Skip to main content

JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

Abstract

We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

[123456789101112131415161718192021222324252627282930313233]

References

  1. 1.

    Sullivan GJ, Wiegand T: Video compression-from concepts to the H.264/AVC standard. Proceedings of the IEEE 2005,93(1):18-31.

    Article  Google Scholar 

  2. 2.

    Marpe D, Wiegand T, Sullivan GJ: The H.264/MPEG4 advanced video coding standard and its applications. IEEE Communications Magazine 2006,44(8):134-143.

    Article  Google Scholar 

  3. 3.

    Joint Committee Draft, JVT-C167, Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, May 2002

  4. 4.

    Marpe D, George V, Cycon HL, Barthel KU: Performance evaluation of motion-JPEG2000 in comparison with H.264/AVC operated in pure intra coding mode. Wavelet Applications in Industrial Processing, October 2004, Providence, RI, USA, Proceedings of SPIE 5266: 129-137.

    Article  Google Scholar 

  5. 5.

    Information Technology—Coding of Audio Visual Objects—Part 2: Visual AMENDMENT 4: Streaming Video Profile, MPEG 2000/N3518, July 2000

  6. 6.

    Li W: Overview of fine granularity scalability in MPEG-4 video standard. IEEE Transactions on Circuits and Systems for Video Technology 2001,11(3):301-317. 10.1109/76.911157

    Article  Google Scholar 

  7. 7.

    Shapiro JM: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 1993,41(12):3445-3462. 10.1109/78.258085

    Article  MATH  Google Scholar 

  8. 8.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996,6(3):243-250. 10.1109/76.499834

    Article  Google Scholar 

  9. 9.

    Taubman D: High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing 2000,9(7):1158-1170. 10.1109/83.847830

    Article  Google Scholar 

  10. 10.

    André T, Cagnazzo M, Antonini M, Barlaud M, Božinović N, Konrad J: (N,0) motion-compensated lifting-based wavelet transform. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 3: 121-124.

    Google Scholar 

  11. 11.

    Cagnazzo M, André T, Antonini M, Barlaud M: A smoothly scalable and fully JPEG2000-compatible video coder. Proceedings of the 6th IEEE Workshop on Multimedia Signal Processing (MMSP '04), September 2004, Siena, Italy 91-94.

    Google Scholar 

  12. 12.

    Cagnazzo M, André T, Antonini M, Barlaud M: A model-based motion compensated video coder with JPEG2000 compatibility. Proceedings of IEEE International Conference on Image Processing (ICIP '04), October 2004, Singapore 4: 2255-2258.

    Google Scholar 

  13. 13.

    Sweldens W: The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 1996,3(2):186-200. 10.1006/acha.1996.0015

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Pesquet-Popescu B, Bottreau V: Three-dimensional lifting schemes for motion compensated video compression. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01), May 2001, Salt Lake, Utah, USA 3: 1793-1796.

    Google Scholar 

  15. 15.

    Secker A, Taubman D: Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting. Proceedings of IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 2: 1029-1032.

    Google Scholar 

  16. 16.

    Secker A, Taubman D: Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression. IEEE Transactions on Image Processing 2003,12(12):1530-1542. 10.1109/TIP.2003.819433

    Article  Google Scholar 

  17. 17.

    Luo L, Li J, Li S, Zhuang Z, Zhang Y-Q: Motion compensated lifting wavelet and its application in video coding. Proceedings of IEEE International Conference on Multimedia and Expo (ICME '01), August 2001, Tokyo, Japan 365-368.

    Google Scholar 

  18. 18.

    Reichel J, Schwarz H, Wien M: Scalable Video Coding—Working Draft 2. Joint Video Team (JVT), Busan (KR), April 2005, Doc. JVT-O201

  19. 19.

    Tabatabai A, Visharam Z, Suzuki T: Study of effect of update step in MCTF. Proceedings of the 17th Meeting of Joint Video Team (JVT '05), October 2005, Nice, France Doc. JVT-Q026

    Google Scholar 

  20. 20.

    Turaga DS, van der Schaar M: Content-adaptive filtering in the UMCTF framework. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '03), April 2003, Hong Kong 3: 621-624.

    Google Scholar 

  21. 21.

    Antonini M, Barlaud M, Mathieu P, Daubechies I: Image coding using wavelet transform. IEEE Transactions of Image Processing 1992,1(2):205-220. 10.1109/83.136597

    Article  Google Scholar 

  22. 22.

    Shoham Y, Gersho A: Efficient bit allocation for an arbitrary set of quantizers. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988,36(9):1445-1453. 10.1109/29.90373

    Article  MATH  Google Scholar 

  23. 23.

    Ramchandran K, Vetterli M: Best wavelet packet bases in a rate-distortion sense. IEEE Transactions on Image Processing 1993,2(2):160-175. 10.1109/83.217221

    Article  Google Scholar 

  24. 24.

    Gersho A, Gray RM: Vector Quantization and Signal Compression. Kluwer Academic, Norwell, Mass, USA; 1988.

    Google Scholar 

  25. 25.

    Usevitch B: Optimal bit allocation for biorthogonal wavelet coding. Proceedings of the Data Compression Conference (DCC '96), March-April 1996, Snowbird, Utah, USA 387-395.

    Google Scholar 

  26. 26.

    Huang JY, Schultheiss PM: Block quantization of correlated Gaussian random variables. IEEE Transactions on Communications 1963,11(3):289-296. 10.1109/TCOM.1963.1088759

    Article  Google Scholar 

  27. 27.

    Parisot C, Antonini M, Barlaud M: 3D scan-based wavelet transform and quality control for video coding. EURASIP Journal on Applied Signal Processing 2003,2003(1):56-65. 10.1155/S1110865703210064

    Article  Google Scholar 

  28. 28.

    Schoenberg IJ: Contributions to the problem of approximation of equidistant data by analytic functions—part A: on the problem of smoothing or graduation. A first class of analytic approximation formulae. Quarterly of Applied Mathematics 1946,4(1):45-99.

    MathSciNet  Google Scholar 

  29. 29.

    Schoenberg IJ: Contributions to the problem of approximation of equidistant data by analytic functions—part B: on the problem of osculatory interpolation. A second class of analytic approximation formulae. Quarterly of Applied Mathematics 1946,4(2):112-141.

    MathSciNet  Google Scholar 

  30. 30.

    Unser M: Splines: a perfect fit for signal and image processing. IEEE Signal Processing Magazine 1999,16(6):22-38. 10.1109/79.799930

    Article  Google Scholar 

  31. 31.

    Reinsh CH: Smoothing by spline functions. Numerische Mathematik 1967,10(3):177-183. 10.1007/BF02162161

    MathSciNet  Article  Google Scholar 

  32. 32.

    Unser M, Aldroubi A, Eden M: B-spline signal processing—part II: efficient design and applications. IEEE Transactions on Signal Processing 1993,41(2):834-848. 10.1109/78.193221

    Article  MATH  Google Scholar 

  33. 33.

    JM 11.0 H.264/AVC reference software, Joint Video Team (JVT). http://iphome.hhi.de/suehring/tml/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas André.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

André, T., Cagnazzo, M., Antonini, M. et al. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding. J Image Video Proc 2007, 030852 (2007). https://doi.org/10.1155/2007/30852

Download citation

Keywords

  • Pattern Recognition
  • Computer Vision
  • Video Sequence
  • Video Coder
  • Temporal Analysis