Diamond C, Frew I: The Facial Nerve. Oxford University Press, Oxford, UK; 1979.
Google Scholar
House JW: Facial nerve grading systems. Laryngoscope 1983,93(8):1056-1069.
Article
Google Scholar
Beurskens CHG, Heymans PG: Positive effects of mime therapy on sequelae of facial paralysis: stiffness, lip mobility, and social and physical aspects of facial disability. Otology & Neurotology 2003,24(4):677-681. 10.1097/00129492-200307000-00024
Article
Google Scholar
Kahn JB, Gliklich RE: Validation of a patient-graded instrumnet for facial nerve paralysis: the FaCE scale. Laryngoscope 2001,111(3):387-398. 10.1097/00005537-200103000-00005
Article
Google Scholar
Linstrom J: Objective facial motion analysis in patients with facial nerve dysfunction. Laryngoscope 2002,112(7):1129-1147. 10.1097/00005537-200207000-00001
Article
Google Scholar
Scriba H, Stoeckli SJ, Veraguth D, Fisch U: Objective evaluation of normal facial function. Annals of Otology, Rhinology & Laryngology 1999,108(7, part 1):641-644.
Article
Google Scholar
Dulguerov P, Marchal F, Wang D: Review of objective topographic facial nerve evaluation methods. American Journal of Otology 1999,20(5):672-678.
Google Scholar
McGrenary S, O'Reilly BF, Soraghan JJ: Objective grading of facial paralysis using artificial intelligence analysis of video data. Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems(CBMS '05), June 2005, Dublin, Ireland 587-592.
Chapter
Google Scholar
Neely JG, Joaquin AH, Kohn LA, Cheung JY: Quantitative assessment of the variation within grades of facial paralysis. Laryngoscope 1996,106(4):438-442. 10.1097/00005537-199604000-00009
Article
Google Scholar
Helling TD, Neely JG: Validation of objective measures for facial paralysis. Laryngoscope 1997,107(10):1345-1349. 10.1097/00005537-199710000-00010
Article
Google Scholar
Neely JG: Advancement in the evaluation of facial function. In Advances in Otolaryngology—Head and Neck Surgery. Volume 15. Elsevier Science, New York, NY, USA; 2002:109-134.
Google Scholar
Wachtman GS, Liu Y, Zhao T, et al.: Measurement of asymmetry in persons with facial paralysis. Proceedings of Combined Annual Conference of the Robert H. Ivy and Ohio Valley Societies of Plastic and Reconstructive Surgeons, June 2002, Pittsburgh, Pa, USA
Google Scholar
Liu Y, Schmidt KL, Cohn JF, Mitra S: Facial asymmetry quantification for expression invariant human identification. Computer Vision and Image Understanding 2003,91(1-2):138-159. 10.1016/S1077-3142(03)00078-X
Article
Google Scholar
Yang M-H, Kriegman DJ, Ahuja N: Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002,24(1):34-58. 10.1109/34.982883
Article
Google Scholar
Yang MH: Recent advances in face detection. Proceedings of 17th International Conference on Pattern Recognition (ICPR '04), August 2004, Cambridge, UK
Google Scholar
Feng GC, Yuen PC: Multi-cues eye detection on gray intensity image. Pattern Recognition 2001,34(5):1033-1046. 10.1016/S0031-3203(00)00042-X
Article
MATH
Google Scholar
Rurainsky J, Eisert P: Template-based eye and mouth detection for 3D video conferencing. In Visual Content Processing and Representation, Lecture Notes in Computer Science. Volume 2849. Springer, Berlin, Germany; 2003:23-31. 10.1007/978-3-540-39798-4_6
Chapter
Google Scholar
Farkas LG: Anthropometry of the Head and Face. Raven Press, New York, NY, USA; 1995.
Google Scholar
Smith SM, Brady JM: SUSAN—a new approach to low level image processing. International Journal of Computer Vision 1997,23(1):45-78. 10.1023/A:1007963824710
Article
Google Scholar
Hess M, Martinez G: Facial feature extraction based on the smallest univalue segment assimilating nucleus (SUSAN) algorithm. Proceedings of the Picture Coding Symposium (PCS '04), December 2004, San Francisco, Calif, USA
Google Scholar
Guestrin C, Cozman F: Image stabilisation for feature tracking and generation of stable video overlays. In Tech. Rep. CMU-RI-TR-97-42. Robotics Institute, Carnegie Mellon University, Pittsburgh, Pa, USA; 1997.
Google Scholar
Elad M, Feuer A: Recursive optical flow estimation—adaptive filtering approach. Proceedings of the 19th Convention of Electrical and Electronics Engineers (EEIS '96), November 1996, Jerusalem, Israel 387-390.
Chapter
Google Scholar
Barron JL, Fleet DJ: Performance of optical flow techniques. International Journal of Computer Vision 1994,12(1):43-77. 10.1007/BF01420984
Article
Google Scholar
Baker S, Matthews I: Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision 2004,56(3):221-255.
Article
Google Scholar
Duch W, Jankowski N: Transfer function : hidden possibilities for better neural networks. Proceedings of the 16th European Symposium on Artificcial Neural Networks Bruges (ESANN '01), April 2001, Bruges, Belgium 81-94.
Google Scholar