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Multiple description coding offers an elegant and competitive solution for data transmission over lossy packet-based networks,
with a graceful degradation in quality as losses increase. In the same time, coding techniques based on redundant transforms give
a very promising alternative for the generation of multiple descriptions, mainly due to redundancy inherently given by a transform,
which offers intrinsic resiliency in case of loss. In this paper, we show how partitioning of a generic redundant dictionary can be
used to obtain an arbitrary number of multiple complementary, yet correlated, descriptions. The most significant terms in the
signal representation are drawn from the partitions that better approximate the signal, and split to different descriptions, while the
less important ones are alternatively distributed between the descriptions. As compared to state-of-the-art solutions, such a strategy
allows for a better central distortion since atoms in different descriptions are not identical; in the same time, it does not penalize
the side distortions significantly since atoms from the same partition are likely to be highly correlated. The proposed scheme is
applied to the multiple description coding of digital images, and simulation results show increased performances compared to
state-of-the-art schemes, both in terms of distortions and robustness to loss rate variations.
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1. INTRODUCTION

Efficient transmission of information over erasure channels
has attracted a lot of efforts over the years, from different
research communities. Such a problem becomes especially
challenging when the coding block length is limited, or when
the channel is not perfectly known, like in most typical image
communication problems. It becomes therefore nontrivial
to efficiently allocate the proper amount of channel redun-
dancy, in order to ensure the robustness to channel erasures
and, in the same time, to avoid wasting resources by over-
protecting the information. When information losses are al-
most inevitable, and complexity or delay constraints limit the
application of long channel codes, or retransmission, it be-
comes primordial to design coding schemes where all avail-
able bits can help the signal reconstruction.

An elegant solution to that kind of problems consists
in describing the source information by several descriptions
that can be used independently for the signal reconstruction.
This is known as multiple description coding (MDC). The
motivation behind multiple description coding is to encode
the source information in such a way that high-quality recon-

struction is achieved if all the descriptions are available, and
that the quality gracefully degrades in case of channel loss. As
represented in Figure 1, the distortion depends on the num-
ber of descriptions available for the reconstruction, and typi-
cally decreases as the number of descriptions increases. Since
multiple description coding offers several advantages, such as
interesting graceful degradation in the presence of loss, and a
certain robustness to uncertainty about channel characteris-
tics, it has motivated the developments of numerous interest-
ing coding algorithms. Some of these approaches completely
rely on the redundancy present in the source, while others try
to introduce a controlled amount of redundancy such that
the distortion after reconstruction gracefully degrades in the
presence of loss. The main challenge remains to limit the in-
crease of rate compared to a single description case, and to
trade off side and central distortions depending on the chan-
nel characteristics.

Redundant transforms certainly represent one of the
most promising alternatives to generate descriptions with a
controlled correlation, which nicely complement each other
for efficient signal reconstruction. Recent advances in sig-
nal approximation have also demonstrated the benefits of
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Figure 1: MDC with two descriptions, encoded with rates Ri. The
distortion depends on the number of descriptions available at re-
ceivers.

flexible overcomplete expansion methods, particularly for
multidimensional signals like natural images dominated by
geometric features, where classical orthogonal transforms
have shown their limitations. Transforms that build a sparse
expansion of the signal, over a redundant dictionary of func-
tions, are able to offer increased energy compaction, and de-
sign flexibility that often results in interesting adaptivity to
signal classes. In addition, since the components of the signal
are not orthogonal, they offer intrinsic resiliency to channel
loss, which naturally makes redundant transforms interest-
ing in multiple description coding schemes.

In this paper, we build on [1] and we present a method
for the generation of an arbitrary number N ≥ 2 of descrip-
tions, by partitioning generic redundant dictionaries into co-
herent blocks of atoms. During encoding, atoms of the same
dictionary partition are distributed in different descriptions.
Since they are chosen from blocks of correlated atoms, such
an encoding strategy does not bring an important penalty in
the side distortion. In the same time, as they are still differ-
ent, they all contribute to improvement of the reconstruc-
tion quality, and therefore decrease the central distortion as
opposed to the addition of pure redundancy. The new en-
coding scheme is then applied to an image communication
problem, where it is shown to outperform classical MDC
schemes based on unequal error protection of signal com-
ponents. The main contributions of this paper reside in the
design of a flexible multiple description scheme, able to gen-
erate an arbitrary number of balanced descriptions, based
on a generic dictionary. It additionally outperforms classical
MDC schemes in terms of average distortion, and resilience
to incorrect estimation of channel characteristics.

The paper is organized as follows. Section 2 presents an
overview of the most popular multiple description coding
strategies, with an emphasis on the redundant transforms
and their potentials. In Section 3, we show how to parti-
tion redundant dictionaries, in order to generate multiple
descriptions with a controlled correlation. Reconstruction of
the signal with the available descriptions is discussed, and
the influence of the distribution of atoms in the redundant
dictionary is analyzed. Section 4 presents the application of
the proposed multiple description coding scheme to a typical
image communication scenario, while Section 5 finally pro-
vides simulation results that highlight the quality improve-
ments compared to MDC schemes based on atom repetition,
or unequal error protection. Finally, Section 6 concludes the
paper.

2. RELATEDWORK

This section presents a brief overview of multiple descrip-
tion coding techniques, with a particular emphasis on algo-
rithms based on redundant transforms, andmethods applied
to multidimensional signals like images or video. The first
and certainly simplest idea for the generation of multiple de-
scriptions is based on information splitting [2], which basi-
cally distributes the source information between the different
descriptions. This technique is quite effective if redundancy
is present in the source signal, as it is typically the case in im-
age and video signals. For example, wavelet coefficients of an
image could be split into polyphase components [3]. Simi-
larly, video information can be split into sequences of odd
and even frames, which has been applied for the generation
of two descriptions of video [4]. However, information split-
ting is generally limited to the generation of two descriptions
due to drastic loss in coding efficiency when the number of
descriptions increases.

Multiple descriptions can also be produced by extend-
ing quantization techniques with proper index assignment
methods. These techniques lead to a refined quantization
of the source samples, when the number of description in-
creases. Multiple description coding based on both scalar and
vector quanitzations have been proposed [5, 6]. The multi-
ple description scalar quantization (MDSQ) concept has also
been successfully applied to the coding of images (see, e.g.,
[7] or [8]) or image sequences [9]. However, multiple de-
scription coding based on quantization techniques is mostly
limited to two descriptions due to the rapid increase in com-
plexity when the number of descriptions augments.

Transform coding has also been proposed to produce
multiple descriptions [10], where it basically helps in reintro-
ducing a controlled amount of redundancy to a source com-
posed of samples with small correlation (as produced by typ-
ical orthogonal transforms). This redundancy becomes even-
tually beneficial to recover the information that has been lost
due to channel erasures. The JPEG image coding standard
can be modified to generate two descriptions by rotating the
DCT coefficients [11, 12], and reintroducing a nonnegligi-
ble correlation between them. In practice however, the design
of optimal correlating transforms is quite challenging. While
solutions hold for a Gaussian source in the case of two de-
scriptions, the generalization to a larger number of descrip-
tions does not have yet any analytical solution.

Instead of implementing a transform that tries to provide
uncorrelated coefficients, followed by a correlating transform
to increase robustness to channel errors, redundant trans-
forms can advantageously be used to provide a signal ex-
pansion with a controlled redundancy between components.
Typical examples of redundant signal expansions are based
on frames, or matching pursuit approximation. In [13], har-
monic frames are used to generate multiple descriptions, and
it was shown that this kind of expansion performs better
than unequal error protection (UEP) schemes. Similar con-
clusions can be drawn from [14], where a frame expansion is
applied to the wavelet coefficient zero trees to generate two or
four descriptions. However, use of frames for the generation
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of multiple descriptions is quite limited by the fact that not
all subsets of received frame components enable a good signal
reconstruction [13]. In [15], the authors compare four MDC
schemes for video, based on redundant wavelet decomposi-
tions, and they give an insight in the tradeoff between the
side and central distortions for the two schemes that per-
form best. Another related work is presented in [16], where a
scheme for multiple description scalable video coding based
on a motion-compensated redundant analysis was proposed.

In [17, 18], the authors propose to generate two descrip-
tions of video sequences with a matching pursuit algorithm.
In their implementation, the elements of a redundant dic-
tionary (the so-called atoms) that best approximate a signal
are repeated in both descriptions, while the remaining atoms
are alternatively split between the descriptions. The redun-
dancy between the descriptions is controlled with a number
of shared atoms. The same principle, combined with mul-
tiple description scalar quantization, can also be found in
[19, 20], where the authors used the orthogonalized version
of matching pursuit. However, the problem with these solu-
tions is that they do not exploit the redundancy inherently
offered by the transform, but they rather introduce channel
redundancy by repeating the most important information. If
no loss occurs, such a repetition results in an obvious waste
of resources. This is exactly what we propose to avoid in the
multiple description coding algorithm that relies on parti-
tioning of the redundant dictionary into coherent blocks of
atoms. In this way, descriptions can be made similar to being
robust to channel erasures, yet different enough to improve
the signal reconstruction when the channel is good.

3. MULTIPLE DESCRIPTION CODINGWITH
REDUNDANT DICTIONARIES

3.1. Motivations

While most modern image compression algorithms, such as
the JPEG standard family, have been designed following the
classical coding paradigm based on orthogonal transform
and scalar quantization, new representation methods have
recently been proposed in order to improve the shortcom-
ings inherent to classical algorithms. Even if important im-
provements have been offered by different types of wavelet
transforms, optimality of the approximation is only reached
for specific cases. In particular, it has been shown that wavelet
transforms are suboptimal for the approximation of multidi-
mensional signals like natural images, which are dominated
by edges and geometric features. Adaptive and nonlinear ap-
proximations over redundant dictionaries of functions have
emerged as an interesting alternative for image coding, and
have been proven to be highly effective, especially at low bit
rate [21].

In addition to increased design flexibility, and improved
energy compaction properties, redundant dictionaries also
offer some intrinsic resiliency to loss of information, due to
channel erasures, for example. Since the components of the
signal expansion are not orthogonal, efficient reconstruction
strategies can be derived in order to estimate lost elements,
and to improve the quality of the signal reconstruction. That

quality can yet be dramatically improved by a careful signal
encoding strategy, where information has to be arranged in
such a way that the simultaneous loss of important corre-
lated components becomes unlike. This naturally leads to the
concept of multiple description coding that exactly pursues
this objective. Instead of introducing redundancy in the sig-
nal expansion to fight against channel loss, one can exploit
the redundancy of the dictionary and partition it, such that
multiple complementary yet correlated descriptions can be
built by proper distribution of the signal components.

The inherent redundancy present in the transform step
and the good approximation properties offered by overcom-
plete expansions obviously motivate the use of redundant
dictionaries in the design of joint source and channel cod-
ing strategies. Multiple description image coding stands as a
typical application where the benefits of properly designed
redundant dictionary are particularly advantageous. While
previous works mostly use complex frame construction, or
unequal protection based on forward error correction mech-
anisms [13, 14], we propose in this paper to build multiple
descriptions with a dictionary partitioning algorithm, and a
greedy signal approximation based on a modified matching
pursuit algorithm.

3.2. Definitions

Before going more deeper into the construction of descrip-
tions, we now fix the notations and definitions that are used
in the rest of this paper. We consider a scenario with N de-
scriptions that are denoted by Di, with 1 ≤ i ≤ N . Each
description containsM signal components, and descriptions
are balanced in terms of size and importance. The distortion
induced by the signal reconstruction with only one descrip-
tion is called the side distortion, while the distortion after re-
construction from several descriptions is called partial dis-
tortion. Finally, if all the descriptions are used for the signal
reconstruction, the distortion is called the central distortion.
In the case where all descriptions have approximately equal
size, and all the side distortions are similar, we say that the
descriptions are balanced.

We now briefly recall a few definitions that allow to char-
acterize redundant dictionaries. First, we consider a set of
signals s that lay in a real d-dimensional vector spaceRd en-
dowed with a real-valued inner product. We further assume
that any of these signals is to be represented with a finite col-
lection of unitary norm elementary signals called the atoms.
Denote by D = {ai}|D|i=1 such a collection of |D| atoms that
we call a dictionary. Redundant dictionaries are such that the
number of atoms in the dictionary is usually much bigger
than the dimensionality of the signal, that is, |D| � d. There
is no particular constraint regarding the dictionary, except
that it should span the entire signal space.

Several metrics have been proposed to characterize the
redundant dictionary D . For example, the structural redun-
dancy β reports the distribution of atoms in the dictionary,
and is written as

β = inf
a,‖a‖=1

sup
p∈D

∣
∣
〈

a, ap
〉∣
∣. (1)
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Basically, it measures the cosine of maximum possible angles
between any direction of the signal s, and its closest direction
among the atoms in D . The structural redundancy β obvi-
ously depends on the dictionary construction and controls
the approximation rate for overcomplete signal expansions
over the dictionaryD .

Another metric, which is often simpler to compute, re-
flects the worst-case correlation between any two atoms in
the dictionary. It is defined as the coherence of the dictionary,
and is written as

μ = max
{ap ,aq}∈D

∣
∣
〈

ap, aq
〉∣
∣. (2)

Obviously, orthogonal basis has a coherence μ = 0, while
highly redundant dictionaries have coherence close to 1.
Since the coherence only reflects an extreme property of the
dictionary, the cumulative coherence μ1(m) has been pro-
posed to measure the maximum total correlation between a
fixed atom withm distinct atoms. It is written as

μ1(m) = max
|Λ|≤m

max
ap∈Λ

∑

λ∈Λ

∣
∣
〈

ap, aλ
〉∣
∣, (3)

where Λ ⊂ D . In general, the cumulative coherence gives
more information about the dictionary, but it is more dif-
ficult to compute. In the worst case, we can bound it as
μ1(m) ≤ mμ.

Finally, it is often useful to partition redundant dictio-
naries into groups of atoms, for tree-based search algorithms
[22], for example, or for controlling the construction of mul-
tiple descriptions, as detailed later. In this case, the dictionary
D is partitioned into blocks or subdictionaries {Di} such
that

⋃

iDi = D and Di ∩ D j = ∅ for i /= j. It then be-
comes interesting to characterize the distance between these
subdictionaries. The block coherence μB is therefore defined
by

μB = max
i /= j

max
ap∈Di, aq∈D j

∣
∣
〈

ap, aq
〉∣
∣. (4)

A special class of redundant dictionaries represents the dic-
tionaries that can be partitioned into independent groups of
correlated atoms, which are called block-coherent dictionar-
ies.

3.3. MDCwith partitioned dictionaries

Multiple description coding is an efficient strategy to fight
against channel erasures, and redundant dictionaries of func-
tions certainly offer interesting properties for the construc-
tion of correlated descriptions. Descriptions, which typically
represent sets of signal components, should be built in such
a way that they are complementary in providing a good sig-
nal approximation, and yet correlated to provide robustness
to channel erasures. We propose to achieve this construction
by partitioning the dictionary into blocks of similar atoms.
Each atom of a block is then put in a different description,
which ensures that descriptions are correlated. In the same
time, since atoms in a block are different, they all contribute
in improving the approximation of the signal.

In more details, recall that our objective is to generate an
arbitrary number N of descriptions of the signal s, which are
balanced in size and distortion. Each description contains a
subset of atoms drawn from the dictionary D , along with
their respective coefficients that represent the contribution
of the atom in the signal approximation. We first partition
the dictionary into clusters of N similar atoms. Each of these
clusters is represented by a particular function that we call a
molecule. A molecule is representative of the characteristics
of the atoms within a cluster, and can be computed, for ex-
ample, as a weighted sum of the N atoms of the cluster.

Then, instead of searching for the atoms that best approx-
imate the signal s, the signal expansion is performed at the
level of molecules. When the best representative molecules
are identified, the atoms that compose the corresponding
cluster in the dictionary are distributed between the differ-
ent descriptions. This strategy first does not penalize consid-
erably the side distortion, resulting from the reconstruction
of the signal with one description only, since the atoms in
dictionary clusters are likely to be very correlated. Second,
proper reconstruction strategies are able to exploit the infor-
mation brought by the different atoms of a cluster, in order to
increase the quality of the signal approximation. Finally, it is
interesting to note that a search performed on the molecules
typically decreases the computational complexity of the sig-
nal expansion (e.g., a typical speedup factor of log2N can be
achieved with respect to a full search on the dictionary).

More formally, suppose that a set of M molecules {mj}
are selected as the best representative features of the signal s.
The multiple description coding scheme allocates the child

a
j
i of molecule mj to the description i, where i = 1, 2, . . . ,N .
The atoms that compose the description i can subsequently

be represented by a generating matrix Φi, with Φi = {aj
i }

and j = 1, 2, . . . ,M. In addition to atoms, the descriptions
also carry coefficients that reflect the relative contribution of
each atom in the signal reconstruction. Coefficients are sim-
ply given by the projection of the signal s onto the generating
matrix Φi as

Φis
T = Ci, (5)

where Ci = 〈s, ai〉 gives the contribution of each atom in Φi.
Ci’s are continuous-valued vectors, which obviously need to
be quantized before coding and transmission. We assume in
this paper that they are uniformly quantized into C̃i, with the
same scalar quantizer and the same quantization step size Δ
for all the coefficients. Even if that quantization strategy may
not be optimal, it consists on a very common model used
for the quantization of coefficients obtained by frame expan-
sions (e.g., [13, 23]), and we use it also in this paper, for the
sake of simplicity. We additionally assume that all the coeffi-
cients are quantized to the next lower quantization level, and
that Δ is small enough. The quantization noise then becomes
independent of the signal, and we can write

C̃i = Ci + η, (6)

where η denotes the quantization noise. The quantized co-
efficients C̃i’s together with indices of atoms from Φi finally
form the description i.
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3.4. Signal reconstruction

The signal is eventually reconstructed with the descriptions
that are available at the decoder, after possible erasures on
a lossy channel. The redundant signal expansion proposed
in the previous section obviously does not conserve the en-
ergy of the signal, which cannot be reconstructed by a simple
linear combination of vectors C̃i’s and the atoms from the
generating matrices Φi, obtained from the available descrip-
tions. We therefore need to design a decoding process that
removes the redundancy that has been introduced in the en-
coding stage, and we distinguish between two cases, based on
the number of available descriptions.

If only one description i is available, the signal is simply
reconstructed by determining the best approximation ri of
the signal s in a least-mean-square sense. It is given by

ri =
(

Φ†
i · C̃i

)T = (Φ†
i ·
(

Ci + η
))T

, (7)

where T and †, respectively, denote the transpose and pseu-
doinverse operations. Such a reconstruction induces an MSE
distortion Di that can be expressed as

Di =
∥
∥s− ri

∥
∥
2

S
=
∥
∥s− (Φ†

i ·
(

Ci + η
))T∥
∥
2

S
. (8)

Here S denotes the signal size. The distortion is composed of
the distortion Da

i due to the approximation of s over Φi, and
the distortion due to quantization D

q
i . Recall that these two

terms can be separated due to the high-rate approximation
assumption that leads to the independency of the signal and
the quantization noise. The source distortion can be further
expressed as

Da
i =

‖s‖2 − tr
(

ssTΦT
i

(

ΦiΦ
T
i

)−1
Φi
)

S

= ‖s‖2 − tr
(

CT
i

(

ΦiΦ
T
i

)−1
Ci
)

S
,

(9)

where S corresponds to the signal size and tr(·) denotes the
matrix trace. In order to bound the distortion Da

i , we con-
sider the worst-case scenario where the correlation between
any atoms in Φi is equal to μB, which is the maximal pos-
sible correlation between any two partitions in the dictio-
nary D . In this case, (ΦiΦ

T
i )
−1 is a matrix having elements

(1 + μB(M − 2))/(1− μB)(1 + μB(M − 1)) on the main di-
agonal, and −μB/(1− μB)(1 + μB(M − 1)) elsewhere. There-
fore, we have

Da
i ≤

‖s‖2
S

−
∑

i C
2
i

S
(

1− μB
) +

μB
(∑

i Ci
)2

S
(

1− μ2B(M − 1) + μB(M − 2)
)

≤ ‖s‖2
S

−
∑

i C
2
i

S
(

1 + μB(M − 1)
) .

(10)

Similarly, the quantization distortion can be written as

D
q
i =

Δ2

3S
tr
(

ΦiΦ
T
i

)−1
. (11)

An upper bound on the quantization distortion can be de-
rived by assuming the worst-case scenario, where the corre-
lation between any pair of atoms is given by μB:

D
q
i ≤

MΔ2

3S
1 + μB(M − 2)

(

1 + μB(M − 1)
)(

1− μB
)

≤ MΔ2

3S
1

1− μB
.

(12)

We can note that the application of scalar quantization on
correlated components induces a distortion that is inversely
proportional to 1−μB. Note that the quantization error could
be reduced by orthogonalization of Φi at encoder, or by us-
ing vector quantization, for example. The design of an opti-
mal quantization strategy for redundant signal expansions is
however beyond the scope of the present paper.

Finally, if k ≥ 2 descriptions are available for the signal
reconstruction, we can proceed in a similar way. Denote byK
the set of received k descriptions, and by rK and DK the cor-
responding reconstruction and distortion, respectively. The
best signal approximation in a least-mean-squares sense rK is
obtained by grouping the generating matrices and coefficient
vectors of the available descriptions i, with 1 ≤ i ≤ k. Denote
by ΦK the set of k received matrices and by C̃K the corre-
sponding set of received coefficients. The reconstruction can
therefore be expressed as

rK =
(

Φ†
K · C̃K

)T
. (13)

Since the matrix ΦK has dimensions kM × M, comput-
ing its pseudoinverse is quite involving. However, the com-
putational complexity can be drastically reduced using the
fact that Φ†

K = ΦT
K (ΦKΦ

T
K )
†. Namely, instead of comput-

ing a pseudoinverse ofΦK , we simply compute the inverse of
ΦKΦ

T
K that is a symmetricM ×M matrix.

The MSE distortion after signal reconstruction DK again
contains two components, the distortion due to the signal
approximation Da

K , and the distortion due to quantization
D

q
K . The distortion due to the signal approximation can be

written as

Da
K =

‖s‖2 − tr
(

ssTΦT
K

(

ΦKΦ
T
K

)−1
ΦK
)

S
. (14)

Similarly to the single-description case, it can be bounded as

Da
K ≤

‖s‖2
S

−
∑kM

i=1 C
2
i

S
(

1 + μ(kM − 1)
) , (15)

where we consider the worst-case scenario with any two
atoms having a correlation μ that is the maximal correlation
between any pair of atoms in the dictionary D . The quanti-
zation distortion is given by

D
q
K =

Δ2

3S
tr
(

ΦKΦ
T
K

)−1
. (16)

Under similar assumptions, it can be bounded by

D
q
K ≤

MΔ2

3S
1 + μ(M − 2)

(

1 + μ(M − 1)
)

(1− μ)
≤ kMΔ2

3S
1

1− μ
. (17)
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Figure 2: Block diagram of the multiple description image coding algorithm.

We can note that the distortion at reconstruction is
clearly linked to the properties of the dictionary, as expected.
In particular, partial and central distortions are influenced
by the coherence within the dictionary, while the side distor-
tion depends on the block coherence. The design of an op-
timal dictionary has therefore to trade off correlation within
dictionary partition, and correlation between dictionary par-
titions. The compromise between side and central distor-
tions is typical in multiple description coding, and the best
working point depends on the quality of the communication
channel. In the next section, we present an application of the
above scheme to a typical image communication scenario.

4. MULTIPLE DESCRIPTION IMAGE CODING

4.1. Overview

This section proposes the application of multiple descrip-
tion coding with redundant dictionaries, to a typical image
communication problem. The overall description of the al-
gorithm is given in Figure 2. The redundant dictionary is
partitioned into blocks of similar atoms, and each partition is
represented by the molecules. The image is first decomposed
into a series of Lmolecules, which are iteratively selected with
a modified matching pursuit algorithm. The children atoms
are distributed into the different descriptions. Each descrip-
tion is later refined by the addition ofM−L atoms. The resid-
ual signal, after subtraction of the approximation obtained
with the molecules, is decomposed with a typical matching
pursuit algorithm. The selected atoms are distributed in a
round-robin fashion, to the different descriptions. Finally,
coefficients are computed by projection of the signal on the
set of atoms that compose each description. Eventually, they
are uniformly quantized and entropy-coded along with the
atom indexes, to form the final descriptions. The next sub-
sections describe in more details the key parts of the multiple
description image coding algorithm.

4.2. MDCwithmodifiedmatching pursuit

Even if redundant dictionaries present interesting advantages
for the approximation of multidimensional signals like im-
ages, searching for the sparsest (shortest) signal representa-
tion in a redundant dictionary of functions is in general an
NP-hard problem [24]. Fortunately, it is usually sufficient to
find a nearly optimal solution that would reduce the search
complexity in a great manner, and very simple algorithms
like matching pursuit [25] have been shown to provide very
good approximation performance.

Matching pursuit is a simple greedy algorithm that itera-
tively decomposes any function s in the Hilbert spaceH with
atoms from a redundant dictionary. Let all the atoms, de-
noted by ai, have a unit norm ‖ai‖2 = 1 and let D = {ai},
i = 1, 2, . . . , |D|. By setting R0 = s, the signal is first decom-
posed as

R0 =
〈

a0,R0
〉

a0 + R1, (18)

where a0 is chosen so as to maximize the correlation with R0:

a0 = argmax
D

∣
∣
〈

ai,R0
〉∣
∣, (19)

and R1 is the residual signal after the first iteration. The algo-
rithm proceeds iteratively, by applying the same procedure
to the residual signal. It can be shown that the energy of the
residual afterM iterations satisfies

∥
∥RM

∥
∥
2 = ‖s‖2 −

M−1
∑

i=0

∣
∣
〈

Ri, ai
〉∣
∣
2
. (20)

The approximation performance of matching pursuit is
tightly linked to the structure of a dictionary, and it has been
demonstrated that the norm of the residual afterM iterations
can be bounded by [26]
∥
∥RM

∥
∥
2 ≤ (1− α2β2

)∥
∥RM−1

∥
∥
2 ≤ (1− α2β2

)M‖s‖2,
(21)
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where β is the structural redundancy defined in (1) and
α ∈ (0, 1] is an optimality factor. This factor depends on
the algorithm that searches for the best atom in the dictio-
nary, at each iteration (e.g., α = 1 for a full-search strategy).
Matching pursuit represents a simple, flexible, yet efficient
algorithm for signal expansion over redundant dictionaries.
We therefore choose to use a modified matching pursuit al-
gorithm to decompose the image in a series of molecules.

We propose to generate N descriptions by distributing
similar, but not identical, atoms in different descriptions. As
explained in the previous section, this can be achieved by
computing the representation of the signal on the level of
molecules, instead of the atoms themselves. The Lmolecules
mi, i = 1, . . . ,L, that best approximate the signal s are se-
lected by running matching pursuit on the set of molecules,
which yields

s =
L−1
∑

j=0

〈

Rj ,mj
〉

mj + RL. (22)

The multiple descriptions are then built by distributing each
atom from the blocks corresponding to these molecules, into
different descriptions. Formally, if a moleculemj is chosen in

the jth stage of MP, we attribute its child a
j
i to description i,

with i = 1, 2, . . . ,N .
Redundant expansions offer the possibility of capturing

most of the signal energy in a few atoms. That property
is typically observed also for matching pursuit expansions,
where the first selected atoms are the most important ones
for the signal approximation (see (21)). In the same time,
atoms that are selected after in later iterations only bring a
small contribution to the signal reconstruction. We therefore
propose to adopt a two-stage algorithm, where the first iter-
ations are run on molecules, which capture most of the im-
age energy. It offers us the possibility to put similar, and high
energy atoms in the different descriptions. However, it may
be wasteful to code with redundancy the molecules that only
bring a small contribution. Therefore, the second stage of the
encoding runs a classical matching pursuit algorithm on the
atoms themselves, and distribute them in the different de-
scriptions without any added redundancy. The most efficient
joint source and channel coding schemes proceed by unequal
error protection, and we basically pursue the same idea here.

After the L most significant molecules have been identi-
fied, a residual signal is built by subtracting the reconstructed
signal with all the selected molecules, from the original im-
age. A matching pursuit expansion of the residual signal is
then performed on the level of atoms. The atoms are simply
distributed alternatively between descriptions, to eventually
generate descriptions with a total of M atoms. Upon com-
pleting both stages, the M atoms in description i are gath-

ered in a generating matrix Φi = {aj
i }, with j = 1, 2, . . . ,M,

where the first L rows of Φi are children of the L selected
molecules, and the remaining M − L rows correspond to
atoms that are alternatively distributed between descriptions.
To generate description i, the signal is finally projected onto
Φi, Ci = ΦisT . Cis are uniformly quantized into C̃i. Together
with indices of atoms inΦi, C̃i are attributed to description i.

Note finally that the choice of the number of molecules
L depends on the transmission channel properties, and di-
rectly trades off the side and central distortions. We will see
below how one can choose optimal L based on losses in the
network.

4.3. Dictionary

A great amount of research has focused on the construc-
tion of “good” dictionaries. Some examples include spikes
and sinusoids [27], wavelet packets [28], frames [29], or Ga-
bor atoms [25], for example. We propose to use here an
overcomplete dictionary composed of edge-like functions, as
proposed in [21]. The structured dictionary is built on two
mother functions. First, an isotropic Gaussian 2D function is
responsible for efficient representation of the low-frequency
characteristics of an image:

g1(x, y) = 1√
π
e−(x

2+y2). (23)

The second mother function is an anisotropic function that
consists of Gaussian along one direction and a second deriva-
tive of a Gaussian along another direction:

g2(x, y) = 2√
3π

(

4x2 − 2
)

e−(x
2+y2). (24)

Such a shape is chosen in order to capture the contours that
represent most of the content of natural images. Geomet-
ric transforms (translation, rotation, and scaling) are then
applied to the mother functions to build a structured re-
dundant dictionary. We allow the translation parameters to
be any integers smaller than the image size. The scaling is
isotropic and varies from 1/32 to 1/4 of the image size on a
logarithmic scale with a resolution of one third of octave. As
for the second function, we use the same translation parame-
ters and the scaling parameters are uniformly distributed on
a logarithmic scale from one to 1/8 of the image size, with a
resolution of one third of octave. We also allow the rotation
parameter to vary in increments of π/18.

The dictionary is finally partitioned into blocks of similar
atoms, represented by molecules. In general, such partitions
can be obtained by either a top-down or a bottom-up cluster-
ing approach. The former method tries to segment the initial
dictionary into a number of subdictionaries, each of them
consisting of atoms that satisfy some similarity constraints.
Alternatively, the bottom-up approach groups the atoms as
long as similarity constraints are satisfied. Since the bottom-
up approach becomes rapidly complex when each cluster has
to contain a fixed number N of atoms, we propose to use a
top-down approach in this paper.

The top-down approach recursively segments our dic-
tionary, to eventually generate a tree structure whose leaves
are the atoms from D . We use a top-down tree based pur-
suit algorithm [30], which implements a clustering strategy
based on segmentation, where a fixed number N of similar
atoms are grouped together. The trees were constructed us-
ing the k-means algorithm. Each of the nonleaf nodes in the
tree is associated with the list of the atoms it represents. A



8 EURASIP Journal on Image and Video Processing

molecule can be computed as a simple weighted sum of the
atoms it spans, taking into account the distance from the cor-
responding atoms. Different metrics can be used for the dis-
tance measure; one of the most popular ones is d(ai, aj) =
1− |〈ai, aj〉|2. If the atoms are strongly correlated, their dis-
tance is close to 0, while in the case of orthogonal atoms this
distance is 1.

4.4. Distortionmodel

We have previously derived the upper bounds on both recon-
struction and quantization errors based on some dictionary
properties as well as number of descriptions and number of
atoms per description. However, since these bounds are com-
puted in the worst-case scenario in terms of atom correlation,
they are generally too loose in practical applications like im-
age coding.

In order to define tighter bounds for the encoding
scheme proposed above, we bound its behavior by the perfor-
mance of a classical matching pursuit algorithm. Indeed, the
signal reconstruction (13) leads to the best approximation
in a least-squares sense, which is not necessarily the case in
classical reconstructions with simple linear combinations of
atoms selected bymatching pursuit. Therefore, we can always
bound the distortion due to our least-mean-squares approx-
imation, by the matching pursuit distortion given in (21).

Finally, we canmodel the distortion due to signal approx-
imation as the sum of two terms, corresponding to the two
coding steps of the proposed scheme. The first one refers the
distortion due to the approximation with Lmolecules, while
the second one describes the distortion due to the refinement
stage ofM−L atoms. We can approximate it in the following
manner:

Da
K = c + a · bL + cK + aK · bk(M-L)

K . (25)

The shape of Da
K fits the shape given by (21), up to an

additive constant. The distortion decay is captured by terms
a, b, c, aK , bK , cK , that are chosen to fit best the real distortion
values. Similarly, the quantization distortion is modelled as

D
q
K = k · dK · Δ2. (26)

This model keeps the shape of derived upper bounds in (12)
and (17), up to multiplicative constants that are again chosen
to fit the real quantization distortion values.

This distortion model can now be used to find the opti-
mal number of molecules L and the optimal number of de-
scriptions for a given communication channel, such that the
average distortion is minimized. The average distortion Dav

is given as

Dav =
N
∑

|K|=0

(

N
|K|
)

pN−|K|(1− p)|K|DK , (27)

where p is the channel loss probability and Dø = ‖s‖2/S.
Figure 3 finally illustrates the model accuracy. It shows the
minimal achievable average distortion for three descriptions
for loss probabilities of p ∈ [10−4, 0.05]. We can see that the
model provides a very good approximation of the actual dis-
tortion values.
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Figure 3: Minimal achievable average distortions for the case of
three descriptions: real values versus model.

5. SIMULATION RESULTS

5.1. Settings

This section analyzes the performance of the proposed cod-
ing scheme, in typical image communication scenario. We
assume that each description corresponds to one packet, and
therefore is either received error-free or completely lost. We
show the results for Lena and Peppers images, both of size
128 × 128, obtained by averaging over 1000 simulations of
random packet losses. The distortion of the reconstructed
signal is the mean square error (MSE). Finally, we do not
implement any concealment or postfiltering strategy at the
decoder.

We first show the behavior of the proposed scheme as a
function of number of descriptions and network losses. We
then analyze in more details the performance of our scheme
in the case where the number of descriptions is limited to 2
and, respectively, 3 descriptions. We compare these perfor-
mances to two MDC schemes that implement simple atom
repetition [17], and unequal error protection (UEP) [31].
These two schemes are illustrated in Figure 4. The atom shar-
ing scheme repeats a certain number of the most impor-
tant atoms ai in all the descriptions, while the remaining
atoms are alternatively split between descriptions. On the
other side, FEC scheme applies a systematic code, column-
wise across the N-packet block. Here, atoms are protected
according to their importance.

Finally, we analyze the performance of our scheme com-
pared to anMDC scheme based on unequal error protection,
when the number of descriptions can be optimized with re-
spect to the transmission channel characteristics. Overall, the
results demonstrate that the proposed scheme is competi-
tive with state-of-the-art MDC schemes that are able to gen-
erate any number of descriptions. Moreover, the proposed
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a1 a2 . . . ap ap+1 . . . aq . . .

FEC ap+2 . . . aq+1 . . .

FEC aq+2 . . .

N

(a)

a1 a2 . . . ap ap+1 . . .

a1 a2 . . . ap ap+2 . . .

a1 a2 . . . ap ap+3 . . .

N

(b)

Figure 4: (a) FEC scheme and (b) atom sharing scheme.

scheme is less sensitive to bad estimation of the loss proba-
bility, which clearly penalizes optimized unequal error pro-
tection schemes.

5.2. Optimal number of descriptions

In the first experiment, we observe the behavior of the pro-
posed MDC scheme, when the overall bit rate is fixed and
the number of descriptions varies. We fix the total number of
atoms to 600 and vary the number of descriptions between 2
and 4, as well as the number of atoms per description. We
use 11 bits to code the atom indexes, and all the coefficients
are quantized uniformly with the step size 1, which results in
the total rate of 1.35 kB. We choose the optimal number of
molecules L in each of the cases, in such a way that the aver-
age distortion is minimized. The minimal achievable average
distortions are computed as a function of packet loss proba-
bility p, where p ∈ [10−4, 0.05]. The results are illustrated in
Figure 5.

When the losses are very low (i.e., p < 10−3), a small
number of descriptions are generally the best choice, as they
allow for efficient redundancy and good approximation per-
formance since the number of closely related atoms is small.
As the losses increase, the optimal number of descriptions
also augments, as expected. However, the significant differ-
ence in performance can only be observed when the loss rate
exceeds 1%. At a loss rate of 5%, four descriptions improve
the performance of 1.7 dB, respectively, 0.2 dB, with respect
to the cases with 2 and 3 descriptions only. Note that sim-
ilar observations have already been reported in other MDC
schemes (e.g., [32, 33]). It confirms that the case of two de-
scriptions, which is the most frequently studied, is not neces-
sarily optimal, and that the ability to generate more descrip-
tions is certainly beneficial at high loss rates. Finally, we can
conjecture that in realistic cases, building more than four de-
scriptions only brings negligible improvements, and this is
the limit we will use in our simulations.
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Figure 5: Comparison of minimal achievable distortions for two,
three, and four descriptions, when the total rate is fixed (Lena im-
age).

5.3. Two descriptions

We now compare the performance of our scheme for N = 2
descriptions with other MDC strategies (when N = 2, the
UEP scheme is equivalent to the atom sharing scheme). We
first observe the evolution of the minimal achievable aver-
age distortion with respect to the packet loss probability p.
Similar to the previous experiments, we build descriptions
with M = 300 atoms, of 18 bits each (i.e., the total bit rate
is again around 1.35 kB). The number of shared atoms in
the atom sharing scheme, and the number of molecules L in
the proposed scheme are optimized. The results are shown in
Figure 6. We can see that our scheme provides improvement
of up to 0.6 dB compared to the atom sharing (and UEP)
scheme. This is due to the fact that our scheme takes advan-
tage from all the received atoms, while the existing schemes
cannot use the redundant atoms, which are a waste of re-
sources when no loss occurs.

Next, we compare both schemes optimized for a given
loss ratio p, but when the actual channel characteristics are
somewhat different (as it may happen in practical scenar-
ios when channel status changes). Figure 7 shows the perfor-
mance of both schemes optimized for p = 10−3, while the
actual loss probability covers the range [10−4, 0.1]. We can
see that our scheme always gives better results and the im-
provement is up to 1.4 dB. While the atom sharing scheme
seems to work well in the very narrow range around the loss,
it is optimized for our scheme tends to be more robust in
much wider range of losses, and thus more resilient to bad
estimation of the channel characteristics.

We finally observe the images reconstructed with differ-
ent numbers of descriptions. Both encoding schemes have
been optimized for p = 10−3, and a total rate of 1.35 kB. The
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Figure 6: PSNR versus loss probability for the proposed scheme,
and the atom sharing scheme, optimized for two description and a
total rate of 1.35 kB (Lena image).
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Figure 7: PSNR versus actual loss probability, for the proposed
scheme, and the atom sharing scheme, optimized for two descrip-
tions and a total rate of 1.35 kB, and a loss probability of 10−3 (Lena
image).

images are given in Figure 8, for our scheme, and the atom
sharing scheme. We can observe that the side reconstruction
is better for the proposedMDC scheme (i.e., 3.5 dB improve-
ment), while the central reconstruction gives an improve-
ment of 0.4 dB. The difference in side distortion is mostly due
to the fact that the number of repeated atoms is very small in
the atoms sharing scheme optimized for low loss probability
(p = 10−3). Better central distortion is expected, since the
important atoms are not repeated in our scheme, and cor-

PSNR = 22.1 dB PSNR = 31.2 dB

PSNR = 18.6 dB PSNR = 30.8 dB

Figure 8: Reconstructed Lena images, as a function of a number of
received descriptions, from 1 description on the left column, to 2
descriptions on the right column. (Top row: our scheme, Bottom
row: atom sharing scheme.)

related, yet different atoms bring more information for the
reconstruction.

5.4. Three descriptions

We now consider the case of N = 3 descriptions, and pro-
pose a similar analysis as above. The minimal average distor-
tion as a function of p for the proposed scheme, an MDC
scheme based on atom sharing, and an unequal error pro-
tection scheme is given in Figures 9 and 10 for the Lena
and Peppers images, respectively. We see that our scheme
outperforms the existing schemes in a wide range of losses,
especially at low packet loss ratios, where the advantage in
the central distortion becomes predominant (i.e., improve-
ment of about 0.6 dB in the case of Lena). As the losses ex-
ceed 2%, the FEC scheme tends to slightly outperform our
scheme, and at p = 5% the improvement reaches almost
0.3 to 0.5 dB. This can be explained by the fact that the FEC
scheme protects different atoms according to their impor-
tance, and therefore is more flexible to protect the strongest
atoms, which is beneficial at high loss rate. It is also inter-
esting to notice that the FEC and atom sharing scheme per-
form similarly at low losses, while there is an increasing gain
in favor of FEC scheme as the loss ratio increased, since re-
dundancy is allocated more efficiently with an unequal error
protection strategy.

Figures 11 and 12 show the behavior of the three schemes,
when the actual loss probability is different from the ex-
pected one. The schemes have all been optimized for a loss
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Figure 9: PSNR versus loss probability, for the proposed scheme,
the UEP FEC scheme, and the atom sharing scheme, optimized for
three descriptions and a total rate of 1.35 kB (Lena image).
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Figure 10: PSNR versus loss probability, for the proposed scheme,
the UEP FEC scheme, and the atom sharing scheme, optimized for
three descriptions and a total rate of 1.35 kB (Peppers image).

probability of p = 10−3, respectively, p = 5 · 10−3, and we
compute the average distortion when the actual loss proba-
bility varies. It can be seen again that the FEC scheme works
well in a very narrow range of losses. Namely, when the loss
probability increases, the FEC scheme becomes very vulner-
able, giving the sharpest decrease in quality out of all com-
pared schemes. It is also interesting to note that even if the
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Figure 11: PSNR versus actual loss probability, for the proposed
scheme, the UEP FEC scheme, and the atom sharing scheme, opti-
mized for three descriptions and a total rate of 1.35 kB, and a loss
probability of 10−3 (Lena image).
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Figure 12: PSNR versus actual loss probability, for the proposed
scheme, the UEP FEC scheme, and the atom sharing scheme, opti-
mized for three descriptions and a total rate of 1.35 kB, and a loss
probability of 5 · 10−3 (Peppers image).

atom sharing scheme performs worse than the FEC scheme
in average, it tends to be more robust to changing chan-
nel characteristics. Our scheme is the most resilient to such
changes, and this is mostly visible at high loss rates (i.e., up
to 1.8 dB improvement, resp., 4.3 dB compared to the atom
sharing scheme, and the FEC scheme, for the Lena image).
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PSNR = 14.3 dB PSNR = 21.8 dB PSNR = 31.3 dB

(a) Proposed scheme.

PSNR = 18.2 dB PSNR = 20.7 dB PSNR = 30.7 dB

(b) Atom sharing scheme.

PSNR = 11 dB PSNR = 19.5 dB PSNR = 30.8 dB

(c) FEC scheme.

Figure 13: Reconstructed Lena images, as a function of a number of received descriptions, from 1 description on the left, to 3 descriptions
on the right column.

Finally, we represent the decoded images, reconstructed
with different numbers of descriptions, for the three schemes
that have been optimized for loss probabilities p = 10−3 and
p = 5 · 10−3, respectively. Figures 13 and 14 illustrate this
comparison for two images, respectively, Lena and Peppers.
We observe that since the UEP-based FEC is clearly opti-
mized for low loss probability, the side and even partial dis-
tortions are generally quite unimportant. On the other side,
the proposed scheme and the atom sharing scheme are more
conservative in allocation of redundancy, and therefore more
resilient to changes in the actual loss probability. Finally, we

can observe that our scheme, as expected, always performs
best when all descriptions are available, since it does not send
pure redundancy for important components, but rather cor-
related information that still improve the central distortion.

5.5. Improved FEC reconstruction

We have considered so far comparisons with state-of-the-art
schemes that use ordinary reconstruction strategy based on
a simple linear combination of the atoms available at de-
coder. The reconstruction can however be improved in the
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PSNR = 15.1 dB PSNR = 21.4 dB PSNR = 27.6 dB

(a) Proposed scheme.

PSNR = 18.1 dB PSNR = 20.4 dB PSNR = 27.3 dB

(b) Atom sharing scheme.

PSNR = 11.6 dB PSNR = 22.1 dB PSNR = 27.5 dB

(c) FEC scheme.

Figure 14: Reconstructed Peppers images, as a function of a number of received descriptions, from 1 description on the left, to 3 descriptions
on the right column.

case of MDC based on UEP protection, by using a simi-
lar projection method as in the MDC scheme proposed in
this paper. This projection method will then optimize, in a
least-mean-square sense, the approximation that can be con-
structed from the available atoms. For the sake of complete-
ness, we provide here a comparison between the proposed
MDC scheme and an FEC scheme whose reconstruction is
improved by the projection method. We keep the same sim-
ulations settings as before, with a total rate equivalent to 600
atoms, and we vary the number of descriptions and number
of FEC packets in order to reach the optimal working point
for different channel loss probabilities. Results are depicted
in Figure 15 for the Lena image. While the reconstruction is

slightly improved in the FEC scheme, the performance does
not change significantly.We can see that our scheme still pro-
vides better results in the range of losses [10−4, 10−2], mainly
due to an improved central distortion. As the losses increase,
the FEC scheme will tend to perform better, since it provides
a high protection to the most important components, and
tends to provide a slightly better side distortion, when opti-
mized for high loss rates.

6. CONCLUSIONS

This paper has presented a multiple description coding
scheme, which exploits the redundancy present in redundant
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Figure 15: PSNR quality versus loss probability, for the proposed
scheme and an FEC scheme that uses the projection method (Lena
image).

dictionaries. Instead of repeating signal components, or
adding pure redundancy to the signal decomposition, redun-
dant transforms with partitioned dictionaries allow to con-
trol the correlation between the description, and put dif-
ferent, yet correlated atoms, in different descriptions. This
allows for improving the central distortion, as descriptions
nicely complement each other, without important penalty
on the side distortion. Besides its flexibility, the proposed
scheme presents the advantage by allowing for the generation
of an arbitrary number N of balanced descriptions, while
most of the schemes are generally limited to 2 descriptions.

The application of the new multiple description cod-
ing scheme to a typical image communication scenario
demonstrates that it outperforms other MDC schemes based
on atom repetition, or unequal FEC protection, especially
for low-loss probability. In addition, the proposed scheme
presents an increased resilience to wrong estimation of the
communication channel characteristics, while unequal error
protection schemes are very sensitive to differences between
expected and actual loss probabilities. While the proposed
method can interestingly be implemented for any generic
dictionary, the definition of optimally distributed dictionar-
ies, for typical MDC scenarios, is still under investigation.
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[15] T. Petrişor, C. Tillier, B. Pesquet-Popescu, and J.-C. Pesquet,
“Comparison of redundant wavelet schemes for multiple de-
scription coding of video sequences,” in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP ’05), vol. 5, pp. 913–916, Philadelphia, Pa, USA,
March 2005.
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