Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Biomedical Image Sequence Analysis with Application to Automatic Quantitative Assessment of Facial Paralysis


Facial paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann scale. Experiments show the radial basis function (RBF) neural network to have superior performance.



  1. 1.

    Diamond C, Frew I: The Facial Nerve. Oxford University Press, Oxford, UK; 1979.

  2. 2.

    House JW: Facial nerve grading systems. Laryngoscope 1983,93(8):1056-1069.

  3. 3.

    Beurskens CHG, Heymans PG: Positive effects of mime therapy on sequelae of facial paralysis: stiffness, lip mobility, and social and physical aspects of facial disability. Otology & Neurotology 2003,24(4):677-681. 10.1097/00129492-200307000-00024

  4. 4.

    Kahn JB, Gliklich RE: Validation of a patient-graded instrumnet for facial nerve paralysis: the FaCE scale. Laryngoscope 2001,111(3):387-398. 10.1097/00005537-200103000-00005

  5. 5.

    Linstrom J: Objective facial motion analysis in patients with facial nerve dysfunction. Laryngoscope 2002,112(7):1129-1147. 10.1097/00005537-200207000-00001

  6. 6.

    Scriba H, Stoeckli SJ, Veraguth D, Fisch U: Objective evaluation of normal facial function. Annals of Otology, Rhinology & Laryngology 1999,108(7, part 1):641-644.

  7. 7.

    Dulguerov P, Marchal F, Wang D: Review of objective topographic facial nerve evaluation methods. American Journal of Otology 1999,20(5):672-678.

  8. 8.

    McGrenary S, O'Reilly BF, Soraghan JJ: Objective grading of facial paralysis using artificial intelligence analysis of video data. Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems(CBMS '05), June 2005, Dublin, Ireland 587-592.

  9. 9.

    Neely JG, Joaquin AH, Kohn LA, Cheung JY: Quantitative assessment of the variation within grades of facial paralysis. Laryngoscope 1996,106(4):438-442. 10.1097/00005537-199604000-00009

  10. 10.

    Helling TD, Neely JG: Validation of objective measures for facial paralysis. Laryngoscope 1997,107(10):1345-1349. 10.1097/00005537-199710000-00010

  11. 11.

    Neely JG: Advancement in the evaluation of facial function. In Advances in Otolaryngology—Head and Neck Surgery. Volume 15. Elsevier Science, New York, NY, USA; 2002:109-134.

  12. 12.

    Wachtman GS, Liu Y, Zhao T, et al.: Measurement of asymmetry in persons with facial paralysis. Proceedings of Combined Annual Conference of the Robert H. Ivy and Ohio Valley Societies of Plastic and Reconstructive Surgeons, June 2002, Pittsburgh, Pa, USA

  13. 13.

    Liu Y, Schmidt KL, Cohn JF, Mitra S: Facial asymmetry quantification for expression invariant human identification. Computer Vision and Image Understanding 2003,91(1-2):138-159. 10.1016/S1077-3142(03)00078-X

  14. 14.

    Yang M-H, Kriegman DJ, Ahuja N: Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002,24(1):34-58. 10.1109/34.982883

  15. 15.

    Yang MH: Recent advances in face detection. Proceedings of 17th International Conference on Pattern Recognition (ICPR '04), August 2004, Cambridge, UK

  16. 16.

    Feng GC, Yuen PC: Multi-cues eye detection on gray intensity image. Pattern Recognition 2001,34(5):1033-1046. 10.1016/S0031-3203(00)00042-X

  17. 17.

    Rurainsky J, Eisert P: Template-based eye and mouth detection for 3D video conferencing. In Visual Content Processing and Representation, Lecture Notes in Computer Science. Volume 2849. Springer, Berlin, Germany; 2003:23-31. 10.1007/978-3-540-39798-4_6

  18. 18.

    Farkas LG: Anthropometry of the Head and Face. Raven Press, New York, NY, USA; 1995.

  19. 19.

    Smith SM, Brady JM: SUSAN—a new approach to low level image processing. International Journal of Computer Vision 1997,23(1):45-78. 10.1023/A:1007963824710

  20. 20.

    Hess M, Martinez G: Facial feature extraction based on the smallest univalue segment assimilating nucleus (SUSAN) algorithm. Proceedings of the Picture Coding Symposium (PCS '04), December 2004, San Francisco, Calif, USA

  21. 21.

    Guestrin C, Cozman F: Image stabilisation for feature tracking and generation of stable video overlays. In Tech. Rep. CMU-RI-TR-97-42. Robotics Institute, Carnegie Mellon University, Pittsburgh, Pa, USA; 1997.

  22. 22.

    Elad M, Feuer A: Recursive optical flow estimation—adaptive filtering approach. Proceedings of the 19th Convention of Electrical and Electronics Engineers (EEIS '96), November 1996, Jerusalem, Israel 387-390.

  23. 23.

    Barron JL, Fleet DJ: Performance of optical flow techniques. International Journal of Computer Vision 1994,12(1):43-77. 10.1007/BF01420984

  24. 24.

    Baker S, Matthews I: Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision 2004,56(3):221-255.

  25. 25.

    Duch W, Jankowski N: Transfer function : hidden possibilities for better neural networks. Proceedings of the 16th European Symposium on Artificcial Neural Networks Bruges (ESANN '01), April 2001, Bruges, Belgium 81-94.

Download references

Author information



Corresponding author

Correspondence to Shu He.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

He, S., Soraghan, J. & O'Reilly, B. Biomedical Image Sequence Analysis with Application to Automatic Quantitative Assessment of Facial Paralysis. J Image Video Proc 2007, 081282 (2007).

Download citation


  • Radial Basis Function
  • Optical Flow
  • Facial Feature
  • Video Data
  • Motion Feature