/10.1007/s12555-011-0314-0
Article
Google Scholar
A.M. Al-Ghaili, S. Mashohor, A.R. Ramli, A. Ismail, Vertical-edge-based car-license-plate detection method. IEEE Trans. Veh. Technol. 62(1), 26–38 (2013). https://doi.org/10.1109/TVT.2012.2222454
Article
Google Scholar
J. Yepez, S.-B. Ko, Improved license plate localisation algorithm based on morphological operations. IET Intell. Transp. Syst. 12(6), 542–549 (2018). https://doi.org/10.1049/iet-its.2017.0224
Article
Google Scholar
Hsi-Jian Lee, Si-Yuan Chen, and Shen-Zheng Wang, “Extraction and recognition of license plates of motorcycles and vehicles on highways,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., (2004), vol. 4, pp. 356–359. https://doi.org/10.1109/ICPR.2004.1333776
C.-N.E. Anagnostopoulos, I.E. Anagnostopoulos, I.D. Psoroulas, V. Loumos, E. Kayafas, License plate recognition from still images and video sequences: a survey. IEEE Trans. Intell. Transp. Syst. 9(3), 377–391 (2008). https://doi.org/10.1109/TITS.2008.922938
Article
Google Scholar
B.K. Cho, S.H. Ryu, D.R. Shin, J.I. Jung, License plate extraction method for identification of vehicle violations at a railway level crossing. Int. J. Automot. Technol. 12(2), 281–289 (2011). https://doi.org/10.1007/s12239-011-0033-9
Article
Google Scholar
M.U. Haq, A. Shahzad, Z. Mahmood, A.A. Shah, Boosting the face recognition performance of ensemble based LDA for pose, non-uniform illuminations, and low-resolution images. KSII Trans. Internet Inf. Syst. 13(6), 3144–3164 (2019)
Google Scholar
Sang Kyoon Kim, Dae Wook Kim, and Hang Joon Kim, “A recognition of vehicle license plate using a genetic algorithm based segmentation,” in Proceedings of 3rd IEEE International Conference on Image Processing, (1996), vol. 2, pp. 661–664. https://doi.org/10.1109/ICIP.1996.560964.
M.A. Khan, M. Sharif, M.Y. Javed, T. Akram, M. Yasmin, T. Saba, License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process. 12(2), 200–209 (2018). https://doi.org/10.1049/iet-ipr.2017.0368
Article
Google Scholar
Z. Mahmood, T. Ali, N. Muhammad, N. Bibi, I. Shahzad, S. Azmat, EAR: enhanced augmented reality system for sports entertainment applications. KSII Trans. Internet Inf. Syst. 11(12), 6069–6091 (2017)
Google Scholar
J. Shashirangana, H. Padmasiri, D. Meedeniya, C. Perera, Automated license plate recognition: a survey on methods and techniques. IEEE Access 9, 11203–11225 (2021). https://doi.org/10.1109/ACCESS.2020.3047929
Article
Google Scholar
H. Li and C. Shen, “Reading car license plates using deep convolutional neural networks and LSTMs,” ArXiv160105610 Cs, (2016), Accessed: Dec. 10, 2019. [Online]. http://arxiv.org/abs/1601.05610
H. Xiang, Y. Yuan, Y. Zhao, Z. Fu, License plate detection based on fully convolutional networks. J. Electron. Imaging 26(5), 053027 (2017). https://doi.org/10.1117/1.JEI.26.5.053027
Article
Google Scholar
M.A. Rafique, W. Pedrycz, M. Jeon, Vehicle license plate detection using region-based convolutional neural networks. Soft Comput. (2018). https://doi.org/10.1007/s00500-017-2696-2
Article
Google Scholar
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
Article
Google Scholar
L. Xie, T. Ahmad, L. Jin, Y. Liu, S. Zhang, A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018). https://doi.org/10.1109/TITS.2017.2784093
Article
Google Scholar
H. Li, P. Wang, C. Shen, Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1126–1136 (2019). https://doi.org/10.1109/TITS.2018.2847291
Article
Google Scholar
C. Yan, B. Gong, Y. Wei, Y. Gao, Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1445–1451 (2021). https://doi.org/10.1109/TPAMI.2020.2975798
Article
Google Scholar
C. Yan, Z. Li, Y. Zhang, Y. Liu, X. Ji, Y. Zhang, Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16(4), 122:1-122:17 (2020). https://doi.org/10.1145/3404374
Article
Google Scholar
C. Xue, S. Lu, and W. Zhang, “MSR: multi-scale shape regression for scene text detection,” (2019). https://doi.org/10.24963/ijcai.2019/139
M. Liao, Z. Wan, C. Yao, K. Chen, X. Bai, Real-time scene text detection with differentiable binarization. Proc. AAAI Conf. Artif. Intell. 34(07), 11474–11481 (2020). https://doi.org/10.1609/aaai.v34i07.6812
Article
Google Scholar
K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, “Learning-based approach for license plate recognition,” in Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501), (2000), vol. 2, pp. 614–623, https://doi.org/10.1109/NNSP.2000.890140
N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
Article
MathSciNet
Google Scholar
S. Nomura, K. Yamanaka, O. Katai, H. Kawakami, T. Shiose, A novel adaptive morphological approach for degraded character image segmentation. Pattern Recognit. 38(11), 1961–1975 (2005). https://doi.org/10.1016/j.patcog.2005.01.026
Article
Google Scholar
Y. Zhang et al., Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 96, 302–310 (2018). https://doi.org/10.1016/j.eswa.2017.12.015
Article
Google Scholar
J. Tarigan, Nadia, R. Diedan, Y. Suryana, Plate recognition using backpropagation neural network and genetic algorithm. Procedia Comput. Sci. 116, 365–372 (2017). https://doi.org/10.1016/j.procs.2017.10.068
Article
Google Scholar
Y. Wen, Y. Lu, J. Yan, Z. Zhou, K.M. von Deneen, P. Shi, An algorithm for license plate recognition applied to intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 12(3), 830–845 (2011). https://doi.org/10.1109/TITS.2011.2114346
Article
Google Scholar
P. Shivakumara, D. Tang, M. Asadzadehkaljahi, T. Lu, U. Pal, M. Hossein Anisi, CNN-RNN based method for license plate recognition. CAAI Trans. Intell. Technol. 3(3), 169–175 (2018). https://doi.org/10.1049/trit.2018.1015
Article
Google Scholar
O. Bulan, V. Kozitsky, P. Ramesh, M. Shreve, Segmentation- and annotation-free license plate recognition with deep localization and failure identification. IEEE Trans. Intell. Transp. Syst. 18(9), 2351–2363 (2017). https://doi.org/10.1109/TITS.2016.2639020
Article
Google Scholar
S. Du, M. Ibrahim, M. Shehata, W. Badawy, Automatic License Plate Recognition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013). https://doi.org/10.1109/TCSVT.2012.2203741
Article
Google Scholar
Y. Yang, D. Li, Z. Duan, Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features. IET Intell. Transp. Syst. 12(3), 213–219 (2018). https://doi.org/10.1049/iet-its.2017.0136
Article
Google Scholar
C. Xue, S. Lu, S. Bai, W. Zhang, and C. Wang, “I2C2W: image-to-character-to-word transformers for accurate scene text recognition,” ArXiv210508383 Cs, (2021), Accessed: Jul. 15, 2021. [Online]. http://arxiv.org/abs/2105.08383
D. Yu et al., “Towards accurate scene text recognition with semantic reasoning networks,” 2020, pp. 12113–12122. Accessed: Jul. 15, 2021. [Online]. https://openaccess.thecvf.com/content_CVPR_2020/html/Yu_Towards_Accurate_Scene_Text_Recognition_With_Semantic_Reasoning_Networks_CVPR_2020_paper.html
B. Su and S. Lu, “Accurate scene text recognition based on recurrent neural network,” in Computer Vision—ACCV 2014, (Cham, 2015), pp. 35–48. https://doi.org/10.1007/978-3-319-16865-4_3
“IET Digital Library: towards a fully automated car parking system.” https://digital-library.theiet.org/content/journals/10.1049/iet-its.2018.5021 (accessed Jul. 19, 2021)
R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (Columbus, 2014), pp. 580–587. https://doi.org/10.1109/CVPR.2014.81
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), pp. 779–788. https://doi.org/10.1109/CVPR.2016.91
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” presented at the ICLR, (2015)
R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall Inc, Upper Saddle River, 2006)
Google Scholar
B.-F. Wu, S.-P. Lin, C.-C. Chiu, Extracting characters from real vehicle licence plates out-of-doors. IET Comput. Vis. 1(1), 2–10 (2007). https://doi.org/10.1049/iet-cvi:20050132
Article
MathSciNet
Google Scholar
Y. Yuan, W. Zou, Y. Zhao, X. Wang, X. Hu, N. Komodakis, A robust and efficient approach to license plate detection. IEEE Trans. Image Process. 26(3), 1102–1114 (2017). https://doi.org/10.1109/TIP.2016.2631901
Article
MathSciNet
MATH
Google Scholar
G.-S. Hsu, J.-C. Chen, Y.-Z. Chung, Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013). https://doi.org/10.1109/TVT.2012.2226218
Article
Google Scholar
C.N.E. Anagnostopoulos, I.E. Anagnostopoulos, V. Loumos, E. Kayafas, A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006). https://doi.org/10.1109/TITS.2006.880641
Article
Google Scholar
Z. Xu et al., “Towards end-to-end license plate detection and recognition: a large dataset and baseline,” (2018), pp. 255–271. Accessed: Jul. 15, 2021. [Online]. https://openaccess.thecvf.com/content_ECCV_2018/html/Zhenbo_Xu_Towards_End-to-End_License_ECCV_2018_paper.html
J. Zhuang, S. Hou, Z. Wang, and Z.-J. Zha, “Towards human-level license plate recognition,” in Computer Vision—ECCV 2018, (Cham, 2018), pp. 314–329. https://doi.org/10.1007/978-3-030-01219-9_19
L. Zhang, P. Wang, H. Li, Z. Li, C. Shen, Y. Zhang, A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3000072
Article
Google Scholar
Y. Zhang, Z. Wang, J. Zhuang, Efficient license plate recognition via holistic position attention. Proc. AAAI Conf. Artif. Intell. 35(4), 3438–3446 (2021)
Google Scholar
Y. Lee, J. Lee, H. Ahn, and M. Jeon, “SNIDER: single noisy image denoising and rectification for improving license plate recognition,” (2019), pp. 0–0. Accessed: Jul. 19, 2021. [Online]. https://openaccess.thecvf.com/content_ICCVW_2019/html/RLQ/Lee_SNIDER_Single_Noisy_Image_Denoising_and_Rectification_for_Improving_License_ICCVW_2019_paper.html
B. Li, B. Tian, Y. Li, D. Wen, Component-based license plate detection using conditional random field model. IEEE Trans. Intell. Transp. Syst. 14(4), 1690–1699 (2013). https://doi.org/10.1109/TITS.2013.2267054
Article
Google Scholar
S. M. Silva and C. R. Jung, “License plate detection and recognition in unconstrained scenarios,” in Computer Vision—ECCV 2018, (Cham, 2018), pp. 593–609. https://doi.org/10.1007/978-3-030-01258-8_36
C. Luo, L. Jin, Z. Sun, MORAN: a multi-object rectified attention network for scene text recognition. Pattern Recognit. 90, 109–118 (2019). https://doi.org/10.1016/j.patcog.2019.01.020
Article
Google Scholar
T. Wang et al., Decoupled attention network for text recognition. Proc. AAAI Conf. Artif. Intell. 34(07), 12216–12224 (2020). https://doi.org/10.1609/aaai.v34i07.6903
Article
Google Scholar
S. Zherzdev and A. Gruzdev, “LPRNet: license plate recognition via deep neural networks,” ArXiv180610447 Cs, (2018), Accessed: Jul. 15, 2021. [Online]. http://arxiv.org/abs/1806.10447
“End-to-end system of license plate localization and recognition.” https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-24/issue-2/023020/End-to-end-system-of-license-plate-localization-and-recognition/10.1117/1.JEI.24.2.023020.short?SSO=1 (accessed Jul. 15, 2021)
Z. Mahmood, T. Ali, S. Khattak, L. Hasan, S.U. Khan, Automatic player detection and identification for sports entertainment applications. Pattern Anal. Appl. 18(4), 971–982 (2015). https://doi.org/10.1007/s10044-014-0416-4
Article
MathSciNet
Google Scholar
W. Liu et al., “SSD: single shot multibox detector,” in Computer Vision—ECCV 2016, (Cham, 2016), pp. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2
J. Redmon and A. Farhadi, “YOLOv3: an Incremental Improvement,” ArXiv180402767 Cs, (2018), Accessed: Jul. 15, 2021. [Online]. http://arxiv.org/abs/1804.02767