- Research Article
- Open access
- Published:
Contextual Information and Covariance Descriptors for People Surveillance: An Application for Safety of Construction Workers
EURASIP Journal on Image and Video Processing volume 2011, Article number: 684819 (2011)
Abstract
In computer science, contextual information can be used both to reduce computations and to increase accuracy. This paper discusses how it can be exploited for people surveillance in very cluttered environments in terms of perspective (i.e., weak scene calibration) and appearance of the objects of interest (i.e., relevance feedback on the training of a classifier). These techniques are applied to a pedestrian detector that uses a LogitBoost classifier, appropriately modified to work with covariance descriptors which lie on Riemannian manifolds. On each detected pedestrian, a similar classifier is employed to obtain a precise localization of the head. Two novelties on the algorithms are proposed in this case: polar image transformations to better exploit the circular feature of the head appearance and multispectral image derivatives that catch not only luminance but also chrominance variations. The complete approach has been tested on the surveillance of a construction site to detect workers that do not wear the hard hat: in such scenarios, the complexity and dynamics are very high, making pedestrian detection a real challenge.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Gualdi, G., Prati, A. & Cucchiara, R. Contextual Information and Covariance Descriptors for People Surveillance: An Application for Safety of Construction Workers. J Image Video Proc. 2011, 684819 (2011). https://doi.org/10.1155/2011/684819
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2011/684819