Skip to main content

Video Coding Using 3D Dual-Tree Wavelet Transform

Abstract

This work investigates the use of the 3D dual-tree discrete wavelet transform (DDWT) for video coding. The 3D DDWT is an attractive video representation because it isolates image patterns with different spatial orientations and motion directions and speeds in separate subbands. However, it is an overcomplete transform with 4: 1 redundancy when only real parts are used. We apply the noise-shaping algorithm proposed by Kingsbury to reduce the number of coefficients. To code the remaining significant coefficients, we propose two video codecs. The first one applies separate 3D set partitioning in hierarchical trees (SPIHT) on each subset of the DDWT coefficients (each forming a standard isotropic tree). The second codec exploits the correlation between redundant subbands, and codes the subbands jointly. Both codecs do not require motion compensation and provide better performance than the 3D SPIHT codec using the standard DWT, both objectively and subjectively. Furthermore, both codecs provide full scalability in spatial, temporal, and quality dimensions. Besides the standard isotropic decomposition, we propose an anisotropic DDWT, which extends the superiority of the normal DDWT with more directional subbands without adding to the redundancy. This anisotropic structure requires significantly fewer coefficients to represent a video after noise shaping. Finally, we also explore the benefits of combining the 3D DDWT with the standard DWT to capture a wider set of orientations.

[12345678910111213141516171819202122]

References

  1. 1.

    Hsiang S-T, Woods JW: Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank. Signal Processing: Image Communication 2001,16(8):705-724. 10.1016/S0923-5965(01)00002-9

    Google Scholar 

  2. 2.

    Xu J, Xiong Z, Li S, Zhang Y-Q: Memory-constrained 3-D wavelet transform for video coding without boundary effects. IEEE Transactions on Circuits and Systems for Video Technology 2002,12(9):812-818. 10.1109/TCSVT.2002.803231

    Article  Google Scholar 

  3. 3.

    Andreopoulos Y, van der Schaar M, Munteanu A, Barbarien J, Schelkens P, Cornelis J: Fully-scalable wavelet video coding using in-band motion compensated temporal filtering. Proceedings of IEEE International Conference on Accoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 3: 417-420.

    Google Scholar 

  4. 4.

    Secker A, Taubman D: Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression. IEEE Transactions on Image Processing 2003,12(12):1530-1542. 10.1109/TIP.2003.819433

    Article  Google Scholar 

  5. 5.

    Joint Scalable Video Model 2.0 Reference Encoding Algorithm Description ISO/IEC JTC1/SC29/WG11/N7084. Buzan, Korea, April 2005

  6. 6.

    Kingsbury N: A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. Proceedings of IEEE International Conference on Image Processing (ICIP '00), September 2000, Vancouver, BC, Canada 2: 375-378.

    Google Scholar 

  7. 7.

    Do MN, Vetterli M: The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing 2005,14(12):2091-2106.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Reeves TH, Kingsbury NG: Overcomplete image coding using iterative projection-based noise shaping. Proceedings of IEEE International Conference on Image Processing (ICIP '02), September 2002, Rochester, NY, USA 3: 597-600.

    Article  Google Scholar 

  9. 9.

    Sivaramakrishnan K, Nguyen T: A uniform transform domain video codec based on dual tree complex wavelet transform. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01) , May 2001, Salt Lake City, Utah, USA 3: 1821-1824.

    Google Scholar 

  10. 10.

    Selesnick I, Li KY: Video denoising using 2D and 3D dual-tree complex wavelet transforms. Wavelets: Applications in Signal and Image Processing X, August 2003, San Diego, Calif, USA, Proceedings of SPIE 5207: 607-618.

    Google Scholar 

  11. 11.

    Selesnick I, Baraniuk RG, Kingsbury NC: The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 2005,22(6):123-151.

    Article  Google Scholar 

  12. 12.

    Wang B, Wang Y, Selesnick I, Vetro A: An investigation of 3D dual-tree wavelet transform for video coding. Proceedings of International Conference on Image Processing (ICIP '04), October 2004, Singapore 2: 1317-1320.

    Google Scholar 

  13. 13.

    Kim B-J, Xiong Z, Pearlman WA: Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT). IEEE Transactions on Circuits and Systems for Video Technology 2000,10(8):1374-1387. 10.1109/76.889025

    Article  Google Scholar 

  14. 14.

    Wang B, Wang Y, Selesnick I, Vetro A: Video coding using 3-D dual-tree discrete wavelet transforms. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 2: 61-64.

    Google Scholar 

  15. 15.

    Xu D, Do MN: Anisotropic 2D wavelet packets and rectangular tiling: theory and algorithms. Wavelets: Applications in Signal and Image Processing X, August 2003, San Diego, Calif, USA, Proceedings of SPIE 5207: 619-630.

    Google Scholar 

  16. 16.

    Xu D, Do MN: On the number of rectangular tilings. IEEE Transactions on Image Processing 2006,15(10):3225-3230.

    Article  Google Scholar 

  17. 17.

    Mallat SG, Zhang Z: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 1993,41(12):3397-3415. 10.1109/78.258082

    Article  MATH  Google Scholar 

  18. 18.

    Gribonval R, Vandergheynst P: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Transactions on Information Theory 2006,52(1):255-261.

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Neff R, Zakhor A: Very low bit-rate video coding based on matching pursuits. IEEE Transactions on Circuits and Systems for Video Technology 1997,7(1):158-171. 10.1109/76.554427

    Article  Google Scholar 

  20. 20.

    Bolcskei H, Hlawatsch F: Oversampled filter banks: optimal noise shaping, design freedom, and noise analysis. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '97), April 1997, Munich, Germany 3: 2453-2456.

    Google Scholar 

  21. 21.

    Hua J, Xiong Z, Wu X: High-performance 3-D embedded wavelet video (EWV) coding. Proceedings of 4th IEEE Workshop on Multimedia Signal Processing (MMSP '01), October 2001, Cannes, France 569-574.

    Google Scholar 

  22. 22.

    Boettcher JB, Fowler JE: Video coding using a complex wavelet transform and set partitioning. to appear in IEEE Signal Processing Letters, September 2007

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beibei Wang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wang, B., Wang, Y., Selesnick, I. et al. Video Coding Using 3D Dual-Tree Wavelet Transform. J Image Video Proc 2007, 042761 (2007). https://doi.org/10.1155/2007/42761

Download citation

Keywords

  • Wavelet Transform
  • Discrete Wavelet
  • Video Code
  • Motion Compensation
  • Image Pattern