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1  Introduction
High precision target detection in remote sensing image is very important in both mili-
tary and civil fields. In military, the target detection of optical remote sensing images 
can be used to detect targets of non-metallic materials and provide enemy information, 
such as the number of military aircraft and oil tanks. For civil use, object detection based 
on optical remote sensing images can be used in urban planning, resource exploration 
and fighting against smuggling crimes. With the development of artificial intelligence, 
object detection technology based on deep convolutional neural network (DCNN) has 
been developed favourably. A common DCNN-based target detector usually consists of 
two parts, a backbone network for extracting image features and a head for bounding 
box prediction and classification prediction. For detectors running on the GPU plat-
form backbone networks might be VGG [1], Inception [2, 3], ResNet [4], and ResNext 
[5]. For those detectors running on CPU platforms, their backbone networks might be 
lightweight networks Squeezenet [5], ShuffleNet [6], MobileNet [7, 8], and GhostNet 
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[9]. For the head part, it is usually divided into two categories, namely, two-stage tar-
get detector and single-stage target detector. The most representative two-stage target 
detectors include Faster R-CNN [10], R-FCN [11] and Mask R-CNN [12]. For single-
stage target detector, the most representative models include SSD [13], RetinaNet [14] 
and YOLO [15, 16]. In recent years, anchor-free target detectors have been developed, 
such as keypoint-based single-stage target detectors CenterNet [17] and CornerNet [18], 
etc. The target detectors developed in recent years often insert some layers between the 
backbone network and the head. These layers are mainly used for feature fusion between 
different layers, which is called the neck in related papers. In general, the neck consists 
of multiple bottom-up paths and multiple top-down paths. Algorithms to achieve this 
network fusion mainly include the feature pyramid network (FPN) [19] and path aggre-
gation network (PAN) [20].

With the increase of optical remote sensing image data sets published by aerospace 
and aviation companies in recent years, articles on optical remote sensing image tar-
get detection have gradually appeared. For example, Yang et al. [21] used convolutional 
neural network to detect aircraft in optical remote sensing images, Ding et al. [22] used 
deep convolutional neural network to detect cars in optical remote sensing images, and 
Dai et al. [23] used deep convolutional neural network to detect roads in optical remote 
sensing images. In the field of remote sensing, many scholars usually compare DCNN 
model with traditional machine learning. In fact, it is more practical to compare the 
detection performance of different DCNN models. In this paper, we compare different 
mainstream DCNN models mainly through two publicly available large-scale remote 
sensing data sets–three classes of LEVIR data sets and 15 classes of DOTA data sets. In 
addition, we use the single-phase target detector YoloV4 as the framework.

The main contributions of this paper are as follows: (1) we use YoloV4 as the detector 
to analyze the object detection performance comparison of different DCNNs on optical 
remote sensing images; (2) we propose an adaptive spatial feature fusion mechanism, 
which better integrates different scale features; (3) we fine-tune the backbone network 
CSPdarknet53 of YoloV4, adding dilated convolution and grouped convolution, reduc-
ing storage space and improving detection performance; and (4) we propose an efficient 
DCNN-based optical remote sensing object detection method that outperforms most of 
the state-of-the-art object detectors.

The rest of this paper is organized as follows: In Sect. 2, we will describe the develop-
ment of DCNN and the network flow and basic principles of YoloV4. Section 3 describes 
how to fine-tune the DCNN model and design feature fusion, and provides a way to save 
storage space. In Sect. 4, the experimental results are analyzed and compared. Finally, 
Sect. 5 summarizes and discusses the article.

2 � Related work
2.1 � Development of deep convolutional neural network

As a feature extractor, the backbone network plays an important role in the perfor-
mance of the detection model. With the development of network architecture in recent 
years, there are many excellent backbone networks. Therefore, it is of great significance 
to study the influence of different deep convolutional neural networks on target detec-
tion of optical remote sensing images. In the following, we will summarize the popular 
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backbone networks in recent years, including most of the mainstream deep convolu-
tional neural networks. 

1)	 Repeat network: developed by networks such as VGG, that is, stacking the same 
topological structure, and the whole network becomes a modular structure, which 
is adopted by almost all subsequent networks. The mainstream of such networks are 
VGG16 [1] and VGG19 [1].

2)	 Multi-path network: developed from the inception series, the input of the previous 
layer is divided into different branches for feature extraction, and finally the output 
results are spliced. Such networks include InceptionV3 [2] and InceptionV4 [3].

3)	 Skip-connection network: establish a transmission channel for shallow informa-
tion and deep information, and change the original single linear structure. This kind 
of network mainly includes ResNet series and extremely improved series, such as 
ResNet50 [4], ResNet101 [4], ResNext50 [5], ResNext101 [5], SENet [24], SKNet 
[25], Res2Net [26].

4)	 Lightweight networks: this type of network mainly uses depth-wise seperable con-
volution to reduce network parameters and improve speed. Representative networks 
include SqueezeNet [5], ShufflenetV2 [6], MobileNetV2 [7], MobileNetV3 [8], and 
GhostNet [9].

5)	 Other networks: networks designed by drawing on the advantages of each branch, 
mainly EfficientNet [15], Darknet53 [27], CSPDarknet53 [28].

2.2 � The principle of YoloV4

2.2.1 � YoloV4

YoloV4 is an efficient target detection method. It mainly consists of four parts: Input, 
Backbone, Neck and Prediction. Backbone is used for feature extraction, Neck is used 
for multi-scale feature fusion, and Prediction is used for classification and bounding box 
prediction. YoloV4 adopts CSPDarknet53 as the feature extraction network, Neck adopts 
the structure of spatial pyramid pooling (SPP) [29], feature pyramid network (FPN) [19] 
and path aggregation network (PAN) [20] for feature fusion. Prediction generates anchor 
frame through clustering method, uses binary cross entropy loss for category prediction, 
and uses dimensional clustering machine to predict boundary frame. The network flow 
chart of YoloV4 is shown in Fig. 1.

2.2.2 � FPN

FPN fuses the deep feature information with the shallow feature information through 
upsampling, thereby constructing the feature pyramid structure of different sizes. To 
better integrate features, YoloV4 has added a PAN after FPN. Combined in this way, FPN 
conveys strong semantic features from the top to the bottom, while PAN conveys strong 
localization features from the bottom to the top. Together, they work together to aggre-
gate features from different backbone layers to different detection layers. To more intui-
tively understand the feature fusion work of FPN and PAN, we drew a flowchart of the 
Neck part, as shown in Fig. 2.
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2.2.3 � Dimensional clusters

YoLo uses a dimensional cluster to predict the bounding box, as shown in Fig. 3. First, 
the YoLo model decomposes the image into S ∗ S grids, each of which is assigned three 
bounding boxes. Then, four coordinate values are predicted for each bounding box by 
dimensional clustering: tx, ty, tw , th , where (tx, ty) is the predicted coordinate offset and 
(tw , th) is the scale. The central coordinates (bx, by) and length and width (bw , bh) of the 
prediction box can be calculated according to Equation (1-4). Where, pw and ph are the 
length and width of the bounding box, and (cx, cy) are the offset of the cell where the 
bounding box is located. Finally, the confidence can be obtained through the intersec-
tion and association ratio (IoU) between the prediction box and the real box, and the 
prediction box with low confidence can be eliminated by non-maximum suppression 
(nms).

Fig. 1  Network flow chart of YoloV4

Fig. 2  Fusion structure of feature pyramid network and path aggregation network
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3 � Methods
3.1 � Fine‑tuning the backbone structure in YoloV4

With the development of DCNN, some new DCNNs have emerged, and we try to use 
the new DCNNs in recent years for the feature extraction of YoloV4. At present, new and 
mainstream DCNNs architectures, such as Inception, SENet, MobileNet, EfficientNet, 
etc., cannot be directly applied to YoloV4. This is because their structural parameters are 
different, making their network outputs unsuitable for multi-scale feature fusion in the 
Neck stage, so we need to adjust these DCNNs frameworks. When different DCNNs are 
applied to YoloV4, the fine-tuning of the network structure is also different.

For VGG16, VGG19, ResNet50, and ResNet101, we removed the last feature pooling 
layer and the full connection layer, and then connected directly to the neck network. 
VGG networks mainly increases the network depth by stacking convolutional layers to 
improve detection accuracy. For example, the backbone network of VGG16 consists of 
5 convolutional blocks and 5 max-pooling layers. The convolutional blocks respectively 
contain (2, 2, 3, 3, 3) convolutional layers with convolution kernel 3× 3 and stride 1, as 
shown in Fig. 4a. The backbone network of VGG19 is also composed of 5 convolution 
blocks and 5 max-pooling layers, which, respectively, contain (2, 2, 4, 4, 4) convolutional 
layers with convolution kernel 3× 3 and stride 1. ResNet networks use residual modules 
to fuse shallow information with deep information to solve the degradation problem of 
deep networks. For example, the backbone network of Resnet50 consists of a 7× 7 con-
volutional layer with stride 2 and padding 3, a max-pooling layer and 4 residual blocks, 
where the 4 residual blocks contain (3,  4,  6,  3) resBottleneck modules respectively, as 

(1)bx = σ(tx)+ cx

(2)by = σ(ty)+ cy

(3)bw = pwe
tw

(4)bh = phe
th

Fig. 3  Schematic diagram of dimensional clusterer
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shown in Fig. 4b. The resBottleneck module uses convolution with stride 2 for down-
sampling, and performs residual learning between three convolution layers. The convo-
lution kernels of the three convolution kernels are 1× 1 , 3× 3 and 1× 1 respectively.

For InceptionV3 and InceptionV4,  to connect the neck network for feature fusion, 
we changed the effective convolution of the Inception module to the same convolution. 
Effective convolution is actually a convolution without padding, and the same convo-
lution is a convolution with zero padding. The convolutional layers of the Inception 
backbone network do not have zero padding, resulting in the output feature maps not 
suitable for multi-scale feature fusion networks. Therefore, we use zero padding for the 
3× 3 convolutional layers in the Inception backbone. The backbone network of Incep-
tionV3 consists of 5 convolutional layers, 2 max-pooling layers, 10 Inception blocks and 
2 Reduction blocks, as shown in Fig. 4c. The backbone network of InceptionV4 consists 
of 3 convolutional layers, 17 Inception blocks and 2 Recuction blocks. The Inception 
block uses convolution kernels of different sizes to extract features from the upper layer 

Fig. 4  Flowchart of different types of DCNNs
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separately, and then concatenates them to obtain better results. The Recuction block 
uses a 3× 3 convolutional layer with stride 2 and a max-pooling layer to downsample 
the feature maps of the upper layer.

For the Resnet evolution series, the ResNet modules in the four residual blocks of the 
Resnet backbone network are mainly replaced by the ResNeXt module, SENet module, 
SKNet module and Res2Net module. Figure 4d shows the backbone network of SENet, 
which consists of a 7× 7 convolutional layer with stride 2 and padding 3, a max-pool-
ing layer and 4 residual blocks. The four residual blocks contain (3, 4, 6, 3) seBottleneck 
modules, and each seBottleneck module mainly embeds an SE block in the resBottle-
neck module of ResNet to model the interdependence between channels. The SE block 
contains a global average pooling layer and two fully connected layers.

For SqueezeNet, ShuffleNetV2, MobileNetV2-V3 and GhostNet lightweight network 
models, we remove the last GlobalPool, Conv2d and FC layers. Figure  4e shows the 
backbone network of MobileNetV2, which mainly consists of a 3× 3 convolution layer 
with stride 2, 7 mbBottleneck blocks and a 1× 1 convolutional layer. The mbBottleneck 
block reduces network parameters and improves network speed by splitting the 3× 3 
standard convolution into a depthwise convolution and a point-wise convolution. The 
depthwise convolution is actually a grouped convolution, and the pointwise convolution 
is a 1× 1 convolution.

There are also some other methods that use networks designed by borrowing the 
advantages of each branch. For example, EfficientNet improves detection accuracy by 
increasing the size of network depth, network width, and input image resolution. As 
shown in Fig. 4f, EfficientNetB0 consists of a 3× 3 convolution layer with stride 2, 16 
effBottleneck modules and a 1× 1 convolutional layer. The effBottleneck module mainly 
consists of an SE block and a depth-wise separable convolutional block to scale the depth 
and width of the network model.

3.2 � Adaptive multi‑scale feature fusion method

YoloV3 uses the top-down FPN structure for feature fusion, as shown in Fig.5a. YoloV4 
adds a bootom-up PAN structure on the basis of FPN for feature fusion, as shown in 
Fig.5b. To better fuse features of different scales, we design a new adaptive spatial feature 
fusion module (ASFF for short) inspired by spatial feature fusion [30]. The adaptive spa-
tial feature fusion module allows the network to learn how to spatially filter the useless 
information of other layers and retain only the useful information for fusion. We first use 
the proposed ASFF module on the basis of FPN+PAN to further fuse features, as shown 
in Fig.5c. At the same time, we also use the ASFF module behind the FPN to fuse the 
features, as shown in Fig.5d. Experiments show that using the adaptive spatial feature 
fusion module behind the FPN can better improve the detection accuracy than using the 
adaptive spatial feature fusion module behind the PAN. This shows that the combination 
of FPN and ASFF modules can better fuse features.

The proposed adaptive spatial feature fusion module can be represented by formula 
(5) and formula (6). Equation (5) means that for each level, the features of all other levels 
will be adjusted to the same shape, and feature fusion will be performed according to the 
learnable weight parameters. Specifically: 1) for the level-l feature map (c, h, w), we first 
need to perform upsampling or downsampling operations on the feature maps of the 
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remaining layers to resize them to the level-l output size and 2) then, the three adjusted 
feature maps are connected and a 1× 1 convolutional layer is used for dimensionality 
reduction to obtain a 3× h× w feature map, and then normalized by the softmax activa-
tion function to obtain the weight vectors of parameters α , β and γ ; 3) Finally, the weight 
vectors α , β and γ are multiplied and summed with the three feature maps respectively 
to obtain the fused feature map.

3.3 � Receptive field improvement method based on dilated convolution

There are many small target sizes in optical remote sensing images. With the deepen-
ing of neural network depth, the features of small targets are easily lost. To improve the 
accuracy of small target detection, we replace the standard convolution of the fifth stage 
of CSPDarknet53 with dilated convolution. Dilated convolution can improve the resolu-
tion without increasing the number of parameters. For the input image of 640 ∗ 640 , the 
resolution of the output convolution feature layer in the fifth stage of CSPDarknet53 was 
reduced to 1/32 ∗ 1/32 of the original image. We replaced the standard convolution in 
the fifth stage of CSPDarknet53 with dilated convolution, and the resolution was only 
reduced to 1/16 ∗ 1/16 of the original image, and the process of feature learning was 

(5)ylij = αl
ij · x

1→l
ij + β l

ij · x
2→l
ij + γ l

ij · x
3→l
ij

(6)αl
ij =

e
�
l
ai j

e
�lαij + e

�
l
βij + e

�lγij

Fig. 5  Multi-scale feature fusion method. Figure 5a is the pyramid structure, Fig.5b is the combination 
structure of pyramid and path aggregation, Fig.5c is the combination structure of pyramid, path aggregation 
and adaptive spatial feature fusion, Fig.5d is the combination structure of pyramid and adaptive spatial 
feature fusion
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deepened at the same time. The modified structure of the network is shown in Fig. 6. To 
simplify understanding, only the modification to the basic network part is drawn, and 
the structure of the entire detector is no longer drawn.

3.4 � Model parameter reduction method based on grouped convolution

The size of the storage space required by the fine-tuned deep convolutional neural net-
work model affects the applicability of deep convolutional neural network. To reduce 
the storage space, we refer to the innovation point of MobileNet module and replace 
the traditional convolution computation method with Depthwise convolution [8], where 
the grouping number is equal to the maximum common divisor of the number of input 
convolution channels and the number of output convolution channels. Compared with 
standard convolution, Depthwise convolution can reduce the amount of computa-
tion exponentially without affecting the accuracy, so as to reduce the number of model 
parameters and improve the operation speed. Finally, Pointwise convolution is used to 
solve the problem of “non-flow of information” in Depthwise convolution. This opera-
tion is equivalent to a regularization of the features extracted by grouped convolution, 
which is more conducive to the flow of information. The modified structure of the back-
bone network is shown in Fig. 7. To simplify understanding, the structure of the entire 
detector is no longer drawn.

4 � Experimental results and discussion
All experiments in this section use Linux 18.04 system, RTX 3090 graphics card, Intel 
(R) Core (TM) i7-10700K (3.8GHz) CPU, 64G memory, PyTorch [31] framework com-
monly used for deep learning, and software, such as Python 3.8, CUDA 11.0, and Torch 
1.7. This section compares the detection performance of different DCNNs on opti-
cal remote sensing images. The selected DCNN models include VGG series, Inception 
series, ResNet and improved series, lightweight series, EfficientNet, Darknet53, CSP-
Darknet53. The network parameters were set as the input image size is 640, the cycle 
iterations is 100 times, the size of each batch is 16, the optimizer selects SGD, the net-
work learning rate is set to 0.01, and the learning momentum is set to 0.937. The data set 

Fig. 6  Modified network structure diagram, in which BottleneckCSP is the basic structure of CSPDarknet53, 
and the standard convolution in DilatedBottleneckCSP is replaced with dilated convolution
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is LEVIR [32] of 3 classes and DOTA [33] of 15 classes of optical remote sensing data set 
published in 2018.

4.1 � Qualitative analysis

First of all, we qualitatively analyze the performance of various deep convolutional neu-
ral networks on the optical remote sensing LEVIR data set, which is composed of 800∗
600 pixels and more than 22,000 pictures, covering most types of ground features of 
human living environment. There are three target types in the data set: airplanes, ships 
and oil tanks, including 4724 airplanes, 3025 ships and 3279 oil tanks. The average num-
ber of objects per image is 0.5. Since there are many networks for experimental compari-
son, some test results of DCNN model are randomly selected here for effect display and 
qualitative analysis of experimental results. For the detection model parameters, we set 
the confidence threshold at 0.001 and the IoU threshold at 0.5. The detection results of 
LEVIR data set of different DCNN models are shown in Fig. 8.

By observing the test results of the randomly selected DCNN model on LEVIR data 
set, it can be concluded that DCNN can better obtain the detection results of LEVIR 
data set, and the positioning effect is more accurate. When the target size changes to 
some extent, YOLO detectors with different DCNN can still obtain better detection 
results. However, some DCNNs have some missed detections and false detections dur-
ing the detection process, which indicates that the corresponding DCNNs need to fur-
ther improve their classification ability.

Second, we will qualitatively analyze the representation of each DCNN on the optical 
remote sensing DOTA data set. The optical remote sensing data set contains a total of 
21,046 images of 15 target types, with approximately 188,000 targets, and the image size 
is 800∗800 pixels. The detection model parameters were set as 0.001 confidence thresh-
old and 0.5 IoU threshold. The detection results of different DCNN models on optical 
remote sensing DOTA data sets are shown in Fig. 9.

By observing the test results of the network model of the randomly selected DCNN 
models on the DOTA data set, it is known that it is sometimes difficult to accurately 
detect directly using the existing deep convolutional neural network, and there are 
many missed and false detection. The main reasons for the poor detection results are as 

Fig. 7  Modified network structure diagram, where DWConvolutions represents grouped convolution, and 
the standard convolution in DWBottleneckCSP is replaced with grouped convolution
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follows: 1. After the small size target passes through the multi-layer convolutional neural 
network, the effective positioning information is lost seriously, so it is difficult to obtain 
accurate results directly by deepening and broadening the network. 2. The contrast 
between some targets and the surrounding environment is relatively low, and the clas-
sification ability of some deep convolutional neural networks is insufficient, so it is dif-
ficult to carry out a good classification operation. 3. DOTA data set is stored into many 
relatively dense small-size targets, and the dense distribution poses a certain challenge 
to the accuracy of target detection.

4.2 � Quantitative analysis

Qualitative detection results can only give people a certain intuitive feeling, but lack 
persuasion. Therefore, quantitative analysis must be conducted to judge the advantages 
and disadvantages of each deep convolutional neural network. Mean average precision 
(mAP) is a common criterion for target detection in optical remote sensing images. AP 
is the area under the curve with accuracy on the vertical axis and recall rate on the hori-
zontal axis. mAP is the average of AP’s for all categories. The test time and storage space 
are very important for the real-time performance and practical application of the target 
detector, and we also use them as performance indicators. The quantitative structure of 
each DCNN model in the LEVIR and DOTA data sets is shown in Tables 1 and 2. Where 

Fig. 8  Visualization results of some randomly selected deep convolutional neural network models on the 
LEVIR data set
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mAP@0.5 means that when the detector IoU threshold is set to be greater than 0.5, the 
average precision AP of each category is calculated, and then, the average AP of all cat-
egories is calculated to get the mAP. mAP@[.5:.95] represents the average mAP at differ-
ent IoU thresholds (from 0.5 to 0.95 with a step size of 0.05).

As can be seen from Table 1, the mAP of most DCNNs in LEVIR data set exceeds 80%. 
As for LEVIR data set, the target type is relatively single, the contrast with the back-
ground is relatively high, and the interference from the surrounding environment is rel-
atively low, so it is not difficult to distinguish the background from the target. At the 
same time, LEVIR’s target number is small and the target distribution is sparse, which is 
conducive to target detection. In addition, the study found that increasing the depth or 
width of DCNN does not necessarily improve the accuracy of target detection, such as 
VGG19, InceptionV4 and Resnet101. Meanwhile, for some improved residual convolu-
tional networks, such as ResNeXt50 and SK-ResNet50, the target detection accuracy is 
not improved much. In addition, for some of the latest DCNN models, such as GhostNet 

Fig. 9  Visualization results of some randomly selected deep convolutional neural network models on the 
DOTA data set
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Table 1  Performance comparison of different DCNN models on LEVIR data set

The best results are in bold, the second best results are underlined

Base-network mAP@.5 mAP@[.5:.95] Test-time(inference/nms/total) Memory

VGG16 0.815 0.592 14.9 ms/1.2 ms/16.1 ms 321.2 M

VGG19 0.798 0.576 17.7 ms/1.1 ms/18.8 ms 363.7 M

InceptionV3 0.874 0.639 9.8 ms/1.1 ms/11.1 ms 394.0 M

InceptionV4 0.728 0.502 15.9 ms/1.1 ms/17.0 ms 543.0 M

ResNet50 0.83 0.60 9.50 ms/1.1 ms/10.6 ms 398.2 M

ResNet101 0.795 0.566 12.9 ms/1.1 ms/14.0 ms 558.2 M

ResNeXt50 0.782 0.557 13.8 ms/1.2 ms/15.0 ms 401.7 M

ResNeXt101 0.797 0.568 34.7 ms/1.1 ms/35.8 ms 559.5 M

SqueezeNet 0.905 0.673 6.0 ms/1.0 ms/6.9 ms 217.9 M

ShuffleNetV2 0.856 0.618 3.8 ms/1.1 ms/4.9 ms 217.2 M
DarkNet53 0.868 0.539 11.7 ms/1.2 ms/12.9 ms 532.7 M

MobileNetV2 0.873 0.634 4.0 ms/1.1 ms/5.1 ms 217.9 M

MobileNetV3 0.869 0.633 4.9 ms/1.1 ms/6.0 ms 217.9 M

SE-ResNet50 0.852 0.619 10.4 ms/1.4 ms/11.8 ms 426.0 M

SK-ResNet50 0.823 0.592 9.2 ms/1.1 ms/10.3 ms 260.1 M

CSPDarknet53 0.882 0.639 11.1 ms/1.2 ms/12.3 ms 420.8 M

EfficientB0 0.757 0.537 6.4 ms/1.2 ms/7.6 ms 241.1 M

EfficientB1 0.835 0.60 7.7 ms/1.0 ms/8.8 ms 261.3 M

GhostNet 0.809 0.579 4.6 ms/1.1 ms/5.7 ms 229.4 M

Res2Net50 0.761 0.536 11.2 ms/1.3 ms/12.5 ms 407.1M

Table 2  Performance comparison of different DCNN models on DOTA data sets

The best results are in bold, the second best results are underlined

Base-network mAP@.5 mAP@[.5:.95] Test-time(inference/nms/total) Memory

VGG16 0.657 0.405 13.5 ms/1.4 ms/14.9 ms 321.8 M

VGG19 0.66 0.41 15.2 ms/1.4 ms/16.6 ms 364.2 M

InceptionV3 0.669 0.416 9.8 ms/1.3 ms/11.0 ms 394.5 M

InceptionV4 0.644 0.389 18.2 ms/1.2 ms/19.5 ms 543.5 M

ResNet50 0.677 0.424 11.8 ms/1.3 ms/13.1 ms 406.4 M

ResNet101 0.631 0.384 16.3 ms/1.4 ms/17.7 ms 558.7 M

ResNeXt50 0.677 0.424 20.7 ms/1.4 ms/22.2 ms 402.2 M

ResNeXt101 0.653 0.401 68.8 ms/1.3 ms/70.1 ms 558.7 M

SqueezeNet 0.651 0.396 7.3 ms/1.3 ms/8.6 ms 218.5 M

ShuffleNetV2 0.629 0.374 4.4 ms/1.3 ms/5.7 ms 217.8 M
Darknet53 0.68 0.432 15.3 ms/1.2 ms/16.5 ms 533.2 M

MobilenetV2 0.648 0.396 4.7 ms/1.3 ms/6.1 ms 218.5 M

MobileNetV3 0.658 0.399 5.9 ms/1.4 ms/7.3 ms 218.4 M

SE-ResNet50 0.672 0.42 12.5 ms/1.3 ms/13.8 ms 426.5 M

SK-ResNet50 0.663 0.411 13.0 ms/1.3 ms/14.3 ms 260.7 M

CSPDarknet53 0.705 0.45 14.1 ms/1.3 ms/15.4 ms 421.4 M

EfficientB0 0.646 0.394 7.9 ms/1.3 ms/9.2 ms 241.7 M

EfficientB1 0.646 0.392 10.0 ms/1.4 ms/11.4 ms 261.9 M

GhostNet 0.594 0.35 5.5 ms/1.4 ms/6.8 ms 229.9 M

Res2Net50 0.661 0.41 13.4 ms/1.4 ms/14.7 ms 407.6M
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and Res2Net50, the improvement of target detection accuracy is not necessarily effec-
tive. For lightweight DCNN models, such as ShuffleNet and MobileNet, it is effective to 
improve the detection speed, but the detection accuracy is not as good as CSPDarknet.

It can be seen from Table 2 that, for the detection of DOTA data set, many DCNN 
models do not achieve ideal results, and some networks achieve poor results. On 
mAP@.5, except CSPDarknet53, none of the other DCNN models exceeded 70%, and 
some of the DCNN models have mAP@.5 less than 65%. The main reasons for this result 
are as follows: 1. Compared with LEVIR data, the situation of DOTA data is more com-
plex, with a larger number of targets and smaller target size. 2. The contrast between 
DOTA targets and the surrounding environment is relatively low and more dense, mak-
ing it more difficult to distinguish targets. Similarly, it is found that increasing the depth 
or width of the convolutional neural network does not necessarily improve the accuracy 
of target detection, such as Inceptionv4 and Resnet101. Meanwhile, for some improved 
residual convolutional networks, such as ResNeXt50 and SK-ResNet50, the target detec-
tion accuracy is not improved much. For lightweight convolutional neural networks, 
such as Shufflenet and MobileNet, it is effective to improve the detection speed, but 
the detection accuracy is not as good as CSPDarknet. In addition, for some of the lat-
est DCNN models, such as GhostNet and Res2Net50, the improvement of target detec-
tion accuracy is not necessarily effective. This further validates the conclusion analysis in 
Table 1.

It can be seen from Tables 1 and 2 that to achieve high precision performance on opti-
cal remote sensing data sets, it is not only necessary to increase the depth or width of 
the network, or simply change the structure of the convolutional neural network. There-
fore, convolutional neural networks wants to achieve higher detection accuracy on opti-
cal remote sensing data sets, not only related to the network depth, width and network 
structure, but also related to the network feature fusion mode.

4.3 � The test results of the proposed method in LEVIR data set are analyzed

In this section, each scheme we designed will be compared in detail. In the next sec-
tion, we will compare with other commonly used detection methods based on deep con-
volutional neural network, such as Faster R-CNN, CenterNet, etc. First, we conducted 
an experimental comparison of the three proposed multi-scale adaptive spatial feature 
fusions on the LEVIR data set, and the experimental results are shown in Table 3. The 
basic network of all the following comparative experiments was CSPDarknet53 and the 
detector was YoloV4. Network parameters were set to loop iteration 100 times, the size 
of each batch was 16, the optimizer selected SGD, and the network learning rate was 

Table 3  Effect of different multi-scale feature fusion methods on the detection result of LEVIR data 
set

The best results are shown in bold

Method mAP@.5 mAP@[.5:.95] Time Memory

FPN 0.863 0.628 11.7 ms 419 M
FPN+PAN 0.882 0.639 12.3 ms 420.8 M

FPN+PAN+ASFF 0.89 0.638 14.2 ms 497.5 M

FPN+ASFF 0.907 0.662 19 ms 501 M
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set to 0.01. The division ratio of training set, validation set and test set is 6:2:2. For the 
test parameters, we set the confidence threshold to 0.001 and the IoU threshold to 0.5. 
It can be seen from Table  3 that using PAN on the basis of FPN improves mAP@0.5 
by 1.9% and mAP@[.5:.95] by 1.1%, and using ASFF on the structure of FPN+PAN can 
further improve mAP@0.5 by 0.8%. This shows that our proposed adaptive spatial fea-
ture fusion module is effective for feature fusion. At the same time, it can be seen from 
the table that using ASFF on the basis of FPN has the highest detection accuracy, which 
improves mAP@0.5 by 1.7% and mAP@[.5:.95] by 2.4% compared with the stucture of 
FPN+PAN+ASFF. This shows that the structure of FPN+ASFF can better perform fea-
ture fusion.

Next, we performed ablation experiments on the fine-tuned backbone network CSP-
darknet53. The experimental results are shown in Table 4. The multi-scale feature fusion 
method uses the best-performing feature pyramid network and adaptive spatial feature 
fusion structure. For comparison, we use CSPdarknet53 as the baseline, and get 0.882% 
of mAP@0.5 and the pre-trained model size is 420.8 M. As can be seen from the second 
row of Table 4, we replaced the standard convolution of the fifth stage of CSPdarknet53 
with dilated convolution, and the detection accuracy was improved by 1.2%. This is 
because dilated convolution can increase the resolution without increasing the amount 
of parameters, thereby improving the accuracy of small target detection. Then, as can be 
seen from the third row of Table 4, we replace the standard convolution of CSPdarknet53 
with group convolution to greatly reduce the storage space. This is because compared to 
standard convolution, grouped convolution can reduce the amount of calculation expo-
nentially without affecting accuracy. Finally, after the various schemes are integrated, the 
accuracy is improved by 2.6% and the storage space is reduced by 111.7 M compared 
with the original method.

4.4 � Performance comparison with other DCNN‑based detection methods

In this section, we compare our proposed method with several popular DCNN-based 
object detection methods. Our proposed method for optical remote sensing image 
object detection uses YoloV4 as the detector, fine-tunes the CSPDarknet53 backbone 
network and adopts the FASN structure for multi-scale spatial feature fusion. The 
detectors selected for comparison include two-stage detectors and single-stage detec-
tors. The two-stage detectors is Faster R-CNN [10], and the single-stage detectors 
include RetinaNet [14], YoloV3 [15], YoloV4 [16], and the anchorless CenterNet [17]. 

Table 4  Effect of dilated convolution and grouped convolution on the detection results of LEVIR 
data set

CSP here stands for multi-branch convolutional network, DC stands for dilated convolution, GC stands for grouped 
convolution, and FASN stands for feature pyramid network and adaptive spatial feature fusion structure. The best results are 
shown in bold

CSP DC GC FASN mAP@.5 mAP@[.5:.95] Time Memory

√
× × × 0.882 0.639 12.3 ms 420.8 M

√ √
× × 0.894 0.641 14.5 ms 371.1 M

√ √ √
× 0.892 0.642 13.7 ms 212.8 M

√ √ √ √
0.908 0.667 15.4 ms 291.1 M
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The comparison detector we selected will compare with the deep convolutional neural 
network commonly used by the detector. The corresponding detection structure of each 
detection method is shown in Table 5. From the detection results, the detection results 
of Faster R-CNN, CenterNet and YoloV3 are relatively poor, while our method has good 
results in both accuracy and efficiency, and has lightweight characteristics.

5 � Conclusions
In the target detection of optical remote sensing image based on DCNN, two parts 
should be considered generally, one is the selection of deep convolutional neural net-
work, the other is the selection of detector. In this paper, the single-stage detector YoloV4 
is chosen as the detector considering the real-time performance of the project. Although 
the single-stage detector is not good at small scale target detection in optical remote 
sensing images, it can meet the requirements of accuracy as well as efficiency with the 
fine-tuning of network structure. With different researches on detectors, DCNN model 
is also developing continuously. It is significant to study the influence of DCNN model 
on optical remote sensing image target detection. Through the study, it is found that the 
deep convolutional neural network with multi-scale feature fusion is suitable for the sin-
gle-stage detector YoloV4. We fine-tuned the network structure based on YoloV4 and 
tested two optical remote sensing data sets. The experimental results show that the pro-
posed method can achieve good detection results in both simple and complex cases.
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