Skip to main content

Scalable Multiple-Description Image Coding Based on Embedded Quantization

Abstract

Scalable multiple-description (MD) coding allows for fine-grain rate adaptation as well as robust coding of the input source. In this paper, we present a new approach for scalable MD coding of images, which couples the multiresolution nature of the wavelet transform with the robustness and scalability features provided by embedded multiple-description scalar quantization (EMDSQ). Two coding systems are proposed that rely on quadtree coding to compress the side descriptions produced by EMDSQ. The proposed systems are capable of dynamically adapting the bitrate to the available bandwidth while providing robustness to data losses. Experiments performed under different simulated network conditions demonstrate the effectiveness of the proposed scalable MD approach for image streaming over error-prone channels.

[123456789101112131415161718192021222324252627]

References

  1. 1.

    Taubman D, Marcelin MW: JPEG2000: Image Compression Fundamentals, Standards, and Practice. Kluwer Academic, Norwell, Mass, USA; 2002.

    Google Scholar 

  2. 2.

    Ozarow L: On a source-coding problem with two channels and three receivers. The Bell System Technical Journal 1980,59(10):1909-1921.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Vaishampayan VA: Design of multiple description scalar quantizers. IEEE Transactions on Information Theory 1993,39(3):821-834. 10.1109/18.256491

    Article  MATH  Google Scholar 

  4. 4.

    Wang Y, Orchard MT, Vaishampayan V, Reibman AR: Multiple description coding using pairwise correlating transforms. IEEE Transactions on Image Processing 2001,10(3):351-366. 10.1109/83.908500

    Article  MATH  Google Scholar 

  5. 5.

    Goyal VK, Kovačević J: Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory 2001,47(6):2199-2224. 10.1109/18.945243

    Article  MathSciNet  MATH  Google Scholar 

  6. 6.

    Puri R, Ramchandran K: Multiple description source coding using forward error correction codes. Proceedings of 33rd the Asilomar Conference on Signals, Systems, and Computers, October 1999, Pacific Grove, Calif, USA 1: 342-346.

    Google Scholar 

  7. 7.

    Gavrilescu AI, Munteanu A, Schelkens P, Cornelis J: Embedded multiple description scalar quantizers. IEE Electronics Letters 2003,39(13):979-980. 10.1049/el:20030645

    Article  Google Scholar 

  8. 8.

    Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: Generalization of embedded multiple description scalar quantizers. IEE Electronics Letters 2005,41(2):63-65. 10.1049/el:20057118

    Article  Google Scholar 

  9. 9.

    Gavrilescu AI, Munteanu A, Schelkens P, Cornelis J: Embedded multiple description scalar quantizers for progressive image transmission. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 5: 736-739.

    Google Scholar 

  10. 10.

    Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: High-redundancy embedded multiple-description scalar quantizers for robust communication over unreliable channels. Proceedings of 5th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '04), April 2004, Lisboa, Portugal

    Google Scholar 

  11. 11.

    Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: A new family of embedded multiple description scalar quantizers. Proceedings of IEEE International Conference on Image Processing (ICIP ' 04), October 2004, Singapore 1: 159-162.

    Google Scholar 

  12. 12.

    Vaishampayan VA, Domaszewicz J: Design of entropy-constrained multiple-description scalar quantizers. IEEE Transactions on Information Theory 1994,40(1):245-250. 10.1109/18.272491

    Article  MATH  Google Scholar 

  13. 13.

    Vaishampayan VA, Batllo J-C: Asymptotic analysis of multiple description quantizers. IEEE Transactions on Information Theory 1998,44(1):278-284. 10.1109/18.651044

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Guionnet T, Guillemot C, Pateux S: Embedded multiple description coding for progressive image transmission over unreliable channels. Proceedings of IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 1: 94-97.

    Google Scholar 

  15. 15.

    Munteanu A, Cornelis J, Van der Auwera G, Cristea P: Wavelet-based lossless compression scheme with progressive transmission capability. International Journal of Imaging Systems and Technology 1999,10(1):76-85. 10.1002/(SICI)1098-1098(1999)10:1<76::AID-IMA9>3.0.CO;2-0

    Article  Google Scholar 

  16. 16.

    Munteanu A, Cornelis J, Van der Auwera G, Cristea P: Wavelet image compression—the quadtree coding approach. IEEE Transactions on Information Technology in Biomedicine 1999,3(3):176-185. 10.1109/4233.788579

    Article  Google Scholar 

  17. 17.

    Dumitrescu C, Seleacu V: Some Notions and Questions in Number Theory. American Research Press, Rehoboth, NM, USA; 1998.

    Google Scholar 

  18. 18.

    Farvardin N, Modestino JW: Optimum quantizer performance for a class of non-Gaussian memoryless sources. IEEE Transactions on Information Theory 1984,30(3):485-497. 10.1109/TIT.1984.1056920

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Gish H, Pierce J: Asymptotically efficient quantizing. IEEE Transactions on Information Theory 1968,14(5):676-683. 10.1109/TIT.1968.1054193

    Article  Google Scholar 

  20. 20.

    Chui CK, Yi R: System and method for nested split coding of sparse data sets. US patent no. 5748116, Teralogic, Menlo Park, Calif, USA, 1998

    Google Scholar 

  21. 21.

    Islam A, Pearlman WA: Embedded and efficient low-complexity hierarchical image coder. Visual Communications and Image Processing, January 1999, San Jose, Calif, USA, Proceedings of SPIE 3653: 294-305.

    Article  Google Scholar 

  22. 22.

    Munteanu A: Wavelet image coding and multiscale edge detection—algorithms and applications, Ph.D. thesis. Department of Electronics and Information Processing (ETRO), Brussels, Belgium; 2003.

    Google Scholar 

  23. 23.

    Schelkens P, Munteanu A, Barbarien J, Galca M, Giro-Nieto X, Cornelis J: Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging 2003,22(3):441-458. 10.1109/TMI.2003.809582

    Article  Google Scholar 

  24. 24.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996,6(3):243-250. 10.1109/76.499834

    Article  Google Scholar 

  25. 25.

    Parsaye K, Chignell M: Expert Systems for Experts. John Wiley & Sons, New York, NY, USA; 1988.

    Google Scholar 

  26. 26.

    Gavrilescu AI: Multiple descriptions scalar quantizers—theory and applications, Ph.D. thesis. Department of Electronics and Information Processing (ETRO), Brussels, Belgium; 2006.

    Google Scholar 

  27. 27.

    Gavrilescu AI, Munteanu A, Cornelis J, Schelkens P: Generalization of embedded multiple description scalar quantizers yielding embedded uniform central quantizers. Proceedings of 6th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '05), April 2005, Montreux, Switzerland

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to AugustinI Gavrilescu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Gavrilescu, A., Verdicchio, F., Munteanu, A. et al. Scalable Multiple-Description Image Coding Based on Embedded Quantization. J Image Video Proc 2007, 081813 (2007). https://doi.org/10.1155/2007/81813

Download citation

Keywords

  • Network Condition
  • Scalability Feature
  • Rate Adaptation
  • Data Loss
  • Simulated Network