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Thomas André, Marco Cagnazzo, Marc Antonini, andMichel Barlaud
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We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal,
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undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis,
as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded
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A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video
sequences, is ensured.
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1. INTRODUCTION

The current video coding standards, such as MPEG-4 part 10
or H.264 [1–3], are very good at compressing today’s video
sequences at relatively low resolution (QCIF, CIF, or even
SD formats). However, video coders based on wavelet trans-
forms (WT) may prove to be much more efficient for en-
coding high-definition television (HDTV) or digital cinema
(DC) sequences. For example, Motion JPEG2000, which ex-
tends JPEG2000 to video coding applications, proved to be
as efficient as H.264/AVC in intramode for high-resolution
sequences encoded at high-bit rate [4] and might be adopted
as a future standard for digital cinema and high-definition
television.

Furthermore, the generalization of these new, large for-
mats will inevitably create new needs, such as scalability. A
scalable bitstream is composed by embedded subsets, which
are efficient compression of original data, but at a different
resolution (both spatially or temporally) or rate. In other
words, the user should be able to extract from a part of the
full-rate, full-resolution bitstream (e.g., DC) a degraded ver-
sion of the original data, that is, with a reduced resolution or
an increased distortion (e.g., adapted to HDTV or even to In-
ternet streaming) and with no additional computation. The
recent standards already offer a certain degree of scalability,

like the fine grain scalability (FGS) in the MPEG-4 standard
[5]. However, in this case, scalability is obtained by substan-
tially modifying the encoding algorithm, and this results in
an increase in complexity and a decrease of quality for a given
bit rate [6]. A more natural solution to the scalability prob-
lem comes from wavelet-based encoders, which can offer su-
perior performances in terms of scalability cost in the case
of video, as they already did for images [7–9]. However, the
quality of temporally scaled videos can be impaired due to
the lowpass wavelet filtering in the temporal domain [10].
Moreover, rate-scaled videos may loose rate-distortion opti-
mality.

In this work, we describe a wavelet-based video coder and
we discuss its spatial, temporal, and rate scalability. The main
characteristics of this coder have been briefly presented in
[11, 12]. In addition to a more detailed description of this
coder, we provide here extended experimental results which
better illustrate all the scalability properties. In particular, we
show that our simple structure allows SNR, temporal, and
spatial scalability, thanks to a specific temporal filtering and
a careful bit allocation. We also provide an algorithm for
modeling rate-distortion curves using the most appropriate
smoothing spline. As a consequence, the scalability comes
without impairing objective as well as subjective quality of
the decoded sequence, neither increasing significantly the
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Figure 1: General structure of the proposed encoder.

encoding algorithm complexity. The result is a high scalabil-
ity, which is transparent in terms of quality and complexity—
that is what we call smooth scalability.

Let us first describe briefly the principles of wavelet-based
video coding through the example of the coder presented
in Figure 1. Wavelet transforms proved to be very powerful
tools for still-image coding. WT-based encoders achieve bet-
ter performances than those based on discrete cosine trans-
forms (DCT) in terms of compression rate. WT can also be
easily used for a multiresolution analysis, which is the key
to scalability features. For these reasons, much attention has
been devoted to WT-based video coding. In the proposed
scheme, the input video data firstly undergo a temporal anal-
ysis based on the motion-compensated lifted wavelet trans-
form. The motion information is encoded losslessly using
EBCOT [9] and the remaining available bit budget is dis-
tributed among the temporal subbands (SB) using a model-
based optimal bit allocation algorithm. In the temporal do-
main, motion-compensated lifting schemes [13–16], mostly
based on the 5/3 wavelet kernels (also called (2, 2) lifting
scheme), obtain better performances than uncompensated
temporal WT. However, whereas the temporal analysis of
hybrid coders requires one motion vector field (MVF) per
frame and is very flexible, the 5/3 temporal wavelet analy-
sis requires 4(1− 2−L) MVFs per frame in average, when the
number of decomposition levels is L. This number halves if
symmetrical MVF are used (usually with a negligible loss in
motion compensation accuracy), but it is still a high penalty.
An alternative is to change the temporal filter, using a lifting
scheme without update step, from now on indicated as (2, 0)
lifting scheme. This filter has been presented in [10, 17] and
its possible adoption into the standard JVT-SVC [18] is un-
der study [19]. The expression of the motion-compensated
temporal highpass and lowpass filters of the (2, 0) lifting
scheme is the following:

hk[m] = x2k+1[m]− 1
2

(
x2k
[
m + v2k+1→2k(m)

]

+ x2k+2
[
m + v2k+1→2k+2(m)

])
,

lk[m] = x2k[m],
(1)

where xk, hk, and lk are, respectively, the kth input frame,
high-frequency coefficient and low-frequency coefficient,

and vi→ j(m) is the motion vector that displaces the pixel m
of the image xi to the corresponding pixel in the image xj .
The lowpass filtering is then reduced to a simple temporal
subsampling of the original sequence. These filters reduce
the number of required motion vectors, and leave the low-
pass subband unaltered in case of unprecise motion com-
pensation. We observe that the (2, 0) lifting scheme is re-
lated to the unconstrained motion-compensated temporal
filter (UMCTF) framework [20], which is characterized by
adaptive choice of lowpass filter between a so-called delta fil-
ter and a more traditional averaging filter (in [20] it is Haar).
The delta-filter in the UMCTF framework is a pure subsam-
pling (like in our scheme) and the choice between the delta-
filter and the averaging filter depends on the video motion
content. This adaptation allows a better representation of fast
motion in the case of very low frame rate. In our scheme the
lowpass filter is not adaptively chosen, since we assume that
when temporal scalability is requested, the reference video
sequence is the pure subsampling of the original one. In this
case, a pure subsampling temporal filter minimizes the scal-
ability cost, as we will show later on.

As far as spatial stage is concerned, we use a JPEG2000-
compatible algorithm handling the spatial analysis as well
as the encoding process. As a consequence, the available re-
sources are automatically allocated among the different spa-
tial subbands. On the other hand, the bit allocation between
the temporal subbands remains to be done. To do so, the
knowledge of the rate-distortion (RD) curve of each tempo-
ral subband is required, and the estimation of these curves is
computationally heavy. Furthermore, a high precision is re-
quired in order to obtain regular, differentiable curves. For
these reasons, model-based algorithms are desirable as long
as they can combine computational efficiency with robust-
ness and accuracy. According to these ideas, the model-based
algorithm described in Sections 2 and 3 performs an optimal
bit allocation using spline models of RD curves. This algo-
rithm only needs the computation of a few points for each
RD curve, and interpolates them by a cubic spline. The spline
modeling allows a concise yet accurate representation of the
RD curves and has a very low complexity.

Once the temporal analysis and the bit allocation have
been performed, the low-frequency (LF) subbands undergo a
spatial WT using the 9/7 filters [21]. If spatial scalability is re-
quired, the high-frequency (HF) subbands undergo the same
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spatial transform. The MQ coder of EBCOT is then used
to encode all subbands as well as motion vectors. The full
JPEG2000 compatibility of the whole coder is thus ensured.

At first sight, it seems that the video coder described
above is already completely scalable. Indeed, spatial and tem-
poral scalability are natively supported thanks to the use of
spatiotemporal wavelet transforms, and rate scalability is a
feature of EBCOT. However, we show in Section 4 that some
specific operations are needed in order to limit, or possibly
to cancel out, the performance losses due to scalability.

The remaining of the paper is organized as follows. In
Section 2, we introduce the problem of temporal bit alloca-
tion and review some existing approaches. We also present
optimal algorithms for rate and quality allocation based on
RD curves. In Section 3, we present an improvement to the
previous algorithms by introducing a model for RD curves
based on splines. In Section 4, we investigate the possibilities
of the proposed video coder in terms of scalability. Finally,
Section 5 concludes the paper.

2. RESOURCE ALLOCATION

The temporal analysis produces several types of temporal
subbands, according to the wavelet transform used and the
number of decomposition levels. We will consider a dyadic
one-dimensional decomposition on N levels resulting in
M = N + 1 subbands: N high-frequency (HF) and 1 low-
frequency (LF). The problem arises of assigning the coding
resources to the subbands, so that either the distortion is
minimized for a given target bit-rate, or the bit-rate is mini-
mized for a given target quality.

Analytic solutions have been proposed in the literature
in the hypothesis of high bit-rate, but in the general case,
this problem is not trivial. On the other hand, methods based
on empirical RD curves analysis do not require any assump-
tion on the target bit-rate, and thus have been widely used.
Shoham and Gersho proposed in [22] an optimal algorithm
with no restriction on bit-rate, at the expense of a high com-
putational cost since it requires the computation of the RD
characteristics for each possible quantization step. Ramchan-
dran and Vetterli presented in [23] an RD approach to en-
code adaptive trees using generalizedmultiresolution wavelet
packets. The most recent still image compression standard
JPEG2000 is based on the EBCOT algorithm, which divides
the wavelet coefficients into code blocks, and then defines an
optimality condition on their RD curves which assures the
minimum distortion of reconstructed image.

In the following, we recall a general bit allocation al-
gorithm based on analytical RD curves, and we provide a
method to obtain these curves from experimental data. Both
the rate allocation and the distortion allocation points of
view are considered.

2.1. The rate allocation problem

Let us first suppose that the user wants to optimize the
reconstruction quality for a given target bit-rate. The prob-
lem is to find a suitable set of bit-rates R = {Ri}Mi=1 (where Ri

is the bit-rate assigned to the ith subband) so that the result-
ing distortion D(R) of the reconstructed sequence is mini-
mized. Of course there is a constraint on the total available
bit-rate.

In the case of orthogonal subband coding, Gersho and
Gray showed [24] that the global distortion can be expressed
as a sum of the subbands distortions:

D(R) =
M∑

i=1
Di
(
Ri
)
, (2)

where Di(Ri) is the RD curve for the ith subband, and it has
to be computed or estimated in some way. We notice that we
do not use orthogonal filters, but the previous formula can
be extended [25] by using filter weights wi which account for
the nonorthogonality:

D(R) =
M∑

i=1
wiDi

(
Ri
)
. (3)

The minimization of the distortion is subject to a con-
straint on the total bit-rate of the subbands, RSB, which
should be equal to or smaller than a target value RMAX.

The total bit-rate is a weighted sum of subband rates,
RSB =

∑M
i=1 aiRi, where the coefficient ai is simply the frac-

tion of total pixels in the ith subband. Thus, the rate alloca-
tion problem consists in finding R which minimizes the cost
function (3) under the constraint

∑M
i=1 aiRi ≤ RMAX.

This problem can be easily solved using a Lagrangian ap-
proach. We introduce the Lagrangian functional J(R, λ):

J(R, λ) =
M∑

i=1
wiDi

(
Ri
)− λ

( M∑

i=1
aiRi − RMAX

)

. (4)

In the hypothesis of differentiability, by imposing the zero-
gradient condition, we find that the resulting optimal rate
allocation vector R∗ = {R∗i }Mi=1 verifies the following set of
equations:

wi

ai

∂Di

∂Ri

(
R∗i
) = λ ∀i ∈ {1, . . . ,M}, (5)

where λ is the Lagrange multiplier. Equation (5) states that
the optimal rates correspond to points having the same slope
on the “weighted” curves (Ri, (wi/ai)Di). Note that λ ≤ 0
since the RD curves are decreasing.

Let us introduce the set of functions Ri(λ), defined im-
plicitly by the following equation:

wi

ai

∂Di

∂Ri

(
Ri
)
∣
∣∣
∣
Ri=Ri(λ)

= λ. (6)

The value of Ri(λ) is the rate of the ith subband which corre-
sponds to a slope λ on its weighted RD curve. The rate allo-
cation problem consists in finding the slope value λ∗ so that

M∑

i=1
aiRi

(
λ∗
) = RMAX. (7)
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Simple algorithm exists which allows to find λ∗, among
which we can mention the bisection method, the Newton
method, the Golden Section method, the Secant method.
These algorithms usually converge after 3 to 6 iterations, and
their complexity is negligible if compared to the other parts
of video coder such as motion estimation and compensation.

Note that this algorithm converges to the optimal solu-
tion if and only if the curves Di(Ri) are both differentiable
and convex.

2.2. The quality allocation problem

So far, only the problem of rate allocation has been consid-
ered. However, for some applications requiring for example
a minimum level of quality, the constraint must be applied
on the distortion instead of the bit-rate. This problem turns
out to be very similar to the rate allocation problem and can
be solved in a very similar way.

Indeed, the cost function to beminimized is now the total
bit-rate allocated to the subbands RSB =

∑M
i=1 aiRi, under a

constraint on the global distortion:

D(R) =
M∑

i=1
wiDi

(
Ri
) ≤ DMAX. (8)

We write the following Lagrangian functional:

J(R, λ) =
M∑

i=1
aiRi − λ

( M∑

i=1
wiDi

(
Ri
)−DMAX

)

(9)

and, by imposing again the zero-gradient condition, we ob-
tain

wi

ai

∂Di

∂Ri

(
R∗i
) = 1

λ
∀i ∈ {1, . . . ,M}. (10)

This means, once again, that the optimality condition is the
uniform slope on the weighted curves (Ri, (wi/ai)Di). The
optimal bit-rates R∗i are then determined using the algo-
rithms presented in the previous section.

2.3. Obtaining the rate-distortion functions

The algorithms presented in the previous sections not only
require the knowledge of the RD curve of each subband, but
also suppose that these curves are differentiable, convex, and
accurate enough. A crucial step of the bit-allocation algo-
rithm is thus the estimation of each subband’s RD curve.

A first and simple approach consists of evaluating each
curve atmany points: each subbandmust be encoded and de-
coded several times at different rates, and the resulting distor-
tions computed and stored. Unfortunately, in order to obtain
accurate estimates of each curve in the whole range of pos-
sible bit-allocation values, many test points are required. So
this approach is extremely complex. Furthermore, such ex-
perimental RD curves are found to be much irregular, espe-
cially at low bit-rates, and consequently they can easily result
not convex nor differentiable, and the allocation algorithms
lack robustness.

To circumvent this difficulty, some approaches have been
proposed which do not require RD curves to be estimated.
A first analytical approach is due to Huang and Schultheiss,
who stated the theoretical optimal bit allocation for generic
transform coding in the high-resolution hypothesis [26].
They derived a formula which defines the optimal bit-rate
to be allocated to each set of data, depending on their vari-
ances. Unfortunately, this solution only holds when a high
rate is available for encoding. Later, Parisot et al. proposed in
[27] a model of scalar-quantized coefficients using general-
ized Gaussian models. Using these different models leads to
a complexity reduction of the allocation algorithms, and im-
proves their robustness. Unfortunately, these solutions only
hold under strong hypotheses, for example, on the total bit-
rate, or the quantizer being used. The hypotheses drawn have
a limited domain of validity which causes the allocation to be
quite imprecise at low bit-rate.

In the following, we propose a model for RD curves
which improves the tradeoff between robustness, accurate-
ness, and complexity, and remains valid for the most general
case.

3. MODEL-BASED BIT ALLOCATION USING SPLINES

In this section, we propose an analytical model for RD
curves which allows the implementation of a data-driven
and model-based allocation algorithm. In this way, we try to
combine the precision and accuracy of techniques based on
experimental data, with the robustness, computational effi-
ciency, and flexibility of model-based methods, while guar-
anteeing the convexity and differentiability of the obtained
RD curves.

Splines are particularly well-suited for this purpose, be-
cause they are designed to allow a smooth switching between
continuous and discrete representations of a signal. Since
their first introduction by Schoenberg [28, 29], they have
been successfully used in many problems of applied math-
ematics and signal processing [30].

A spline of degree n is a piecewise polynomial function
of degree n, which is continuous together with its first n − 1
derivatives. Splines, and in particular cubic splines, proved
to be very effective in solving the interpolation problem. In
other words, given a set SN of N points {(xk, yk)}k=1,...,N , it is
possible to find the spline passing through them with a very
low complexity. Moreover, the resulting spline can be ana-
lytically described with as few as N parameters and it has a
pleasantly smooth aspect. In particular, the cubic interpolat-
ing spline minimizes the curvature of the resulting function.

However, some adjustment is needed in order to use
spline to efficiently interpolate RD curves in the general case.
Indeed, the set of RD points obtained experimentally is usu-
ally quite irregular, especially at low bit-rates. Interpolat-
ing those points directly could result in a nonmonotonic,
nonconvex curve, which would cause the algorithms pro-
posed in Section 2 to fail.

In order to solve this problem, smoothing splines can
be used instead of interpolation splines. Considering the set
of points aSN , the solution of the interpolation problem
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Figure 2: (a) The smoothing-spline curve seems to match perfectly the “experimental” curve: spline approximations of an “experimental”
RD curve (solid curve) composed by 200 points computed experimentally. The interpolation-spline curve (dotted curve) and the smoothing-
spline curve (dashed curve) have been obtained by interpolating the 7 marked points. Moreover, (b) its derivative fits better to the real data
than the interpolation-spline curve: derivatives of the RD curves presented above. The derivatives of the spline curves (dotted and dashed)
have been computed analytically from the expression of the original curves. The obtained RD curve and its derivative are smooth and
continuous.

is the spline function s(x) which sets at zeros the quantity
∑N

k=1(yk − s(xk))2. If the sample points are affected by error
or noise, a tight interpolation of them easily results in an ir-
regular (i.e., nonmonotonic or nonconvex) spline. If we re-
lax the interpolation condition and impose a regularity con-
straint, much better results can be obtained. Let us consider
the following criterion to minimize:

J
(
s(·), λ) =

N∑

k=1

(
yk − s

(
xk
))2

+ λ
∫ +∞

−∞

[
s(2)(x)

]2
dx.

(11)

In this criterion, there is a first term which imposes that the
solution should pass close to the experimental point, and a
second one which is (with very good approximation) close
to the function curvature. Minimizing this criterion means
finding a function passing close to the test points but which
is regular. The parameter λ controls the balance between the
two constraints. The greater λ, the greater the penalty on the
energy of the second derivative, and the smoother the final
curve result.

It has been shown [31] that the solution of the mini-
mization problem (11) is a cubic spline. This kind of spline
is called “smoothing spline,” and fast calculation techniques
exist [32] which efficiently find the smoothing spline for an
assigned set SN and a value of λ.

At this point, only a suitable value for λ remains to
be found, so that the obtained spline curve is the convex,
monotonic, and as close as possible to the sample points. The

algorithm we propose starts by computing the spline inter-
polating SN , that is, a smoothing spline with λ = 0. If it is
already regular (i.e., monotonic and convex), it is retained
as parametric representation of the RD curve. Otherwise, we
set λ to some small value and look for the smoothing spline
minimizing J . The algorithm continues iteratively: if the ob-
tained spline is regular, it exits; otherwise λ is incremented
and a new smoothing spline is computed. It is worth not-
ing that the algorithm usually converges after a few iterations
(less than 10), and that in any case its complexity remains
small1 compared to the global complexity of the encoder.

Many experiments were carried out in order to verify the
efficiency of the model, and in all of them spline proved to
provide a very good fit to any RD curve. This was not obvious
because, for example, the lowest frequency SB has usually a
very steep RD curve for the lower range of rate and much
more flat curves for higher rates, while high-frequency SBs
generally have regular RD curves. Nevertheless, the proposed
approach is able to represent any RD curve accurately, usually
using as few as 7 to 10 points.

An example is shown in Figure 2(a), where we report as
a reference the “experimental” RD curve for the highest fre-
quency SB computed on the first 16 frames of the foreman
sequence (solid line), obtained by the (2, 2) temporal filter.
This curve has been obtained by encoding and decoding the

1 This is because in any case the number of points in SN is very small,
for example, with respect to the number of samples of the correspond-
ing subband.
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SB at 200 different rates. On the same graph, we reported
the spline representations of this curve as well (dotted lines).
These curves have been obtained by using just 7 points,
namely, those highlighted with a circle. We used both inter-
polation and smoothing splines, and the results in both cases
appear to be satisfactory, as the original curve and its para-
metric representations are almost indistinguishable. One can
notice that the smoothing spline curve is convex, whereas the
interpolation spline is not.

In Figure 2(b), we reported the first derivatives of the
same experimental curve and of the splines. The experimen-
tal derivative must be approximated from the 200 experi-
mental points, whereas the computation of the spline deriva-
tives can be easily accomplished analytically. The resulting
spline curves have not the irregularities which characterize
the experimental data. It means that when the allocation al-
gorithm looks for points with the same derivative, we have
more robust results, especially at low bit rates.

To conclude this section, we stress that the proposed al-
gorithm was validated by using it in order to model the RD
curves of the spatial SBs of the WT of natural images. We
found that it is able to provide smooth and regular curves in
this case as well, even though the statistics of spatial SBs are
usually quite different to those of temporal SBs. This is an
additional confirmation of the robustness of our algorithm.

4. SCALABILITY

In a general way, a scalable bitstream has lower performance
than what can be reached by encoding directly the sequence
at the desired resolution, frame-rate, and bit-rate. So we call
scalability cost the difference between the quality (expressed
in terms of PSNR) of the scalable bitstream decoded at a dif-
ferent resolution, frame-rate, or bit-rate from the original,
and the quality that could have been achieved by directly en-
coding the original sequence with the desired parameters. A
smoothly scalable encoder should have a null or very little
scalability cost, that is, the same (or almost the same) perfor-
mances of its nonscalable version. Moreover, we have also to
take into account that introducing scalability into a video en-
codermeans increasing its complexity. The smoothly scalable
encoder should on the contrary have a complexity compara-
ble to its nonscalable counterpart.

In [6], Li deeply investigated this problem, in the general
case and more specifically for MPEG-4 fine grain scalabil-
ity (FGS). He showed that the hybrid video coders are usu-
ally strongly affected by the scalability cost. For example, a
gap of several dB of PSNR separates MPEG-4 FGS from its
nonscalable version (in particular for temporal scalability).
WT-based encoders have a much easier job with scalability,
thanks to the multiresolution analysis properties. Neverthe-
less, some problems remain to be solved, mainly related to
bit allocation and lowpass filtering effects.

In the following, we show that the video coder presented
above is smoothly scalable provided that the bit-allocation al-
gorithm is slightly modified. The resulting coder is capable of
achieving almost the same performances as the nonscalable
version, and at almost the same computational cost. In all the

experiments, we used a simple motion description, based on
16× 16 blocks at quarter-pixel precision.

We will use the following notations. Let R(0) be the bit
budget available for the subbands. The nonscalable encoder
must distribute these resources between the M SBs, finding

the optimal rates vector R(0) = {R(0)
i }Mi=1, under the con-

straint
∑M

i=1 aiR
(0)
i = R(0), where R(0)

i is the rate allocated to
the ith subband when the total available rate is R(0).

4.1. Rate scalability

The rate scalability should allow to decode the bitstream at
a set of predefined rates R(n) < · · · < R(1) different from the
encoding rate R(0). Since the ith spatiotemporal SB is scalably
encoded using EBCOT, we could truncate its bitstream at any

arbitrary rate R
( j)
i , provided that

∑M
i=1 aiR

( j)
i = R( j). However,

with such a simple strategy, if the sequence is decoded at the
jth rate, we lose optimality of the bit allocation.

To overcome this problem, we perform in advance the bit
allocation for each target rate R( j), which computes the opti-

mal vector R( j) = {R( j)
i }Mi=1. The allocation must be repeated

for each one of the n target rates, until n optimal rate vectors
are obtained for each SB. Then, as shown in Figure 3, we can
encode the ith subband with the n quality layers correspond-

ing to the rates R
( j)
i (for j = 1, . . . ,n). Finally, we regroup all

the layers corresponding to the same level. Thus, in order to
decode the sequence at the given rate R( j), we simply decode
each SB at the quality level j.

In order to evaluate the cost of this scalability method,
we compared the PSNR of the test sequences encoded and
decoded at the same rates, with the following two methods:
the first one consists in encoding each sequence separately
for each target rate; the second consists in producing only
one scalable bitstream for each sequence, and then decoding
it for each rate. It appears that, regardless of the demanded
rate, the scalable compressed video is almost identical to the
nonscalable one, since the SBs allocation is optimal in both
cases. The only difference is the additional headers required
for the quality layers. As an example, experimental results for
several test sequences are reported in Table 1. For several tar-
get bit-rates, this table shows the PSNR achieved by the pro-
posed coder with no rate scalability, as well as the PSNR loss
observed for the same bit-rate when the quality scalability
is enabled. In all test configurations, we noted that the pro-
posed method assures a very little and practically negligible
performance degradation, always inferior to 0.1 dB, increas-
ing with the decoded bit-rate.

We note that the motion information is not affected by
the rate scalability, as we still need the same vectors than
for the nonscalable case. We also stress that the proposed
method only requires the allocation algorithm to run N
times instead of once, if N quality layers are needed. If the
bit-allocation algorithm is model-based, its complexity is
negligible, much lower than the one of the motion estima-
tion or the wavelet transform.

In conclusion, introducing rate scalabilty does not affect
reconstructed sequence quality, neither requires a significant
increase in complexity in the proposed encoder.
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Table 1: PSNR (dB) achieved by the nonscalable version of the coder, and cost (dB, in bold) of the rate scalability, for several CIF sequences.
A 3-level (2, 0) temporal wavelet transform was used. The block matching was performed using 16×16 blocks and a quarter-pixel precision.

Rate (kbps) 300 500 750 1000 1200

Flower 22.71 (0.00) 25.76 (0.03) 28.00 (0.05) 29.67 (0.06) 30.75 (0.07)

Foreman 29.75 (0.00) 33.45 (0.03) 35.61 (0.03) 37.06 (0.05) 37.97 (0.05)

Mobile 23.06 (0.01) 25.79 (0.03) 27.95 (0.03) 29.53 (0.05) 30.49 (0.06)

Waterfall 31.81 (0.00) 34.54 (0.04) 36.86 (0.03) 38.36 (0.03) 39.20 (0.03)
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Figure 3: Optimal bit allocation for rate scalability. Example with 3 temporal decomposition levels (4 subbands, H, LH, LLH, and LLL) and
n quality layers. The bit-allocation algorithm is repeated for each target rate R(i) corresponding to a quality layer i (dashed parts). Thus, n
sets of optimal rates are computed for each subband (dotted parts).

4.2. Temporal scalability

The proposed video coder makes use of a temporal wavelet-
based multiresolution analysis. Thus, it is straightforward to
obtain a temporal subsampled version of the compressed se-
quence from the encoded bitstream, by decoding selectively
the lower temporal SBs.

However, when generic temporal filters are used, such
as the 5/3 filters, reconstructing the sequence without the
higher temporal SBs is equivalent to reconstructing a sub-
sampled and filtered version of input sequence. This tempo-
ral filtering causes ghosting and shadowing artifacts. On the
contrary, when (N , 0) filters are employed, the temporal low-
pass filtering is a pure subsampling. Thus, reversing the WT
of a sequence without using the higher temporal SBs is equiv-
alent to reversing the WT of its temporal subsampled ver-
sion. Moreover, the (N , 0) filters allow the optimal bit allo-
cation between the SBs to be preserved by the temporal sub-
sampling, since we entirely discard high frequency subbands,

with the residual rate still optimally allocated among surviv-
ing bands.

The only problem to deal with is the following. If we sim-
ply discard the higher temporal SBs, we loose control on the
final total rate. The solution is once again to run the alloca-
tion algorithm only for the desired number of temporal SBs,
with the suitable target rate. This will generate a new set of
quality layers (Figure 4). A simple signaling convention can
be established for the decoder to choose correctly the quality
layers according to the desired level of temporal (and possibly
quality) scalability.

We point out that motion vectors can be easily organized
in different streams for each temporal scalability layer. In-
deed, they can be encoded separately according to the tempo-
ral decomposition level, and each temporal scalability layer
needs motion vectors from a single temporal decomposition
level. We remark that, in this case as well, the complexity in-
crease is only due to the fact that the allocation algorithm
has to be run a few more times. But, as mentioned before, its
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each subband (excepted for the highpass subband), 2n rates are obtained and sorted, defining 2n optimal framerate-and-quality layers.

computational cost is negligible with respect to other parts
of encoder.

Experiments were made in order to assess the cost of the
temporal scalability. We encoded each test sequence at full
frame rate, and we decoded it at half the frame rate. Then
we compared the results with those obtained by encoding di-
rectly the temporal subsampled sequence. The results pre-
sented in Table 2 show a small scalability cost, not greater

than 0.07 dB, as expected from our theoretical considera-
tions. We also underline that the base layer of the temporal
hierarchy is actually the JPEG2000 encoding of the temporal
subsampled input sequence. This means that a user can ob-
tain an overview of the encoded sequence with as a simple
tool as a JPEG2000 decoder (together with a trivial bitstream
parser). This is possible because we use a temporal filter with-
out the update stage.
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Table 2: Temporal scalability cost (ΔPSNR, dB) for several CIF se-
quences, (2, 0) lifting scheme.

Rate (kbps) 300 500 750 1000 1200

Flower 0.02 0.01 0.03 0.00 0.01

Foreman 0.07 0.07 0.06 0.05 0.05

Mobile 0.01 0.01 0.02 0.01 0.01

Waterfall 0.01 0.04 0.01 0.01 0.01

It is worth noting that if other filters than (N , 0) had been
used, a much greater performance cost would have been ob-
served, due to the temporal filtering. We present in Table 3,
as an example, the results of an experiment similar to the
previous one, but performed with the common (2, 2) lift-
ing scheme. We notice a quite high PSNR impairment in this
case, up to almost one dB.

4.3. Spatial scalability

Subband coding provides an easy way to obtain spatial scal-
ability as well: it is sufficient to discard high-frequency SBs
(in this case spatial high frequencies) to obtain reduced-
resolution version of the original sequence. The only ad-
ditional problem is linked to the motion vectors which, in
our coder, are not spatially scalable: in our experiments, we
simply used the full-resolution motion vectors with half the
block-size and half their original values. In order to achieve a
smooth spatial scalability, we would need a spatially progres-
sive representation of the motion vectors as well.

However, a fair assessment of the spatial scalability cost
is more difficult than the previous cases, because the choice
of the reference low-resolution sequence is not straightfor-
ward. A raw subsampling, effective in the temporal case,
would produce a reference sequence strongly affected by spa-
tial aliasing, and this sequence would be of course a quite
poor reference, because of its degraded subjective quality.
Therefore, a filtering stage before subsampling seems neces-
sary. However, in this case, the performances would become
dependent from choice of the lowpass filter. A reasonable
choice is then to use the same filter used in the spatial analysis
stage of the encoder, which in our case is the well-known 9/7
wavelet filter. This filter produces a pleasantly smooth low-
resolution version of the original image, so we can use the
sequence of first-level LL bands as reference low-resolution
sequence.

With this settings, we run similar experiments to those
presented for temporal and quality scalability. We decoded
the sequence at a lower resolution and we compared the re-
sulting performance to those obtained by directly encoding
the reduced-resolution sequence. We found, in this case as
well, a very small scalability cost, usually less than 0.1 dB all
over the range of encoding bit-rates. This cost does not take
into account the increase in MVFs representation cost, as
it becomes zero as far as a spatial scalable representation of
them is used.

Table 3: Temporal scalability cost (ΔPSNR, dB) for several CIF se-
quences, (2, 2) lifting scheme.

Rate (kbps) 300 500 750 1000 1200

Flower 0.19 0.26 0.50 0.70 0.93

Foreman 0.29 0.35 0.46 0.71 0.85

Mobile 0.17 0.21 0.47 0.61 0.79

Waterfall 0.19 0.28 0.48 0.62 0.81

4.4. Note on the complexity

Apart from estimating the RD curves, the bit-allocation al-
gorithm used here consists in finding the optimal rate on
each RD curve, for each one of the demanded scalability set-
tings. Thanks to the spline modeling of these curves, this op-
eration is extremely fast, and the iterative algorithm usually
converges after 5 iterations or less. Thus, even though this
step must be repeated several times according to the tempo-
ral scalability needs, its complexity is negligible. This process
takes a significant, but not overwhelming, amount of compu-
tation time within the complete encoding process. Of course,
the complexity of the decoder remains totally unaffected by
this algorithm.

5. CONCLUSION

We have presented in this paper a simple yet efficient scalabil-
ity scheme for wavelet-based video coder, able to provide on-
demand spatial, temporal and SNR scalability, together with
compatibility with the JPEG2000 standard. In addition to a
specific temporal wavelet filter, the use of a careful, model-
based bit allocation guarantees good performances and op-
timality in the sense of rate distortion. This is confirmed by
tests where we run the nonscalable H.264 encoder [33] with
a motion model similar to the one used in our encoder.

In Table 4, we show the PSNR values achieved by H.264,
together with the performance gain of the proposed scheme,
that is, the difference between the PSNR of our encoder (the
values reported in Table 1) and that of H.264. We observe
that the performances are quite close. Our encoder is only
penalized when both the cases of low bit-rates and complex
motion occur. In this situation, the current, nonscalable rep-
resentation of motion vectors adsorbs too much coding re-
sources. We think that with a scalable representation of mo-
tion vectors, our coder would benefit from a better tradeoff
among MVs and WT coefficients bit-rate. In the other cases,
the performances are comparable to those of H.264.

We reported some results for Motion JPEG2000 as well
in Table 5. This technique does not use motion compensa-
tion, and so it has far worse performances than our coder,
which however remains compatible with this standard, since
either temporal subbands and motion vectors are encoded
with EBCOT.

Of course, the coder would certainly benefit from a more
sophisticated motion model (variable-size block matching,
scalable motion vector representation, etc.), which would
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Table 4: PSNR (dB) achieved by H.264, and (in bold) performance gain Δ PSNR (dB) of the proposed scheme.

Rate (kbps) 300 500 750 1000 1200

Flower 23.92 (−1.16) 26.28 (−0.62) 27.75 (0.25) 29.51 (0.16) 30.66 (0.09)

Foreman 32.90 (−3.15) 35.05 (−1.60) 36.88 (−1.27) 38.13 (−1.07) 38.95 (−0.98)
Mobile 22.91 (0.15) 25.67 (0.12) 27.10 (0.85) 29.03 (0.50) 30.13 (0.36)

Waterfall 31.11 (0.70) 33.52 (0.98) 35.76 (1.10) 37.31 (1.05) 38.21 (0.99)

Table 5: PSNR (dB) achieved by MJPEG2000, and (in bold) performance gain ΔPSNR (dB) of the proposed scheme.

Rate (kbps) 300 500 750 1000 1200

Flower 19.25 (3.46) 20.33 (5.43) 21.49 (6.51) 22.58 (7.09) 23.40 (7.35)

Foreman 26.62 (3.13) 28.48 (4.97) 30.03 (5.58) 31.20 (5.86) 32.05 (5.92)

Mobile 18.14 (4.92) 19.28 (6.51) 20.23 (7.72) 21.11 (8.42) 21.77 (8.72)

Waterfall 25.65 (6.16) 26.82 (7.72) 27.95 (8.91) 28.91 (9.45) 29.50 (9.70)

improve the temporal analysis efficiency and the spatial scal-
ability performances. Further studies are under way to obtain
an efficient and scalable representation of motion vectors, to
find the best rate allocation among vectors and wavelet coef-
ficients, and to optimize the motion estimation with respect
to the motion-compensated temporal WT. These new tools
together with an adequate motion model could further im-
prove RD performance of the proposed scheme, making it an
interesting solution for the scalable video coding problem.

REFERENCES

[1] G. J. Sullivan and T. Wiegand, “Video compression-from con-
cepts to the H.264/AVC standard,” Proceedings of the IEEE,
vol. 93, no. 1, pp. 18–31, 2005.

[2] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4
advanced video coding standard and its applications,” IEEE
Communications Magazine, vol. 44, no. 8, pp. 134–143, 2006.

[3] Joint Committee Draft, JVT-C167, Joint Video Team of
ISO/IEC MPEG and ITU-T VCEG, May 2002.

[4] D. Marpe, V. George, H. L. Cycon, and K. U. Barthel, “Perfor-
mance evaluation of motion-JPEG2000 in comparison with
H.264/AVC operated in pure intra coding mode,” in Wavelet
Applications in Industrial Processing, vol. 5266 of Proceedings of
SPIE, pp. 129–137, Providence, RI, USA, October 2004.

[5] Information Technology—Coding of Audio Visual Objects—
Part 2: Visual AMENDMENT 4: Streaming Video Profile,
MPEG 2000/N3518, July 2000.

[6] W. Li, “Overview of fine granularity scalability in MPEG-4
video standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, no. 3, pp. 301–317, 2001.

[7] J. M. Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients,” IEEE Transactions on Signal Processing,
vol. 41, no. 12, pp. 3445–3462, 1993.

[8] A. Said and W. A. Pearlman, “A new, fast, and efficient im-
age codec based on set partitioning in hierarchical trees,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 6, no. 3, pp. 243–250, 1996.

[9] D. Taubman, “High performance scalable image compression
with EBCOT,” IEEE Transactions on Image Processing, vol. 9,
no. 7, pp. 1158–1170, 2000.
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