Open Access

Multiple Description Coding with Redundant Expansions and Application to Image Communications

EURASIP Journal on Image and Video Processing20072007:024863

https://doi.org/10.1155/2007/24863

Received: 15 August 2006

Accepted: 28 December 2006

Published: 19 February 2007

Abstract

Multiple description coding offers an elegant and competitive solution for data transmission over lossy packet-based networks, with a graceful degradation in quality as losses increase. In the same time, coding techniques based on redundant transforms give a very promising alternative for the generation of multiple descriptions, mainly due to redundancy inherently given by a transform, which offers intrinsic resiliency in case of loss. In this paper, we show how partitioning of a generic redundant dictionary can be used to obtain an arbitrary number of multiple complementary, yet correlated, descriptions. The most significant terms in the signal representation are drawn from the partitions that better approximate the signal, and split to different descriptions, while the less important ones are alternatively distributed between the descriptions. As compared to state-of-the-art solutions, such a strategy allows for a better central distortion since atoms in different descriptions are not identical; in the same time, it does not penalize the side distortions significantly since atoms from the same partition are likely to be highly correlated. The proposed scheme is applied to the multiple description coding of digital images, and simulation results show increased performances compared to state-of-the-art schemes, both in terms of distortions and robustness to loss rate variations.

[123456789101112131415161718192021222324252627282930313233]

Authors’ Affiliations

(1)
LTS4, Swiss Federal Institute of Technology (EPFL), Signal Processing Institute

References

  1. Radulovic I, Frossard P: Multiple description image coding with block-coherent redundant dictionaries. Proceedings of Picture Coding Symposium, April 2006, Beijing, ChinaGoogle Scholar
  2. Jayant NS: Subsampling of a DPCM speech channel to provide two 'self-contained' half-rate channels. The Bell System Technical Journal 1981,60(4):501-509.View ArticleGoogle Scholar
  3. Jiang W, Ortega A: Multiple description coding via polyphase transform and selective quantization. Visual Communications and Image Processing, January 1999, San Jose, Calif, USA, Proceedings of SPIE 3653: 998-1008.View ArticleGoogle Scholar
  4. Apostolopoulos JG: Reliable video communication over lossy packet networks using multiple state encoding and path diversity. Visual Communications and Image Processing, January 2001, San Jose, Calif, USA, Proceedings of SPIE 4310: 392-409.Google Scholar
  5. Vaishampayan VA: Design of multiple description scalar quantizers. IEEE Transactions on Information Theory 1993,39(3):821-834. 10.1109/18.256491View ArticleMATHGoogle Scholar
  6. Vaishampayan VA, Sloane NJA, Servetto SD: Multiple-description vector quantization with lattice codebooks: design and analysis. IEEE Transactions on Information Theory 2001,47(5):1718-1734. 10.1109/18.930913MathSciNetView ArticleMATHGoogle Scholar
  7. Servetto SD, Ramchandran K, Vaishampayan VA, Nahrstedt K: Multiple description wavelet based image coding. IEEE Transactions on Image Processing 2000,9(5):813-826. 10.1109/83.841528View ArticleGoogle Scholar
  8. Srinivasan M, Chellappa R: Multiple description subband coding. Proceedings of IEEE International Conference on Image Processing (ICIP '98), October 1998, Chicago, Ill, USA 1: 684-688.Google Scholar
  9. Jagmohan A, Sehgal A, Ahuja N: Two-channel predictive multiple description coding. Proceedings of IEEE International Conference on Image Processing (ICIP '05), September 2005, Genova, Italy 2: 670-673.Google Scholar
  10. Goyal VK, Kovačević J: Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory 2001,47(6):2199-2224. 10.1109/18.945243View ArticleMATHGoogle Scholar
  11. Wang Y, Orchard MT, Reibman AR: Multiple description image coding for noisy channels by pairing transform coefficients. Proceedings of 1st IEEE Workshop on Multimedia Signal Processing, June 1997, Princeton, NJ, USA 419-424.Google Scholar
  12. Goyal VK, Kovačević J, Arean R, Vetterli M: Multiple description transform coding of images. Proceedings of IEEE International Conference on Image Processing (ICIP '98), October 1998, Chicago, Ill, USA 1: 674-678.Google Scholar
  13. Goyal VK, Kovačević J, Kelner JA: Quantized frame expansions with erasures. Applied and Computational Harmonic Analysis 2001,10(3):203-233. 10.1006/acha.2000.0340MathSciNetView ArticleMATHGoogle Scholar
  14. Channappayya SS, Lee J, Heath RW Jr., Bovik AC: Frame based multiple description image coding in the wavelet domain. Proceedings of IEEE International Conference on Image Processing (ICIP '05), September 2005, Genova, Italy 3: 920-923.Google Scholar
  15. Petrişor T, Tillier C, Pesquet-Popescu B, Pesquet J-C: Comparison of redundant wavelet schemes for multiple description coding of video sequences. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 5: 913-916.Google Scholar
  16. Petrişor T, Tillier C, Pesquet-Popescu B, Pesquet J-C: Redundant multiresolution analysis for multiple description video coding. Proceedings of 6th IEEE Workshop on Multimedia Signal Processing (MMSP '04), September-October 2004, Siena, Italy 95-98.Google Scholar
  17. Tang X, Zakhor A: Matching pursuits multiple description coding for wireless video. IEEE Transactions on Circuits and Systems for Video Technology 2002,12(6):566-575. 10.1109/TCSVT.2002.800327View ArticleGoogle Scholar
  18. Nguyen T, Zakhor A: Matching pursuits based multiple description video coding for lossy environments. Proceedings of IEEE International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 1: 57-60.Google Scholar
  19. Chan H-T, Fu C-M, Huang C-L: A new error resilient video coding using matching pursuit and multiple description coding. IEEE Transactions on Circuits and Systems for Video Technology 2005,15(8):1047-1052.View ArticleGoogle Scholar
  20. Karabulut G, Yongacoglu A: Multiple description coding using orthogonal matching pursuit. Proceedings of the 3rd Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '04), June 2004, Bodrum, Turkey 529-534.Google Scholar
  21. Figueras i Ventura RM, Vandergheynst P, Frossard P: Low-rate and flexible image coding with redundant representations. IEEE Transactions on Image Processing 2006,15(3):726-739.View ArticleGoogle Scholar
  22. Jost P, Vandergheynst P, Frossard P: Tree-based pursuit: algorithm and properties. IEEE Transactions on Signal Processing 2006,54(12):4685-4697.View ArticleGoogle Scholar
  23. Rath G, Guillemot C: Frame-theoretic analysis of DFT codes with erasures. IEEE Transactions on Signal Processing 2004,52(2):447-460. 10.1109/TSP.2003.821106MathSciNetView ArticleGoogle Scholar
  24. Davis G, Mallat S, Avellaneda M: Adaptive greedy approximations. Constructive Approximation 1997,13(1):57-98.MathSciNetView ArticleMATHGoogle Scholar
  25. Mallat SG, Zhang Z: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 1993,41(12):3397-3415. 10.1109/78.258082View ArticleMATHGoogle Scholar
  26. Mallat SG: A Wavelet Tour of Signal Processing. 2nd edition. Academic Press, San Diego, Calif, USA; 1999.MATHGoogle Scholar
  27. Chen SS, Donoho DL, Saunders MA: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 1999,20(1):33-61.MathSciNetView ArticleMATHGoogle Scholar
  28. Coifman RR, Wickerhauser MV: Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory 1992,38(2, part II):713-718. 10.1109/18.119732View ArticleMATHGoogle Scholar
  29. Daubechies I: Ten Lectures on Wavelets. SIAM, Philadelphia, Pa, USA; 1992.View ArticleMATHGoogle Scholar
  30. Jost P, Vandergheynst P, Frossard P: Tree-based pursuit. In Tech. Rep. TR-ITS-2004.13. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; 2004.Google Scholar
  31. Frossard P, Vandergheynst P: Unequal error protection of atomic image streams. In Tech. Rep. TR-ITS-2005.007. Signal Processing Institute, Lausanne, Switzerland; 2005.Google Scholar
  32. Radulovic I, Frossard P: Fast index assignment for balanced N -description scalar quantization. Proceedings of Data Compression Conference (DCC '05), March 2005, Snowbird, Utah, USA 474.Google Scholar
  33. Østergaard J, Jensen J, Heusdens R: n -Channel symmetric multiple-description lattice vector quantization. Proceedings of Data Compression Conference (DCC '05), March 2005, Snowbird, Utah, USA 378-387.Google Scholar

Copyright

© I. Radulovic and P. Frossard 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.