S. Agarwal, J.O.D. Terrail, F. Jurie, Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks. arXiv:1807.04606 (2018)
Google Scholar
K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, S.W. Baik, Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6, 18174–18183 (2018)
Article
Google Scholar
P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Article
Google Scholar
J. Zhang, K. Huang, Y. Yu, T. Tan, in 2011 IEEE Computer Vision and Pattern Recognition (CVPR), CO, USA, Colorado Springs. Boosted local structured HOG-LBP for object localization (2011), pp. 1393–1400
Google Scholar
Y. Zhang, S. Rho, S. Liu, D. Zhao, R. Ji, F. Jiang, 3D object retrieval with multi-feature collaboration and bipartite graph matching. Neurocomputing 195, 40–49 (2016)
Article
Google Scholar
J. Zhang, Y. Huang, K. Huang, Z. Wu, T. Tan, in Asian Conference on Computer Vision. Data decomposition and spatial mixture modeling for part based model (2012), pp. 123–137
Google Scholar
J. Park, S. Rho, C.S. Jeong, Real-time robust 3D object tracking and estimation for surveillance system. Secur. Commun. Netw. 7(10), 1599–1611 (2014)
Article
Google Scholar
I. Krizhevsky, Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Google Scholar
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
Article
Google Scholar
E. Unlu, E. Zenou, N. Riviere, et al., Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 11, 7 (2019). https://doi.org/10.1186/s41074-019-0059-x
Article
Google Scholar
E. Mariappan, M. Kaliappan, S. Vimal, Energy efficient routing protocol using grover’s searching algorithm for MANET. Asian J. Inf. Technol. 14(24), 4986–4994 (2016). https://doi.org/10.3923/ajit.2016.4986.4994
Article
Google Scholar
G. Cao, X. Xie, W. Yang, Q. Liao, G. Shi, J. Wu, Feature-fused SSD: fast detection for small objects. Comput. Vis. Pattern Recognit. 10615, 106151E (2018)
Google Scholar
J. Ahmad, I. Mehmood, S. Rho, N. Chilamkurti, S.W. Baik, et al., Comput. Electr. Eng. 61, 297–311 (2017). https://doi.org/10.1016/j.compeleceng.2017.05.033
Article
Google Scholar
J.H. Park, S. Rho, C.S. Jeong, J. Kim, Multiple 3D object position estimation and tracking using double filtering on multi-core processor. Multimed. Tools Appl. 63(1), 161–180 (2013). https://doi.org/10.1007/s11042-012-1029-9
Article
Google Scholar
D. Kim, S. Rho, E. Hwang, Local feature-based multi-object recognition scheme for surveillance. Eng. Appl. Artif. Intell. 25(7), 1373–1380 (2012)
Article
Google Scholar
S. Han, W. Shen, Z. Liu, Deep Drone: Object Detection and Tracking for Smart Drones on Embedded System (2016)
Y.C. Lee, J. Chen, C.W. Tseng, S.H. Lai, in British Machine Vision Conference (BMVC). Accurate and robust face recognition from RGB-D images with a deep learning approach (2016)
Google Scholar
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection. arXiv preprint arXiv:1506.02640 (2015)
Google Scholar
W. Szegedy, Y. Liu, P. Jia, S. Sermanet, D. Reed, D. Anguelov, V. Erhan, Vanhoucke, A. Rabinovich, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Going deeper with convolutions (2015), pp. 1–9
Google Scholar
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385 (2015)
Google Scholar
J.F. Henriques, R. Caseiro, P. Martins, J. Batista, Highspeed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Article
Google Scholar
F. Schroff, D. Kalenichenko, J. Philbin, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Facenet: a unified embedding for face recognition and clustering (2015), p. 815
Google Scholar
D. Kim, S. Rho, E. Hwang, Real-time multi-objects recognition and tracking scheme. Korean Navig. J. (KONI) 16(2), 386–393 (2012)
Google Scholar
S. Hossain, D.-j. Lee, Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices. Sensors (Basel) 19(15), 3371–3385 (2019). https://doi.org/10.3390/s19153371
Article
Google Scholar
T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7) in press
R. Opromolla, G. Inchingolo, G. Fasano, Airborne visual detection and tracking of cooperative UAVs exploiting deep learning. Sensors 19, 4332 (2019)
Article
Google Scholar
C. Kyrkou, G. Plastiras, T. Theocharides, DroNet: Efficient Convolutional Neural Network Detector for Real-time UAV Applications. arXiv:1807.06789v1 [cs.CV] (2018)
Google Scholar
S. Vimal et al., Secure data packet transmission in MANET using enhanced identity-based cryptography. Int. J. New Technol. Sci. Eng. 3(12), 35–42 (2016)
Google Scholar
T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object Detection," 2017 IEEE International Conference on Computer Vision (ICCV), 2999–3007 (2017). https://doi.org/10.1109/ICCV.2017.324
S. Annamalai, R. Udendhran, S. Vimal, in Novel Practices and Trends in Grid and Cloud Computing. An intelligent grid network based on cloud computing infrastructures (2019), pp. 59–73. https://doi.org/10.4018/978-1-5225-9023-1.ch005
Chapter
Google Scholar
S. Annamalai, R. Udendhran, S. Vimal, in Novel Practices and Trends in Grid and Cloud Computing. Cloud-based predictive maintenance and machine monitoring for intelligent manufacturing for automobile industry (2019), pp. 74–81. https://doi.org/10.4018/978-1-5225-9023-1.ch006
Chapter
Google Scholar
Y. Liu et al., J. Phys. Conf. Ser. 1345, 062043 (2019)
Article
Google Scholar
L.I. Yundong et al., Multi-block SSD based on small object detection for UAV railway scene surveillance. Chin. J. Aeronaut. (2020). https://doi.org/10.1016/j.cja.2020.02.024
S. Vimal, M. Kaliappan, A. Suresh, P. Subbulakshmi, S. Kumar, D. Kumar, Development of cloud integrated internet of things based intruder detection system. J. Comput. Theor. Nanosci. 15(11-12), 3565–3570 (2018)
Article
Google Scholar
J.-I. Watanabe, Y. Shao, N. Miura, Underwater and airborne monitoring of marine ecosystems and debris. J. Appl. Remote Sens. 13(4), 044509 (2019). https://doi.org/10.1117/1.JRS.13.044509
Article
Google Scholar
M. Kaliappan, E. Mariappan, M. Viju Prakash, B. Paramasivan, Load balanced clustering technique in MANET using genetic algorithms defence science. Def. Sci. J. 66(3), 251–258 (2016). https://doi.org/10.14429/dsj.66.9205
Article
Google Scholar
M. Kaliappan, B. Paramasivan, Secure and fair cluster head selection protocol for enhancing security in mobile ad hoc networks. Sci. World J. 2014, 608984 (2014)
Google Scholar
G.S. Kumar, M. Kaliappan, L.J. Julus, in International Conference on Pattern Recognition, Periyar University. Enhancing the performance of MANET using EESCP (2012)
Google Scholar
S. Vimal, L. Kalaivani, M. Kaliappan, A. Suresh, X.-Z. Gao, R. Varatharajan, Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks. J. Neural Comput. Appl., 1–11 (2018). https://doi.org/10.1007/s00521-018-3788-3
A. Koksal, K.G. Ince, A. Alatan, in Computer Vision and Pattern Recognition. arXiv preprint arXiv:2004.01059. Effect of annotation errors on drone detection with YOLOv3 (2020) arxiv.org
Google Scholar
S. Vimal, M. Khari, R.G. Crespo, L. Kalaivani, N. Dey, M. Kaliappan, Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks. Comput. Commun. 154, 481–490 (2020)
Article
Google Scholar
J.-H. Kim, Distortion invariant vehicle license plate extraction and recognition algorithm. J. Korea Contents Assoc. 11(3), 1–8 (2011)
Article
Google Scholar
L. Zheng, C. Fu, Y. Zhao, in International Conference on Digital Image Processing. Extend the shallow part of single shot multibox detector via convolutional neural network (2018)
Google Scholar
K. Simonyan, A. Zisserman, in Int. Conf. Learn. Represent. Very deep convolutional networks for large-scale image recognition (2015)
Google Scholar
C. Szegedy et al., in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV. Going deeper with convolutions (2015), pp. 1–9
Google Scholar
S. Ioffe, C. Szegedy, in International Conference on Machine Learning. Batch normalization: accelerating deep network training by reducing internal covariate shift (2015), pp. 448–456
Google Scholar
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. Rethinking the inception architecture for computer vision (2016), pp. 2818–2826
Chapter
Google Scholar