WHO | Global status report on road safety 2015. 2015. Retrieved from http://www.who.int/violenceinjuryprevention/roadsafetystatus/2015/en/
F.W. Wang, Q. Xu, R.R. Fu, Study on the effect of man-machine response mode to relieve driving fatigue based on EEG and EOG. Sensors (2019). https://doi.org/10.3390/s19224883
Article
Google Scholar
G. Marta, A. Roberto, L. Raquel, Å. Torbjörn, C. Fabio, H. Jim, L. Damien, W.T. McNicholas, P. Markku, T.S. Joaquín, P. Philippe, G. Ludger, Sleepiness at the wheel across Europe: a survey of 19 countries. J. Sleep Res. 24(3), 242–253 (2015). https://doi.org/10.1111/jsr.12267
Article
Google Scholar
H. D. Croo, M. Bandmann, G. M. Mackay, K. Rumar, and P. Vollenhoven, The role of driver fatigue in commercial road transport crashes. (Eur. Transp. Safety Council, Brussels, Belgium, Tech. Rep. 2001), p. 47
A. Swetapadma, Novel approach for sleep disorder monitoring using a finite-state machine for localities lacking specialist physicians. IET Sci. Meas. Technol. 11(8), 1099–1103 (2017). https://doi.org/10.1049/iet-smt.2017.0240
Article
Google Scholar
X.Y. Hu, G. Lodewijks, Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: the value of differentiation of sleepiness and mental fatigue. J. Safety Res. 72, 173–187 (2020). https://doi.org/10.1016/j.jsr.2019.12.015
Article
Google Scholar
R.N. Khushaba, S. Kodagoda, S. Lal, G. Dissanayake, Uncorrelated fuzzy neighborhood preserving analysis based feature projection for driver drowsiness recognition. Fuzzy Sets Syst. 221, 90–111 (2013). https://doi.org/10.1016/j.fss.2012.12.003
Article
MathSciNet
Google Scholar
W.Z. Kong, W.C. Lin, B. Fabio, S.Q. Hu, B. Gianluca, Investigating driver fatigue versus alertness using the granger causality network. Sensors 15(8), 19181–19198 (2015). https://doi.org/10.3390/s150819181
Article
Google Scholar
Z.K. Gao, X.M. Wang, Y.X. Yang, C.X. Mu, Q. Cai, W.D. Dang, S.Y. Zuo, EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation. IEEE Trans. Neural Netw. Learning Syst. 30(9), 2755–2763 (2019). https://doi.org/10.1109/TNNLS.2018.2886414
Article
Google Scholar
S.Y. Hu, G.T. Zheng, Driver drowsiness detection with eyelid related parameters by Support Vector Machine. Expert Syst. Appl. 36(4), 7651–7658 (2009). https://doi.org/10.1016/j.eswa.2008.09.030
Article
Google Scholar
X. Fan, B. C. Yin, Y. F. Sun, Yawning detection for monitoring driver fatigue. Machine Learning and Cybernetics, 2007 International Conference on. IEEE, 2: 664–668. (2007). https://doi.org/10.1109/ICMLC.2007.4370228
A. Mittal, K. Kumar, S. Dhamija and M. Kaur. Head movement-based driver drowsiness detection: a review of state-of-art techniques. Engineering and Technology (ICETECH), 2016 IEEE International Conference on. IEEE, 903–908. (2016). https://doi.org/10.1109/ICETECH.2016.7569378
A. Eskandarian, A. Mortazavi, Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection. Intelligent Vehicles Symposium, 2007 IEEE: IEEE, 553–559. (2007). https://doi.org/10.1109/IVS.2007.4290173
V. Vijayan, K.P. Pushpalatha, A comparative analysis of RootSIFT and SIFT methods for drowsy features extraction. Procedia Comput. Sci. 171, 171 (2020). https://doi.org/10.1016/j.procs.2020.04.046
Article
Google Scholar
V.J. Kartsch, S. Benatti, P.D. Schiavone, D. Rossi, L. Benini, A sensor fusion approach for drowsiness detection in wearable ultra-low-power systems. Inf. Fusion 43, 66–76 (2018). https://doi.org/10.1016/j.inffus.2017.11.005
Article
Google Scholar
F. Laurent, M. Valderrama, M. Besserve, M. Guillard, J.P. Lachaux, J. Martinerie, G. Florence, Multimodal information improves the rapid detection of mental fatigue. Biomed. Signal Process. Control 8(4), 400–408 (2013). https://doi.org/10.1016/j.bspc.2013.01.007
Article
Google Scholar
G. Borghini, G. Vecchiato, J. Toppi, L. Astolfi, A. Maglione, R. Isabella, C. Caltagirone, W. Kong, D. Wei, Z. Zhou, L. Polidori, S. Vitiello and F. Babiloni, Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 6442–6445. (2012). https://doi.org/10.1109/EMBC.2012.6347469
F.Y. Song, X.Y. Tan, X. Liu, S.C. Chen, Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients. Pattern Recogn. 47(9), 2825–2838 (2014). https://doi.org/10.1016/j.patcog.2014.03.024
Article
Google Scholar
K. Bylykbashi, E. Qafzezi, M. Ikeda, K. Matsuo, L. Barolli, Fuzzy-based Driver Monitoring System (FDMS): implementation of two intelligent FDMSs and a testbed for safe driving in VANETs. Futur. Gener. Comput. Syst. 105, 665–674 (2020). https://doi.org/10.1016/j.future.2019.12.030
Article
Google Scholar
Y. Wang, R. Huang, L. Guo, Eye gaze pattern analysis for fatigue detection based on GP-BCNN with ESM. Pattern Recogn. Lett. 123, 61–74 (2019). https://doi.org/10.1016/j.patrec.2019.03.013
Article
Google Scholar
J. Li, H. Li, W. Umer, H.W. Wang, X.J. Xing, S.K. Zhao, J. Hou, Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology. Autom. Constr. (2020). https://doi.org/10.1016/j.autcon.2019.103000
Article
Google Scholar
Y. Dong, Z. Hu, K. Uchimura and N. Murayama, Driver inattention monitoring system for intelligent vehicles: a review. 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, pp. 875–880. (2009). https://doi.org/10.1109/IVS.2009.5164395
J. Horne, L. Reyner, Vehicle accidents related to sleep: a review. Occup. Environ. Med. 56(5), 289–294 (1999). https://doi.org/10.1136/oem.56.5.289
Article
Google Scholar
R. Schleicher, N. Galley, S. Briest, L. Galley, Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics 51(7), 982–1010 (2008). https://doi.org/10.1080/00140130701817062
Article
Google Scholar
C. Filippo, P. Fabio, P. Federica, M. Elisa, An improved algorithm for the automatic detection and characterization of slow eye movements. Med. Eng. Phys. 36(7), 954–961 (2014). https://doi.org/10.1016/j.medengphy.2014.03.019
Article
Google Scholar
Y.S. Kim, H.J. Baek, J.S. Kim, H.B. Lee, J.M. Choi, K.S. Park, Helmet-based physiological signal monitoring system. Eur. J. Appl. Physiol. 105(3), 365–372 (2009). https://doi.org/10.1007/s00421-008-0912-6
Article
Google Scholar
Y. Zhang, X. Gao, J. Zhu, W. Zheng and B. Lu, A novel approach to driving fatigue detection using forehead EOG. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) Montpellier, 707–710. (2015). https://doi.org/10.1109/NER.2015.7146721
S.S.H. Nazari, A. Moradi, K. Rahmani, A systematic review of the effect of various interventions on reducing fatigue and sleepiness while driving. Chin. J. Traumatol. 20(5), 249–258 (2017). https://doi.org/10.1016/j.cjtee.2017.03.005
Article
Google Scholar
H. Wang, C. Wu, T. Li, Y. He, P. Chen, A. Bezerianos, Driving fatigue classification based on fusion entropy analysis combining EOG and EEG. IEEE Access 7, 61975–61986 (2019). https://doi.org/10.1109/ACCESS.2019.2915533
Article
Google Scholar
S. Ahn, T. Nguyen, H. Jang, J.G. Kim, S.C. Jun, Exploring neuro-physiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Front Hum Neurosci 10, 219 (2016). https://doi.org/10.3389/fnhum.2016.00219
Article
Google Scholar
A. Picot, S. Charbonnier, A. Caplier, On-line detection of drowsiness using brain and visual information. IEEE Trans. Syst., Man, Cybern. Part A: Syst. Humans 42(3), 764–775 (2012). https://doi.org/10.1109/TSMCA.2011.2164242
Article
Google Scholar
Y. Y. Jiao, Yong Peng, B. L. Lu, X. P. Chen, S. G. Chen and C. H. Wang, Recognizing slow eye movement for driver fatigue detection with machine learning approach. International Joint Conference on Neural Networks. IEEE; 4035–4041. (2014). https://doi.org/10.1109/IJCNN.2014.6889615
A. Bulling, J.A. Ward, G. Hans, T. Gerhard, Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Machine Intell. (2011). https://doi.org/10.1109/TPAMI.2010.86
Article
Google Scholar
A. Bulling, D. Roggen, G. Troester, What’s in the eyes for context-awareness? IEEE Pervasive Comput (2010). https://doi.org/10.1109/MPRV.2010.49
Article
Google Scholar
H. Manabe and M. Fukumoto, Full-time wearable headphone-type gaze detector. in Proc. Extended Abstracts Conf. Human Factors Comput. Syst. 1073–1078. (2006). https://doi.org/10.1145/1125451.1125655
N. Itakura, K. Sakamoto, A new method for calculating eye movement displacement from AC coupled electro-oculographic signals in head mounted eye-gaze input interfaces. Biomed. Signal Process. Control 5(2), 142–146 (2010). https://doi.org/10.1016/j.bspc.2009.12.002
Article
Google Scholar
T. Yagi, Y. Kuno, K. Koga and T. Mukai, Drifting and blinking compensation in electro-oculography (EOG) eye-gaze interface. in Proc. IEEE Conf. Syst., Man, Cybern. p. 3222–3226. (2006). https://doi.org/10.1109/ICSMC.2006.384613
M.C. Song, L.N. Li, J.T. Guo, T. Liu, S.Y. Li, Y.T. Wang, Q.U. Ain, J. Wang, A new method for muscular visual fatigue detection using electro-oculogram. Biomed. Signal Proc. Control (2020). https://doi.org/10.1016/j.bspc.2020.101865
Article
Google Scholar
J.W. Kelly, D.P. Siewiorek, A. Smailagic, J.L. Collinger, D.J. Weber, W. Wang, Fully automated reduction of ocular artifacts in high-dimensional neural data. IEEE Trans. Biomed. Eng. 58(3), 598–606 (2011). https://doi.org/10.1109/ICSMC.2006.384613
Article
Google Scholar
A.K. Maddirala, R.A. Shaik, Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sens. J. 16(23), 8279–8287 (2016). https://doi.org/10.1109/JSEN.2016.2560219
Article
Google Scholar
X. Li, C. Guan, H. Zhang, K.K. Ang, Discriminative ocular artifact correction for feature learning in EEG analysis. IEEE Trans. Biomed. Eng. 64(8), 1906–1913 (2017). https://doi.org/10.1109/TBME.2016.2628958
Article
Google Scholar
S. Zahan, Removing EOG artifacts from EEG signal using noise-assisted multivariate empirical mode decomposition. 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, 1–5. 8–10, (2016)
J. Cheng, L.C. Li, C. Li, Y. Liu, A. Liu, R.B. Qian, X. Chen, Remove diverse artifacts simultaneously from a single-channel EEG based on SSA and ICA. A Semi-Simulated Study. IEEE Access 7, 60276–60289 (2019). https://doi.org/10.1109/ACCESS.2019.2915564
Article
Google Scholar
A. Bulling, D. Roggen and G. Tröster, Wearable EOG goggles: seamless sensing and context-awareness in everyday environments. in Proc. Extended Abstracts Conf. Human Factors Comput. Syst. p. 3259–3264. (2009). https://doi.org/10.3233/AIS-2009-0020
M. Hiroyuki, F. Masaaki, Y. Tohru, Direct gaze estimation based on nonlinearity of EOG. IEEE Trans. Bio-medical Eng. (2015). https://doi.org/10.1109/TBME.2015.2394409
Article
Google Scholar
X. Gao, Y. Zhang, W. Zheng and B. Lu, Evaluating driving fatigue detection algorithms using eye tracking glasses. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, p. 767–770. 22–24 (2015)
B.T. Jap, S. Lal, P. Fischer, E. Bekiaris, Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 36(2), 2352–2359 (2009). https://doi.org/10.1016/j.eswa.2007.12.043
Article
Google Scholar
S. Iampetch, Y. Punsawad and Y. Wongsawat, EEG-based mental fatigue prediction for driving application. The 5th 2012 Biomedical Engineering International Conference, Ubon Ratchathani 2012; 1–5. 5–7, (2012)
X. Ding, Z. Lv, C. Zhang, X. Gao, B. Zhou, A robust online saccadic eye movement recognition method combining electrooculography and video. IEEE Access 5, 17997–18003 (2017). https://doi.org/10.1109/ACCESS.2017.2750701
Article
Google Scholar
C. Zhang, H. Wang, R. Fu, Automated detection of driver fatigue based on entropy and complexity measures. IEEE Trans. Intell. Transp. Syst. 15(1), 168–177 (2014). https://doi.org/10.1109/TITS.2013.2275192
Article
Google Scholar
C. K. Ho and M. Sasaki. Brain-wave bio potentials based mobile robot control: wavelet-neural network pattern recognition approach. 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), Tucson 2001; 322–328. (2001). https://doi.org/10.1109/ICSMC.2001.969832
A. Chowdhury, R. Shankaran, M. Kavakli, M.M. Haque, Sensor applications and physiological features in drivers’ drowsiness detection: a review. IEEE Sens. J. 18(8), 3055–3067 (2018). https://doi.org/10.1109/JSEN.2018.2807245
Article
Google Scholar
X. Q. Huo, W. Zheng and B. Lu, Driving fatigue detection with fusion of EEG and forehead EOG. 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, 897–904. 24–29, (2016)
L. Du, W. Liu, W. Zheng and B. Lu, Detecting driving fatigue with multimodal deep learning. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai 2017; 74–77. (2017). https://doi.org/10.1109/NER.2017.8008295
L. Deqiang, W. Pedrycz, N.J. Pizzi, Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification. IEEE Trans. Biomed. Eng. 52(6), 1132–1139 (2005). https://doi.org/10.1109/TBME.2005.848377
Article
Google Scholar
R. R. Coifman, Y. Meyer, S. Quake, and V. Wickerhauser, Wavelet analysis and Signal processing. in Wavelets and Their Applications. (Jones and Barlett, Sudbury, 1992), p. 153–178
C. Zhang, C.X. Zheng, X.L. Yu, Automatic recognition of cognitive and fatigue from physiological indices by using wavelet packet transform and kernel learning methods. Expert Syst. Appl. 36(3), 4664–4671 (2009). https://doi.org/10.1016/j.eswa.2008.06.022
Article
Google Scholar
G. Wang, Z. Wang, W. Chen, J. Zhuang, Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion. Med. Biol. Eng. Compu. 44(10), 1741–2444 (2006). https://doi.org/10.1007/s11517-006-0100-y
Article
Google Scholar
R.N. Khushaba, S. Kodagoda, S. Lal, G. Dissanayake, Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58(1), 121–131 (2011). https://doi.org/10.1109/TBME.2010.2077291
Article
Google Scholar
W.L. Zheng, K. Gao, G. Li, W. Liu, C. Liu, J.Q. Liu, G.X. Wang, B.L. Lu, Vigilance estimation using a wearable EOG device in real driving environment. IEEE Trans. Intell. Transp. Syst. 21(1), 170–184 (2020). https://doi.org/10.1109/TITS.2018.2889962
Article
Google Scholar
L.C. Parra, C.D. Spence, A.D. Gerson, P. Sajda, Recipes for the linear analysis of EEG. Neuroimage 28(2), 326–341 (2005). https://doi.org/10.1016/j.neuroimage.2005.05.032
Article
Google Scholar
B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.R. Müller, Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441
Article
Google Scholar
B.D. Van Veen, W. van Drongelen, M. Yuchtman, A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 4(9), 867–880 (1997). https://doi.org/10.1109/10.623056
Article
Google Scholar
S. Chambon, M.N. Galtier, P.J. Arnal, G. Wainrib, A. Gramfort, A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 758–769 (2018). https://doi.org/10.1109/TNSRE.2018.2813138
Article
Google Scholar
S. Kim, K. Lee, J. Yeom, T. Lee, D. Kim, J.J. Kim, Wearable multi-biosignal analysis integrated interface with direct sleep-stage classification. IEEE Access 2020(8), 46131–46140 (2020). https://doi.org/10.1109/ACCESS.2020.2978391
Article
Google Scholar
J. Li, H. Li, H.W. Wang, W. Umer, H. Fu, X.J. Xing, Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology. Autom. Constr. (2019). https://doi.org/10.1016/j.autcon.2019.102835
Article
Google Scholar
J. Li, H. Li, H.W. Wang, W. Umer, H. Fu, X.J. Xing, Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal. Methods Accid. Res. (2020). https://doi.org/10.1016/j.amar.2020.100114
Article
Google Scholar
Z.E.A. Elassad, H. Mousannif, H.A. Moatassime, A. Karkouch, The application of machine learning techniques for driving behavior analysis: a conceptual framework and a systematic literature review. Eng. Appl. Artif. Intell. 87, 103312 (2020). https://doi.org/10.1016/j.engappai.2019.103312
Article
Google Scholar
L.L. Chen, A. Zhang, X.G. Lou, Cross-subject driver status detection from physiological signals based on hybrid feature selection and transfer learning. Expert Syst. Appl. 137, 266–280 (2019). https://doi.org/10.1016/j.eswa.2019.02.005
Article
Google Scholar
X. Y. Gao, Y. F. Zhang, W. L. Zheng and B. L. Lu, Evaluating driving fatigue detection algorithms using eye tracking glasses. 7th Annual International IEEE EMBS Conference on Neural Engineering (NER), 22–24. (2015). https://doi.org/10.1109/NER.2015.7146736
I.G. Damousis, D. Tzovaras, Fuzzy fusion of eyelid activity indicators for hypovigilance-related accident prediction. IEEE Trans. Intell. Transp. Syst. 9(3), 491–500 (2008). https://doi.org/10.1109/TITS.2008.928241
Article
Google Scholar
S. Barua, M.U. Ahmed, C. Ahlström, S. Begum, Automatic driver sleepiness detection using EEG, EOG and contextual information. Expert Syst. Appl. 115, 121–135 (2018). https://doi.org/10.1016/j.eswa.2018.07.054
Article
Google Scholar
Y.C. Dong, Z.C. Hu, K. Uchimura, N. Murayama, Driver inattention monitoring system for intelligent vehicles: a review. IEEE Trans. Intell. Transp. Syst. 12(2), 596–614 (2011). https://doi.org/10.1109/TITS.2010.2092770
Article
Google Scholar
D. Suman, M. Malini and S. Anchuri, EOG based vigilance monitoring system. 2015 Annual IEEE India Conference (INDICON), New Delhi 2015; 1–6. (2015). https://doi.org/10.1109/INDICON.2015.7443210
C. Minho, S. Minseok, L.J. Seong, K.S. Woo, Fuzzy support vector machine-based personalizing method to address the inter-subject variance problem of physiological signals in a driver monitoring system. Artif. Intell. Med. (2020). https://doi.org/10.1016/j.artmed.2020.101843
Article
Google Scholar
B.S.M. Caio, J.D.C.M. Márcio, S.J.M. Marques, I.D. Li, Real-time classification for autonomous drowsiness detection using eye aspect ratio. Expert Syst. Appl. 15, 158 (2020). https://doi.org/10.1016/j.eswa.2020.113505
Article
Google Scholar
B. Wang, Y.D. Sun, T. Zhang, T. Sugi, X.Y. Wang, Bayesian classifier with multivariate distribution based on D-vine copula model for awake/drowsiness interpretation during power nap. Biomed. Signal Proc. Control (2020). https://doi.org/10.1016/j.bspc.2019.101686
Article
Google Scholar
G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, F. Babiloni, Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014). https://doi.org/10.1016/j.neubiorev.2012.10.003
Article
Google Scholar
D. Sommer,M. Golz, Evaluation of PERCLOS based current fatigue monitoring technologies. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference; (2010). https://doi.org/10.1109/IEMBS.2010.5625960
J.C. Chen, H. Wang, C.C. Hua, Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine. Cogn. Syst. Res. 52, 715–728 (2020). https://doi.org/10.1016/j.cogsys.2018.08.018
Article
Google Scholar