Open Access

Scalable Multiple-Description Image Coding Based on Embedded Quantization

  • AugustinI Gavrilescu1Email author,
  • Fabio Verdicchio1,
  • Adrian Munteanu1,
  • Ingrid Moerman2,
  • Jan Cornelis1 and
  • Peter Schelkens1
EURASIP Journal on Image and Video Processing20072007:081813

https://doi.org/10.1155/2007/81813

Received: 14 August 2006

Accepted: 5 January 2007

Published: 25 February 2007

Abstract

Scalable multiple-description (MD) coding allows for fine-grain rate adaptation as well as robust coding of the input source. In this paper, we present a new approach for scalable MD coding of images, which couples the multiresolution nature of the wavelet transform with the robustness and scalability features provided by embedded multiple-description scalar quantization (EMDSQ). Two coding systems are proposed that rely on quadtree coding to compress the side descriptions produced by EMDSQ. The proposed systems are capable of dynamically adapting the bitrate to the available bandwidth while providing robustness to data losses. Experiments performed under different simulated network conditions demonstrate the effectiveness of the proposed scalable MD approach for image streaming over error-prone channels.

[123456789101112131415161718192021222324252627]

Authors’ Affiliations

(1)
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB) and Interdisciplinary Institute for Broadband Technology (IBBT)
(2)
Department of Information Technology (INTEC), Universiteit Gent (UGent) and Interdisciplinary Institute for Broadband Technology (IBBT)

References

  1. Taubman D, Marcelin MW: JPEG2000: Image Compression Fundamentals, Standards, and Practice. Kluwer Academic, Norwell, Mass, USA; 2002.View ArticleGoogle Scholar
  2. Ozarow L: On a source-coding problem with two channels and three receivers. The Bell System Technical Journal 1980,59(10):1909-1921.MathSciNetView ArticleMATHGoogle Scholar
  3. Vaishampayan VA: Design of multiple description scalar quantizers. IEEE Transactions on Information Theory 1993,39(3):821-834. 10.1109/18.256491View ArticleMATHGoogle Scholar
  4. Wang Y, Orchard MT, Vaishampayan V, Reibman AR: Multiple description coding using pairwise correlating transforms. IEEE Transactions on Image Processing 2001,10(3):351-366. 10.1109/83.908500View ArticleMATHGoogle Scholar
  5. Goyal VK, Kovačević J: Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory 2001,47(6):2199-2224. 10.1109/18.945243View ArticleMathSciNetMATHGoogle Scholar
  6. Puri R, Ramchandran K: Multiple description source coding using forward error correction codes. Proceedings of 33rd the Asilomar Conference on Signals, Systems, and Computers, October 1999, Pacific Grove, Calif, USA 1: 342-346.Google Scholar
  7. Gavrilescu AI, Munteanu A, Schelkens P, Cornelis J: Embedded multiple description scalar quantizers. IEE Electronics Letters 2003,39(13):979-980. 10.1049/el:20030645View ArticleGoogle Scholar
  8. Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: Generalization of embedded multiple description scalar quantizers. IEE Electronics Letters 2005,41(2):63-65. 10.1049/el:20057118View ArticleGoogle Scholar
  9. Gavrilescu AI, Munteanu A, Schelkens P, Cornelis J: Embedded multiple description scalar quantizers for progressive image transmission. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 5: 736-739.Google Scholar
  10. Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: High-redundancy embedded multiple-description scalar quantizers for robust communication over unreliable channels. Proceedings of 5th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '04), April 2004, Lisboa, PortugalGoogle Scholar
  11. Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: A new family of embedded multiple description scalar quantizers. Proceedings of IEEE International Conference on Image Processing (ICIP ' 04), October 2004, Singapore 1: 159-162.Google Scholar
  12. Vaishampayan VA, Domaszewicz J: Design of entropy-constrained multiple-description scalar quantizers. IEEE Transactions on Information Theory 1994,40(1):245-250. 10.1109/18.272491View ArticleMATHGoogle Scholar
  13. Vaishampayan VA, Batllo J-C: Asymptotic analysis of multiple description quantizers. IEEE Transactions on Information Theory 1998,44(1):278-284. 10.1109/18.651044MathSciNetView ArticleMATHGoogle Scholar
  14. Guionnet T, Guillemot C, Pateux S: Embedded multiple description coding for progressive image transmission over unreliable channels. Proceedings of IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 1: 94-97.Google Scholar
  15. Munteanu A, Cornelis J, Van der Auwera G, Cristea P: Wavelet-based lossless compression scheme with progressive transmission capability. International Journal of Imaging Systems and Technology 1999,10(1):76-85. 10.1002/(SICI)1098-1098(1999)10:1<76::AID-IMA9>3.0.CO;2-0View ArticleGoogle Scholar
  16. Munteanu A, Cornelis J, Van der Auwera G, Cristea P: Wavelet image compression—the quadtree coding approach. IEEE Transactions on Information Technology in Biomedicine 1999,3(3):176-185. 10.1109/4233.788579View ArticleGoogle Scholar
  17. Dumitrescu C, Seleacu V: Some Notions and Questions in Number Theory. American Research Press, Rehoboth, NM, USA; 1998.MATHGoogle Scholar
  18. Farvardin N, Modestino JW: Optimum quantizer performance for a class of non-Gaussian memoryless sources. IEEE Transactions on Information Theory 1984,30(3):485-497. 10.1109/TIT.1984.1056920MathSciNetView ArticleMATHGoogle Scholar
  19. Gish H, Pierce J: Asymptotically efficient quantizing. IEEE Transactions on Information Theory 1968,14(5):676-683. 10.1109/TIT.1968.1054193View ArticleGoogle Scholar
  20. Chui CK, Yi R: System and method for nested split coding of sparse data sets. US patent no. 5748116, Teralogic, Menlo Park, Calif, USA, 1998Google Scholar
  21. Islam A, Pearlman WA: Embedded and efficient low-complexity hierarchical image coder. Visual Communications and Image Processing, January 1999, San Jose, Calif, USA, Proceedings of SPIE 3653: 294-305.View ArticleGoogle Scholar
  22. Munteanu A: Wavelet image coding and multiscale edge detection—algorithms and applications, Ph.D. thesis. Department of Electronics and Information Processing (ETRO), Brussels, Belgium; 2003.Google Scholar
  23. Schelkens P, Munteanu A, Barbarien J, Galca M, Giro-Nieto X, Cornelis J: Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging 2003,22(3):441-458. 10.1109/TMI.2003.809582View ArticleGoogle Scholar
  24. Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996,6(3):243-250. 10.1109/76.499834View ArticleGoogle Scholar
  25. Parsaye K, Chignell M: Expert Systems for Experts. John Wiley & Sons, New York, NY, USA; 1988.Google Scholar
  26. Gavrilescu AI: Multiple descriptions scalar quantizers—theory and applications, Ph.D. thesis. Department of Electronics and Information Processing (ETRO), Brussels, Belgium; 2006.Google Scholar
  27. Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: Generalization of embedded multiple description scalar quantizers yielding embedded uniform central quantizers. Proceedings of 6th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '05), April 2005, Montreux, SwitzerlandGoogle Scholar

Copyright

© Augustin I. Gavrilescu et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.