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1  Introduction
Object tracking is a challenging topic in computer vision. The main task of object track-
ing is to predict the position of the object in the subsequent frames by giving the object 
position information in the first frame. Despite the great advances made in recent years, 
designing a fast and reliable tracking method is still difficult because of many challenges 
in the tracking process, such as in-plane rotations, occlusions and fast motions [1, 2]. 
At present, the robust object tracking can be applied to many promising fields such as 
human–robotic interaction [3], real-time video surveillance [4] and automatic driving.
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Learning an effective appearance model of a target online is crucial for accurate and 
reliable visual object tracking [5]. Therefore, many powerful models representing the 
appearance of the target are proposed to build successful visual object trackers, such as 
subspace learning, correlation filter (CF) [6–16], convolutional neural network (CNN) 
[16–19] and support vector machine (SVM) [20].

Correlation filter is a valuable tracking solution that allows a robust appearance model 
for targeted online learning. Moreover, many CF-based trackers obtained impressive 
performance in both tracking accuracy and speed [2–16]. Bolme et al. [2] first employed 
CF and proposed minimum output sum of squared errors (MOSSE) filter to track 
objects and achieved impressive speed and favorable accuracy. Majority of the primitive 
trackers either relied on brightness information or used a simple color representation 
to describe the image. However, complex color features combined with brightness are 
more capable of providing excellent performance in target recognition and detection. 
Therefore, color name (CN) [21] investigated the contribution of color in the detection 
tracking framework and showed that color attributes can provide superior visual track-
ing performance. In addition, Ma et al. introduced the square gradient histogram feature 
(HOG) [22] in learned kernelized CFs (KCF) [8] and MA et  al. in CF2 [23] proposed 
pre-trained deep convolutional networks to extract target features. The deep convolu-
tional layer outputs semantic information of the encoded target which is robust to dras-
tic appearance changes. However, the spatial resolution of the deep features is coarse 
and does not accurately localize the target. In contrast, HOG and CN features provide 
more accurate localization, but are not as robust to scenes when the appearance of the 
target changes.

Even though there is a widespread use of feature fusion methods [24, 25], it is still 
promising to improve tracker performance. The weights of most feature fusion meth-
ods are either fixed or random. The distinct importance of different features in various 
complex scenes is ignored. Since most existing CFs used a fixed learning rate, the tracker 
model is collapsed resulting in tracking failure when the target is obscured. In order to 
overcome the weaknesses of fixed weights and avoid the problem of pollution of track-
ing models, the fusion strategy of feature response maps proposed in this paper. It can 
update the weights dynamically and give full play to the advantages of different parts in 
different scenarios.

There are many challenges in the tracking task, such as target deformation, illumi-
nation variation, background clutter, scale variation, occlusion, etc. With the continu-
ous improvement of the object tracking algorithm, the performance of the tracker in 
the scene of illumination variation and scale variation has been significantly improved, 
but there is still much room for enhancement in the robustness of the algorithm in the 
occlusion scene. Therefore, improving the anti-occlusion ability is still the focus and dif-
ficulty in the field of object tracking.

Earlier, researchers have proposed various algorithms to solve the occlusion in track-
ing process. Wang [26] combines a tracking algorithm with a detection algorithm to 
solve the problem of re-detecting the target when it is obscured or lost, but the track-
ing accuracy is low. Yang [27] proposed the object tracking algorithm based on spatio-
temporal context information, which utilizes the background information of the target 
location, and uses it to track when the target is occluded to avoid losing the target, but 
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its tracking robustness is not strong for the case of complete occlusion. Li [28] proposes 
an approach based on a blocking-based algorithm for object tracking, which can effec-
tively deal with the occlusion problem. Although the above researches have improved 
the performance of the tracking algorithm to cope with occlusion, there is still plenty 
of room for improvement. Therefore, we propose the anti-occlusion mechanism. It can 
effectively overcome these difficulties and achieve favorable results on the benchmark 
dataset.

In this paper, we first propose a multi-feature response map dynamic fusion strategy. 
Specifically, we first obtain the tracking results of the target using the individual features 
separately. And then, we determine the fusion weights for the next frame by compar-
ing the consistency of results between the individual features with the fused feature 
separately. In this way, adaptive weight factors can be applied for different features in 
different scenes to build a robust target model. Second, we propose an anti-occlusion 
mechanism based on response map peak judgment. Specifically, the Gaussian label 
response corresponds to each tracked target in the frequency domain. When the target 
is not occluded, the Gaussian response label has only one peak. When the target is in 
the occlusion case, the Gaussian tag response will have multiple peaks, the location of 
multiple peaks is the possible target location, and we determine the final location of the 
target by re-detection of the peak location. In addition, a high-confidence model track-
ing strategy is proposed based on the above two methods.

The main contributions of this paper are summarized as follows:

1.	 A multi-feature response map dynamic fusion strategy based on the consistency of 
individual features and fused features is proposed. It is able to improve the robust-
ness and accuracy of the proposed algorithm by building the better object appear-
ance model.

2.	 An anti-occlusion mechanism is proposed. It is well known the response map has 
multiple local peaks when the target is occluded. Furthermore, if the nonmaximal 
local peak is satisfied with our proposed conditions, we generate a new response map 
which is obtained by moving the center of the region of interest to the nonmaximal 
local peak position of the response map and re-extracting features. We then select 
the response map with the largest response value as the final response map.

3.	 A high-confidence model update strategy is designed to deal with model contamina-
tion. The target area contains a lot of information of the background when the target 
is occluded. Therefore, we design a model update strategy based on the anti-occlu-
sion mechanism. When the anti-masking mechanism is triggered, the model update 
is stopped; otherwise, with a standard DCF model update strategy is utilized.

2 � Related work
2.1 � Correlation filter

Since Bolme et  al. [2] first employed correlation filters and proposed MOSSE filter to 
track objects and achieved impressive speed and favorable accuracy. The correlation fil-
ters have been investigated extensively in visual tracking due to its competitive perfor-
mance and high computational efficiency. Remarkable improvements have been made 
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to this popular tracker to overcome some limitations. For example, Henriques et al. [8] 
proposed KCF by kernel tricks. A multichannel version of MOSSE was also investigated 
in [29]. More discriminative features are widely used, such as HOG [22], CN [21], and 
deep CNN features [26]. In addition, particle filter-based method [6], long-term tracking 
[30], and continuous convolution [9] have also been to be developed to improve tracking 
accuracy and robustness.

Correlation filter trackers have also made significant developments in other aspects. 
Zhang et al. [48] incorporated context information into filter learning. Danelljan et al. 
proposed SRDCF [14] tracker mitigates boundary effects by penalizing correlation fil-
ter factors. SKCF [31] tracker can use an adjustable Gaussian window to extract the 
target information, which obtains the same results as the SRDCF [14] tracker. At the 
same time, the boundary effect is well resolved. LCT [30] tracker presents an impressive 
solution that not only copes with the scale variation excellently, but also mitigates the 
boundary effect. Dai et al. [15] proposed an adaptive spatial constraint mechanism that 
can efficiently obtain a spatial weight to adapt target appearance changes, and therefore 
can obtain more robust target tracking results.

2.2 � Feature fusion

Feature fusion is an extremely popular strategy in computer vision and is widely 
employed in various tasks. By fusing different features, more information of the target 
can be considered, resulting in improved accuracy and robustness. Along this line, a 
large number of tracking algorithms combine multiple different features [32]. For exam-
ple, Danelljan et al. [9, 11] proposed a joint sparse model for multi-feature fusion, and 
the proposed tracking algorithm can improve tracking performance by efficiently utiliz-
ing multiple features and dynamically removing unreliable features. Ma et al. [30] used 
weighted entropy scheme to fuse multiple visual features to track the target. Li et al. in 
SAMF [24] proposed to combine HOG and CN features with the CF framework to fur-
ther improve the tracking performance. Zhang et al. [21] proposed a multi-task correla-
tion filter to track the target object by considering the interdependence among multiple 
features.

In the tracking scenes, different features model the appearance of the target object 
from different perspectives [33], which has different importance for the representation 
of the object. Deep convolutional features can better represent semantic information 
about the target and are robust to drastic appearance changes [34]. Deep features are 
also widely employed in object detection [35]. However, the spatial resolution of deep 
features is coarse and does not accurately localize the target. In contrast, HOG and CN 
features provide more accurate localization but are less uncertain about appearance 
changes [36]. The proposed tracker adaptively adjusts the weights of gradient, color and 
deep features to better build the appearance model of object in challenging tracking 
scenes.

2.3 � Anti‑occlusion

In the object tracking process, since the correlation filter will be updated in each frame, 
when the target is occluded, it may drift, which seriously affects the precision and 
robustness of the tracking algorithm.
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TLD [37] introduces a detection module to solve the problem of target loss when occlu-
sion happens, and performs a global search on each frame to locate the possible location 
of the target. Li et al. [28] proposed the RPT tracking algorithm, which uses a Monte Carlo 
framework to estimate the distribution of blocks with high confidence, and locates the 
global position of the target by finding the high-confidence position of the tracking tar-
get. Dong et al. [38] cached previous templates by constructing a classification pool. When 
heavy occlusion happens, the occlusion problem in it is solved by selecting the best classi-
fier for re-detection. However, the tracker will lose the target in a long occlusion scene.

3 � Methods
The procedure of the proposed method is shown in Fig. 1. The green arrows indicate the 
process of anti-occlusion mechanism and the light blue arrows indicate the steps of multi-
feature response map adaptive fusion strategy. h is the learning rate of the filter in Eq. (12).

In this section, we describe the preliminary DCF tracking first, then introduce the multi-
feature response map adaptive fusion strategy and the anti-occlusion mechanism. Finally, 
we describe the high-confidence model update strategy.

3.1 � Overview of DCF

The correlation filter detects the location of the target by training a correlation filter w. A 
typical DCF model is centered on the target, and it is trained by the image area with the size 
of M × N  is the training sample obtained by the cyclic shift of the image patch. The objec-
tive function is as follows:

where λ is the regularization parameter to reduce the overfitting of the model, X is the 
matrix obtained by cyclic shift of our samples. Y  is the Gaussian label that represents the 
ideal output of filtering learning. The closed solution of the objective function can be 
obtained by Fourier transform. The formula is shown below:

(1)min
w

�Xw − Y �22 + ��w�22,
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Fig. 1  Procedure of the proposed method
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where ⊙ is the element-wise product, the hat symbol denotes the discrete Fourier trans-
form (DFT) of a vector and X̂∗ is the complex-conjugate of X̂ . t and d(d ∈ {1, . . . ,D} ) 
denote the index and channel of the current frame, respectively. The response map can 
be calculated as follows:

The final position of the target can be obtained by finding the maximum value of the 
response map. Since the training samples by circular shift contain a lot of rich informa-
tion of the target, it can train a filter with excellent performance, but in the process of 
generating negative samples from the base samples, the negative samples may have dis-
continuous edges, which will bring interference information to the filter. By adding the 
cosine window, the discontinuous regions outside the bottle region can be filtered out, 
and the tracking regions in the image block can be better highlighted, thus obtain a bet-
ter training sample.

3.2 � Multi‑feature response map adaptive fusion strategy

Since HOG, CN, and deep (features extracted with CNN) features have achieved impres-
sive performance in the field of target tracking, the selection and fusion of target features 
has become an important development direction of target tracking. Therefore, we pro-
pose a strategy for dynamic fusion of these three features in the framework of correla-
tion filtering, and the main idea of the proposed tracker is to dynamically fuse multiple 
features to build the appearance model of the object. Figure 2 illustrates the process of 
feature fusion and update of fusion weights, the yellow box, black box, and blue box are 
the prediction results of CN feature, HOG feature and CNN feature response maps, 
respectively, and the red box is the prediction result obtained by fusing the three fea-
ture response maps. The weight of single feature response map is update by Eq. (8). The 
response maps are linearly added using the feature weights to obtain the final response 
maps. The individual feature fusion weight is updated by the consistency of the results 
obtained from the individual feature response map with the final response map.

Specifically, the method in this section uses HOG, CN and deep features to train three 
independent correlation filters w . In order to build the appearance model of the object 
in different view. whog, wcn and wcnn represent the filters obtained by training the HOG, 
CN and deep features extracted from the target image block, respectively. To fuse multi-
ple features, we let βhog , βcn and βcnn be the weights of whog, wcn and wcnn , respectively. 
The filters whog, wcn and wcnn are operated on the HOG, CN and deep feature map, 
respectively. The response maps Fhog , Fcn and Fcnn are obtained by Eq.  (4). Therefore, 
there are three different kinds of object representations. In order to solve the above three 
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different and unattached regression subproblems, we linearly added these response 
maps according to the following equation:

The final result can be obtained by finding the maximum response value position in 
Ffinal . We adjust the weights of the three features based on the tracking results of the 
previous frame to take into account the different importance of the three features at dif-
ferent moments or scenes for building the target appearance model. To efficiently adjust 
the weights and better capture changes in the target appearance, the weight correspond-
ing to a feature is determined by the agreement between the tracking result of that fea-
ture alone and the final tracking result Ffinal.

If the tracking result obtained with a feature alone is very closely matched with the 
final tracking result Ffinal , then the feature can simulate the appearance of the target well 
and the feature will be given a higher weight. On the other hand, if the tracking result of 
a feature is very different from the final tracking result Ffinal , then the feature is not suit-
able for modeling the target appearance in the current tracking scenario, and therefore 
the feature is assigned by a small weight. We obtain the prediction results Phog, Pcn, Pcnn 
and Pfinal by Fhog, Fcn, Fcnn and Ffinal response maps, respectively. The overlap between 
the individual feature result and the final result indicates the importance of the individ-
ual features in the current frame. The agreement between the multiple features and the 
final result can be calculated as follows:

where PT
j  denotes the results of single feature, PT

final is the final tracking result.
In order to improve the robustness and tracking accuracy of the system, we need to 

take into account the n most recent consecutive reliable frames and calculate the tem-
poral consistency of individual features, respectively. The specific definition of reli-
able frames will be given when the model update strategy is introduced. Therefore, 

(5)Ffinal = βhogFhog + βcnFcn + βcnnFcnn.
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Fig. 2  Feature response map fusion and weight update



Page 8 of 19Zhang et al. EURASIP Journal on Image and Video Processing          (2022) 2022:4 

considering the previous n reliable frames, we calculate the temporal consistency of sin-
gle feature as follows ( Nr denotes the set of the previous n reliable frames):

where α is learning rate for agreement between the multiple features and the final result. 
α is a constant that controls the effect of the current frame feature consistency on the 
overall feature response map fusion weight. Finally, the weight of the single feature can 
be calculated as follows:

The larger the β is, the more suitable the current feature is to build the target appear-
ance model in the current scene. In the first frame, we consider that all three features 
have the same importance, so we set βhog , βcn , βcnn all to 0.33.

3.3 � Anti‑occlusion mechanism

The target is often occluded by other objects during tracking, resulting in tracking fail-
ure, which indicates that how to deal with the occlusion problem becomes a crucial con-
cern for target tracking. After extensive experiments, it is found that there are multiple 
local peaks in the response map of the tracker when it is partially occluded. However, 
most current tracking algorithms select only the global peak as the final position of the 
target and ignore other local peaks. In fact, the features extracted from the target loca-
tion are also polluted when the target is occluded, which causes the response value of 
the real location of the target to be low. In addition, the tracker model is updated in 
each frame and objects that obscure the target are added to the tracking model as track-
ing targets. However, since the tracking target model is not completely corrupted, the 
confidence level obtained for the region containing the real target is also higher than 
that of the general background map, so it means that the local peaks may also be the real 
position of the target. Therefore, when there are multiple peaks in the response map, we 
need to evaluate whether the local peaks are the real position of the target.

According to Fig. 3, it can be seen that when the tracking target is partially occluded 
and the localization is wrong, the response map shows multiple local peaks instead of 
one independent peak (local peaks do not include global peak). The isolated local peaks 
may be due to the effects of noise, while the coordinates of the local peaks of the arches 
may be the real location of the target. According to this characteristic, we design an 
accurate localization method based on the smoothness of the peaks, the smoothing 
function of the peaks is defined as follows:

where R(x,y) represents the local peak of the response map, R(x+n,y+m) represents the 
nearby points of the local peak. After extensive experiments, it has been shown that the 
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performance of the algorithm is most reliable when the m, n in the range of [− 3,3], 
and SC represents the smoothing coefficient. It means that the local peaks are likely to 
be the real tracking target position when SC of the local peaks is greater than SC of the 
global peaks. We generate a new response map which is obtained by moving the center 
of the region of interest to the nonmaximal local peak position of the response map and 
re-extracting features. We then select the response map with the largest response value 
as the final response map. Due to the balance between performance and speed, we can 
select at most the three points of the local peak with the highest smoothness.

3.4 � Model update strategy

The features extracted from the target may pollute the tracking model when the target is 
occluded, so the proposed tracking algorithm has to decide whether to update the track-
ing model or not. If the tracking results are reliable for the current frame, we update the 
model to better represent the appearance changes. If the result of the current frame is 
unreliable, we do not update the model to avoid contaminating it. The online update of 
the numerator Ât

d and denominator B̂t
d of the filter w is as follows:

where h is the learning rate of the filter w and t is the index of the current frame.
If the local peak smoothing coefficient SClocal of the response map is greater than 

the global peak smoothing coefficient SCglobal , then the target position of the current 
frame contains background information and the tracking result of the current frame 

(10)Ât
d = (1− h)Ât−1
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Fig. 3  Results of DCF algorithm for girl2 video sequence and its response map
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is unreliable. We reduce the learning rate of the model to avoid the subsequent frame 
tracking failure caused by model contamination. Otherwise, the tracking result of the 
current frame is reliable. The model of the proposed algorithm is updated with the 
normal learning rate. The learning rate h is set by Eq. (12):

where τ is the learning rate of the standard DCF, SClocal and SCglobal are the smoothing 
coefficients of the local peak and global peak in the response map.

4 � Experimental setup
The experiments of tracking performance evaluation are conducted using MATLAB 
R2017a on a PC with an Intel i5-7400 processor (3.0 GHz), 8G RAM and a GeForce 
GTX1050Ti GPU. The MatConvNet toolbox is used for extracting the deep features 
from VGG-19. We extract the outputs of the conv4-4 convolutional layers of VGG-19 
as the deep feature. We follow the parameters in standard DCF trackers to construct 
the proposed tracker. The regularization weight � in Eq.  (1) for HOG, CN and deep 
features are set to 0.01. The size of the collection Nr in Eq. (7) is set to 2. The learning 
rate τ for the standard DCF in Eq. (12) is 0.025. At the first frame, βhog , βcn and βcnn 
are all set to 0.33.

The intersection-over-union (IoU) and center location error (CLE) between track-
ing results and ground truth bounding boxes are used to evaluate a tracker quanti-
tatively [39]. By setting thresholds for IoU and CLE, we get average success rate and 
precision over all frames, respectively. With a range of thresholds, we finally obtain 
the success plots of IoU and precision plots for CLE. The area under curve (AUC) 
of success plots and the precision of CLE at 20 pixels (mean overlap precision) are 
regarded as the final metrics for each tracker.

5 � Results and discussion
In this section, at first, we illustrate the effectiveness of my tracker on the OTB2013 
[39], OTB2015 [40], TC128 [42], UAV123 [43] datasets, we compare it with the cur-
rent dominant advanced object tracker on the benchmark, so as to illustrate the supe-
riority and performance of our tracker. Then, we do the ablation experiments on the 
OTB2015 [40] dataset and validate the effectiveness of the methods illustrated in 
Sects. 3.2 and 3.3.

5.1 � Evaluation results on the OTB2013 and OTB2015

OTB is widely used for performance evaluation in the visual object tracking. OTB2015 
[40] contains 98 sequences with 100 targets. OTB2013 [39] is a subset of OTB2015 
[40] and contains 50 sequences with 51 targets. OTB has 11 challenging attributes. The 
detailed information can be obtained in the reference. We make a comprehensive com-
parison between our tracker and other 10 trackers.

(12)h =

{

0, if
(

SClocal > SCglobal

)

&&(NLP ≥ 1)

τ , otherwise
,
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5.1.1 � Overall performance evaluation

The evaluation results presented in OTB2013 [39] and OTB2015 [40] by comparing the 
precision and success plots of the trackers are shown in Figs.  4 and 5. The compara-
tive results show that our tracker performs favorably against other state-of-the-art track-
ers. We compared 10 advanced tracking algorithms including C-COT [9], SiamCAR 
[44], DiMP [41], ATOM [45], SiamFC [46], BACF [12], ECO-HC [11], Staple [47], ACT 
[17], KCF [8] in our experiments. KCF [8], C-COT [9], ECO-HC [11] and BACF [12] 
are correlation filtering based algorithms. SiamFC [46], ATOM [45], DiMP [41] and 
SiamCAR [44] are methods based on deep learning for object tracking. Our proposed 
tracker achieves the impressive precision of 93.12% and 90.71% on the OTB2013 [39] 
and OTB2015 [40] separately, among all the compared trackers. As for the success rate, 
our tracker achieves the impressive success rate of 70.69% and 68.26% on the relative 
two benchmarks, respectively.

5.1.2 � Attributes‑based performance evaluation

For a more detailed analysis of the challenges in the image sequences, the OTB2015 
benchmark [40] classifies video sequences into 11 different challenging attributes, 
including illumination variation (IV), out-of-plane rotation (OPR), scale variation 

Fig. 4  Performance evaluation results of different algorithms on OTB2013 dataset

Fig. 5  Performance evaluation results of different algorithms on OTB2015 dataset
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(SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-
plane rotation (IPR), out of view (OV), background clutter (BC) and low resolution 
(LR).

Figure  6 is a radar plot of the experimental results of the proposed algorithm with 
other algorithms such as C-COT [9], DiMP [41], ATOM [45], BACF [12], Staple 
[47],KCF [8], which clearly illustrates the excellent performance of the proposed algo-
rithm in the face of various challenges.

From Fig. 7, it can be seen that our algorithm achieves the excellent performance in 
accuracy with other comparable algorithms under DEF, SV, IV, BC, OPR, IPR and LR 
challenge attributes, with experimental results are 88.54%, 88.76%, 91.21%, 90.98%, 
88.96% and 99.65%. Meanwhile, favorable experimental results are obtained under OCC, 
MB, FM and OV challenge attributes. As can be seen in Fig. 8, our proposed algorithm 
also achieves an impressive success rate under a variety of challenging attributes. This 
shows that the proposed tracker can effectively handle occlusion, illumination and dis-
tortion. The proposed anti-obscuration mechanism handles tracking failures caused by 
occlusion. As for deformation and illumination, a multi-feature response map adaptive 

0.55

0.65

0.75

0.85

0.95

IV

OPR

SV

OCC

DEF

MBFM

IPR

OV

BC

LR

Precision plot on OTB2015

C-COT

DiMP

BACF

Staple

ATOM

KCF

OURS

0.4
0.46
0.52
0.58
0.64
0.7

IV

OPR

SV

OCC

DEF

MBFM

IPR

OV

BC

LR

Success plot on OTB2015

C-COT

DiMP

BACF

Staple

ATOM

KCF

OURS

Fig. 6  Radar plot of precision and success based on tracking results on the OTB2015 dataset in 11 
challenging attributes

Fig. 7  Precision plots based on tracking results on the OTB2015 dataset in 11 challenging attributes
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fusion strategy is adopted construct a better model of capturing object appearance 
changes.

5.2 � Evaluation results on the TC128

The full name of TC128 [42] dataset is Temple Color dataset, which contains 128 anno-
tated video sequences. Similar to the OTB dataset, the TC128 [42] also has 11 differ-
ent interference factors (readers can refer to [39] for more information). The video 
sequences of TC128 [42] contain more chromatic information which provides more 
discriminative information. We compared 10 advanced tracking algorithms includ-
ing C-COT [9], STRCF [13], SRDCF [14], BACF [12], ECO-HC [10], MCPF [6] in our 
experiments. Figure 9 shows the evaluation results for the mean overlap precision (OP) 
from the precision plot and AUC from the success plot of the compared trackers in the 
TC128.Our proposed tracker achieves the best OP rate of 77.30%, among all the com-
pared trackers. As for the success rate, our tracker also achieves the best AUC of 57.30%.

5.3 � Evaluation results on the UAV123

The UAV123 [43] dataset is a collection of 123 high-definition color short sequence video 
images that were captured during low-altitude aerial photography. As the unmanned 
aerial vehicle (UAV) moving, the view of the camera mounted on the UAV keeps chang-
ing, so the aspect ratio of the target in subsequent video frames in the UAV123 [43] 
database changes significantly with respect to the target in the initial frame. This dataset 
contains a large amount of scene, target and motion information.

Figure 10 shows the OP from the precision plot and AUC from the success plot. Our 
tracker performs very well in the UAV123 [43] dataset which achieves the OP of 73.2% 
and AUC of 50.2%. Our proposed tracker outperformed ECO-HC [11] by 2.2% and 
0.6% in OP and AUC, respectively. These two trackers both performs well in the TC128 
[42] benchmark similarly. However, compared with other trackers, for example, our 

Fig. 8  Success plots based on tracking results on the OTB2015 dataset in 11 challenging attributes
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proposed tracker shows much better performance than SRDCF [14], STRCF [13] and 
BACF [16]. This indicates our tracking method also performs impressively in the face of 
video sequences with continuous changes in shooting angle.

5.4 � Ablation studies and effectiveness discussion

To verify the effectiveness of the tracker, our tracker is compared itself with different 
modules enabled. Baseline is the standard DCF algorithm based on multiple features. 
By only using the multi-feature response map adaptive fusion strategy, we obtain the 
Baseline–DF without anti-occlusion mechanism (Sect.  3.3) and model update strat-
egy (Sect.  3.4). The Baseline–AO represents the tracker adopts the anti-occlusion 
mechanism (Sect.  3.3) and model update strategy (Sect.  3.4). Baseline–DF–AO is our 
final tracker which combines the anti-occlusion mechanism (Sect.  3.3), multi-feature 
response map adaptive fusion strategy (Sect. 3.2) and model update strategy (Sect. 3.4). 
The experimental results on the OTB2013 benchmark [39] are shown in Fig. 11. Ben-
efiting from the added anti-occlusion mechanism, Baseline–AO outperforms Baseline 
in terms of accuracy and success rate by 1.58% and 1.13%, respectively. Besides, Base-
line–DF also outperforms Baseline in terms of accuracy and success rate by 2.3% and 
1.86%, respectively, which indicates the effectiveness of the multi-feature adaptive fusion 

OURS C-COT ECO-HC SRDCF BACF STRCF MCPF
Precision 0.773 0.774 0.74 0.696 0.66 0.742 0.776
AUC 0.573 0.566 0.555 0.509 0.495 0.548 0.544

0
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0.2
0.3
0.4
0.5
0.6
0.7
0.8
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Fig. 9  Comparison of our tracker and other 6 excellent trackers in terms of precision and success rate on 
TC128

OURS CSR-DCF ECO-HC SRDCF BACF STRCF ARCF-H SAPLE-
CA AutoTrack

Precision 0.732 0.675 0.71 0.676 0.66 0.681 0.667 0.672 0.689
AUC 0.502 0.449 0.496 0.464 0.459 0.481 0.455 0.454 0.472
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Fig. 10  Comparison of our tracker and other 8 excellent trackers in terms of precision and success rate on 
UAV123
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strategy. Finally, the final proposed algorithm (Baseline–DF–AO) also has an impressive 
performance at OTB2013 [39]. As can be seen in Fig. 12, the experimental results on the 
OTB2015 [40] are similar to those on the OTB2013 [39], which is sufficient to illustrate 
the effectiveness of the proposed method.

5.5 � Qualitative evaluation results

During the tracking of the target, the environmental changes around the target and the 
deformation of the target may lead to the tracking failure of the tracker. We selected 10 
image sequences with challenge attributes on the OTB2015 dataset [40] and compared 
them with the five trackers SRDCF [14], BACF [12], C-COT [9], KCF [8]. As shown in 
Fig. 11, it is clear that our tracker has higher robustness compared to other advanced 
trackers, and our tracker performs better than several other trackers in a variety of chal-
lenging scenes. For example, in the shaking sequence, between frames 17 and 104, the 
environment of the target suffers a drastic lighting change, and some trackers fail to 
track one after another in this sequence, while our tracker still tracks the target accu-
rately, and is not affected by the lighting change. In the Dragonbaby sequence, the com-
parative tracker fails to track in this sequence due to the fast motion of the target, while 

Fig. 11  Performance evaluation results of compared itself with different modules enabled on OTB2013 
dataset

Fig. 12  Performance evaluation results of compared itself with different modules enabled on OTB2015 
dataset
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our proposed tracker still tracks the target accurately. All these results indicate that the 
proposed tracking algorithm has not only impressive accuracy, but also extreme robust-
ness (Fig. 13).

6 � Conclusion
In this paper, we have improved the DCF tracker in two major terms, one is the adap-
tive fusion strategy of target features and the other is the anti-occlusion mechanism. 
The multi-feature response map adaptive fusion strategy is proposed to better build the 
appearance model of the target. Different features have different importance for the rep-
resentation of the outside model of the target when the environment around the tracking 
target changes. We propose a dynamic feature fusion method that dynamically adjusts 
the weights of feature fusion by the overlap rate between the result of each feature and 
the final result. The anti-occlusion mechanism is proposed to cope with the scene where 
the target is occluded. When the target is occluded, the response map will show multiple 
local peaks, which are all possible target locations. The final position of the target is fur-
ther determined by detecting the position of the local peaks of the response map. This 
method can effectively deal with the case of an obscured target and enhance the robust-
ness of the system. To validate the advancement of our proposed method, we did experi-
ments on several datasets, including OTB2013 [39], OTB2015 [40], UAV123 [43], TC128 
[42]. In addition, we also did ablation experiments on OTB2015 [40] as a way to validate 
the effectiveness of individual methods. From the experimental results, it is easy to know 
that our algorithm has a large advantage over other advanced algorithms and performs 
very well on several datasets. Our proposed algorithm achieves good performance in 
terms of accuracy and success rate, while runs only 5.89 fps. In future work, we intend to 
introduce context and background from the target into the tracker to better characterize 
the target’s motion, and on the other hand, we intend to extract deep features of different 

Fig. 13  Qualitative evaluation of the proposed algorithm, C-COT [9], SRDCF [14], BACF [12], KCF [8] methods 
on ten challenging video sequences
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layers and deep features of different network structures to characterize the tracking tar-
get. Besides, the improvement of the algorithm efficiency is also an important task for 
future work.
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