Skip to main content

Image Resolution Enhancement via Data-Driven Parametric Models in the Wavelet Space

Abstract

We present a data-driven, project-based algorithm which enhances image resolution by extrapolating high-band wavelet coefficients. High-resolution images are reconstructed by alternating the projections onto two constraint sets: the observation constraint defined by the given low-resolution image and the prior constraint derived from the training data at the high resolution (HR). Two types of prior constraints are considered: spatially homogeneous constraint suitable for texture images and patch-based inhomogeneous one for generic images. A probabilistic fusion strategy is developed for combining reconstructed HR patches when overlapping (redundancy) is present. It is argued that objective fidelity measure is important to evaluate the performance of resolution enhancement techniques and the role of antialiasing filter should be properly addressed. Experimental results are reported to show that our projection-based approach can achieve both good subjective and objective performance especially for the class of texture images.

[12345678910111213141516171819202122232425262728293031323334]

References

  1. 1.

    Andrews HC, Patterson CL III: Digital interpolation of discrete images. IEEE Transactions on Computers 1976,25(2):196-202.

    Article  MATH  Google Scholar 

  2. 2.

    Carrato S, Ramponi G, Marsi S: A simple edge-sensitive image interpolation filter. Proceedings of IEEE International Conference on Image Processing (ICIP '96), September 1996, Lausanne, Switzerland 3: 711-714.

    Article  Google Scholar 

  3. 3.

    Jensen K, Anastassiou D: Subpixel edge localization and the interpolation of still images. IEEE Transactions on Image Processing 1995,4(3):285-295. 10.1109/83.366477

    Article  Google Scholar 

  4. 4.

    Ratakonda K, Ahuja N: POCS based adaptive image magnification. Proceedings of IEEE International Conference on Image Processing (ICIP '98), October 1998, Chicago, Ill, USA 3: 203-207.

    Google Scholar 

  5. 5.

    Allebach J, Wong PW: Edge-directed interpolation. Proceedings of IEEE International Conference on Image Processing (ICIP '96), September 1996, Lausanne, Switzerland 3: 707-710.

    Article  Google Scholar 

  6. 6.

    Li X, Orchard MT: New edge-directed interpolation. IEEE Transactions on Image Processing 2001,10(10):1521-1527. 10.1109/83.951537

    Article  Google Scholar 

  7. 7.

    Biemond J, Lagendijk RL, Mersereau RM: Iterative methods for image deblurring. Proceedings of the IEEE 1990,78(5):856-883. 10.1109/5.53403

    Article  Google Scholar 

  8. 8.

    Strang G, Nguyen TQ: Wavelets and Filterbanks. Wellesley-Cambridge, Wellesley, Mass, USA; 1997.

    Google Scholar 

  9. 9.

    Chang SG, Cvetkovic Z, Vetterli M: Resolution enhancement of images using wavelet transform extrema extrapolation. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '95), May 1995, Detroit, Mich, USA 4: 2379-2382.

    Google Scholar 

  10. 10.

    Carey WK, Chuang DB, Hemami SS: Regularity-preserving image interpolation. IEEE Transactions on Image Processing 1999,8(9):1293-1297. 10.1109/83.784441

    Article  Google Scholar 

  11. 11.

    Muresan DD, Parks TW: Prediction of image detail. Proceedings of IEEE International Conference on Image Processing (ICIP '00), September 2000, Vancouver, BC, Canada 2: 323-326.

    Google Scholar 

  12. 12.

    Zhu Y, Schwartz SC, Orchard MT: Wavelet domain image interpolation via statistical estimation. Proceedings of IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 3: 840-843.

    Google Scholar 

  13. 13.

    Kinebuchi K, Muresan DD, Parks TW: Image interpolation using wavelet-based hidden Markov trees. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01), May 2001, Salt Lake, Utah, USA 3: 1957-1960.

    Google Scholar 

  14. 14.

    Woo DH, Eom IK, Kim YS: Image interpolation based on inter-scale dependency in wavelet domain. Proceedings of International Conference on Image Processing (ICIP '04), October 2004, Singapore 3: 1687-1690.

    Google Scholar 

  15. 15.

    Huang Y-L: Wavelet-based image interpolation using multilayer perceptrons. Neural Computing and Applications 2005,14(1):1-10. 10.1007/s00521-004-0433-0

    Article  Google Scholar 

  16. 16.

    Chang C-L, Zhu X, Ramanathan P, Girod B: Light field compression using disparity-compensated lifting and shape adaptation. IEEE Transactions on Image Processing 2006,15(4):793-806.

    Article  Google Scholar 

  17. 17.

    Itoh Y, Izumi Y, Tanaka Y: Image enhancement based on estimation of high resolution component using wavelet transform. Proceedings of IEEE International Conference on Image Processing (ICIP '99), October 1999, Kobe, Japan 3: 489-493.

    Article  Google Scholar 

  18. 18.

    Liu J, Moulin P: Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Transactions on Image Processing 2001,10(11):1647-1658. 10.1109/83.967393

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Shah NR, Zakhor A: Resolution enhancement of color video sequences. IEEE Transactions on Image Processing 1999,8(6):879-885. 10.1109/83.766865

    Article  Google Scholar 

  20. 20.

    Caselles V, Morel J-M, Sbert C: An axiomatic approach to image interpolation. IEEE Transactions on Image Processing 1998,7(3):376-386. 10.1109/83.661188

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Portilla J, Simoncelli EP: Parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 2000,40(1):49-71. 10.1023/A:1026553619983

    Article  MATH  Google Scholar 

  22. 22.

    Freeman WT, Jones TR, Pasztor EC: Example-based super-resolution. IEEE Computer Graphics and Applications 2002,22(2):56-65. 10.1109/38.988747

    Article  Google Scholar 

  23. 23.

    Mallat S: A Wavelet Tour of Signal Processing. 2nd edition. Academic Press, San Diego, Calif, USA; 1999.

    Google Scholar 

  24. 24.

    Julesz B: Visual pattern discrimination. IEEE Transactions on Information Theory 1962,8(2):84-92. 10.1109/TIT.1962.1057698

    Article  Google Scholar 

  25. 25.

    Wechsler H: Texture analysis—a survey. Signal Processing 1980,2(3):271-282. 10.1016/0165-1684(80)90024-9

    Article  Google Scholar 

  26. 26.

    Geman S, Geman D: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984,6(6):721-741.

    Article  MATH  Google Scholar 

  27. 27.

    Heeger DJ, Bergen JR: Pyramid-based texture analysis/synthesis. Proceedings of the 22nd Annual ACM Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95), August 1995, Los Angeles, Calif, USA 229-238.

    Google Scholar 

  28. 28.

    Zhu SC, Wu Y, Mumford D: Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. International Journal of Computer Vision 1998,27(2):107-126. 10.1023/A:1007925832420

    Article  Google Scholar 

  29. 29.

    de Bonet JS: Multiresolution sampling procedure for analysis and synthesis of texture images. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97), August 1997, Los Angeles, Calif, USA 361-368.

    Google Scholar 

  30. 30.

    Chang S: Image interpolation using wavelet-based edge enhancement and texture analysis, M.Sc. thesis.

  31. 31.

    Combettes PL: The foundations of set theoretic estimation. Proceedings of the IEEE 1993,81(2):182-208.

    Article  Google Scholar 

  32. 32.

    Efros AA, Leung TK: Texture synthesis by non-parametric sampling. Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), September 1999, Kerkyra, Greece 2: 1033-1038.

    Article  Google Scholar 

  33. 33.

    Tomasi C, Manduchi R: Bilateral filtering for gray and color images. Proceedings of the 6th IEEE International Conference on Computer Vision (ICCV '98), January 1998, Bombay, India 839-846.

    Google Scholar 

  34. 34.

    Pham TQ, van Vliet LJ, Schutte K: Resolution enhancement of low quality videos using a high-resolution frame. Visual Communications and Image Processing, January 2006, San Jose, Calif, USA, Proceedings of SPIE 6077:

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Li, X. Image Resolution Enhancement via Data-Driven Parametric Models in the Wavelet Space. J Image Video Proc 2007, 041516 (2007). https://doi.org/10.1155/2007/41516

Download citation

Keywords

  • Wavelet Coefficient
  • Texture Image
  • Prior Constraint
  • Fusion Strategy
  • Resolution Enhancement