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1  Introduction
In recent years, the popularity of 5G cellular networks has allowed a variety of mobile 
devices to communicate with each other and provide different services [1–3]. Among 
them, the development of 5G-powered UAV is particularly rapid, and real-time video 
backhaul is an important service that this equipment can provide. Compared to other 
communication modes, the transmission of video streams does not require minimal 
end-to-end delay [4–6]. Instead, some key performance indicators used to evaluate the 
quality of user experience are indispensable. Throughout these indicators, buffer star-
vation probability and buffer cumulative duration deserve more attention. These two 
pieces of data quantify the event that the buffer is empty. Insufficient buffer will cause 
the image to no longer change, that is, the video freezes. Therefore, this defect will have 
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a non-negligible impact on service quality and user behavior in the process of real-time 
video streaming.

In order to reduce the negative impact of buffer starvation, many experts and scholars 
are conducting research to evaluate this event and try to find a reasonable start-up delay 
configuration strategy for the transmission of video streams [7–11]. Nevertheless, there 
is an unavoidable difficulty in this problem, that is, wireless network video transmission 
is a random process that controls the arrival of data packets. Thus, it is not comprehen-
sive enough to focus only on video streams of limited size and length. In addition, since 
the network states of different transmission processes are not geographically homoge-
nous, the fixed start-up delay configuration will no longer be suitable for changing net-
work environments [11–14]. This shows that the prefetch threshold calculation model 
designed under a given traffic intensity and file size distribution has very large limita-
tions, because this method ignores the uncontrollable impact of network status fluctua-
tions [15–19].

The first purpose of this article is to design an evaluation model based on deep learn-
ing to calculate the buffer starvation probability under different transmission scenar-
ios. The deep neural network can extract the characteristics of deep-level correlation, 
which enables the model to accurately return the buffer starvation distribution through 
channel information. Thus, the starvation behavior can be effectively evaluated [20, 21]. 
After obtaining the specific distribution through the evaluation algorithm, we adopt the 
reinforcement learning method to dynamically configure the start-up delay during the 
transmission process and the data packet prefetching strategy to achieve the purpose 
of intelligently scheduling the video stream transmission process [22]. The input of the 
model is the encoded state, and the output is an actual value of each possible action that 
is taken. The agent starts to execute the strategy from a given initial state. The initial state 
can choose the maximum operation or take random exploration operations [23, 24]. The 
model is trained based on the channel parameter datasets collected by a 5G-powered 
drone, and is executed on different threads independent of each other according to spe-
cific strategies, which can not only effectively solve the problem of insufficient buffer in 
this scenario, but also improve the quality of video service under different wireless net-
work environments to a certain extent [25].

The main contributions of this paper are:

•	 We propose a deep neural network that can accurately return the probability distri-
bution of buffer starvation in the video stream transmission process. The calculation 
results are used in the subsequent video stream scheduling process.

•	 We propose a reinforcement learning scheduling model that can dynamically allo-
cate start-up delays and calculate packet prefetching strategies. This method can 
greatly improve the quality of video transmission service.

•	 Based on the scheduling model, we propose an internal reward mechanism to deal 
with random environmental noise, which can also reduce the difficulty of training 
when the model rewards are sparse.

•	 The robustness of the model has been verified in the actual 5G-powered UAV real-
time video transmission process. Experiments have proved that the method per-
forms very well in complex network environments.
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The structure of this article is as follows. The second section introduces the related 
research. The third section describes the regression model based on deep learning in 
detail. Section  4 presents the internal-driven reinforcement learning model for video 
streaming scheduling. Section 5 shows the experimental process and results. Section 6 
summarizes this work.

2 � Related work
2.1 � Buffer starvation evaluation

There are existing studies [26] related to the present work. About the evaluation of buffer 
starvation events, Y. D. Xu and E. Altman et al. uses a method based on Ballot theorem 
to obtain the buffer starvation probability during fixed-size video transmission [9]. This 
article proposes a clear solution and summarizes it as the M/D/1 queue. In addition, 
the authors also derived a recursive method to calculate the distribution of starvation, 
and extended it to the ON/OFF burst arrival process. For a given start-up threshold, the 
method provides a fluid model to calculate the starvation probability, and analyzes how 
the prefetching threshold affects the starvation behavior.

2.2 � Video streaming scheduling

As for the transmission scheduling problem, the research on the trade-off between 
buffer starvation and start-up delay is mainly divided into bandwidth change model and 
mathematical method [27]. Xu et al. modeled the buffer starvation probability and the 
starvation event generation function in [10], then dynamically analyzed the starvation 
behavior at the file level. When the distribution of traffic intensity and file size can be 
determined, this method can calculate the relationship between the starvation probabil-
ity and the packet prefetching threshold. Despite the merits of this work, it only consid-
ers a single video stream of fixed size and length, so it has great limitation and is not 
practical. In [5], the authors take into account the needs of network operators and solve 
three problems: measuring traffic patterns, modeling the probability of buffer starvation 
and using calculation results for resource allocation. This article takes a method which 
uses short-term and long-term QoE to balance the overall QoE. At the same time, the 
authors also introduced a Bayesian inference algorithm, which can make the model have 
the ability to infer whether the input stream is short-view or long-view.

3 � Methods
3.1 � Buffer starvation evaluation model

3.1.1 � Overview

We propose a packet-level deep learning model to calculate the starvation probability 
and the distribution of starvation behaviors during video streaming.

Our model is based on a recurrent neural network (RNN) framework, such as the 
gate recurrent unit (GRU) structure, to extract the correlation between different time 
series [28, 29]. In the feature selection stage, we use spatial attention mechanism com-
bined with channel attention mechanism. This approach makes the model tend to focus 
on the information that plays a key role in achieving the goal. That is, we only consider 
about the state of the network transmission channel that assists in the judgment. In this 
way, certain parts of the final input are more helpful to decision-making than irrelevant 
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information that is discarded [30, 31]. In addition, the model uses a multi-task learning 
structure to share a large part of the weights for prediction, which can effectively reduce 
the scale of parameters and make the prediction more effective. The network architec-
ture is shown in Fig. 1, where we adopt our backbone with three bilateral gate recurrent 
unit (BiGRU) blocks [32]. More specific descriptions about this network can be found in 
the next section.

3.2 � System description

The input of the network is the state vector of different timings in the process of data 
packet transmission. The elements contained in the vector are summarized in Table 1, 
including Poisson arrival rate, Poisson service rate, traffic intensity, etc.

The model consists of three important parts: attention mechanism module, bilateral 
gate recurrent unit module (BiGRU) and multi-task learning module, which is shown 
in Fig. 1. The combination of these three structures can effectively extract the correla-
tion between different elements in the state vector at the same time, and obtain the cor-
relation between the state features of different time series. Meantime, it can also assign 
greater weight to certain elements that have a greater impact on the final buffer hungry 
probability, and make full use of different levels of correlation to obtain better results. 
Finally, the model can accurately predict the starvation probability and the distribution 
of starvation behaviors.

Because certain parts of the channel state information play a more critical role in the 
final calculation result, the model uses a spatial attention mechanism. And this atten-
tion mechanism is only for the state information at a single moment, so it is also called 

Fig. 1  Structure of the buffer starvation behavior evaluation model

Table 1.  The elements contained in the state vector

Notation Description Notation Description

λ Packet arrival rate T1 Start-up delay

μ Packet service rate d Duration of a service slot

ρ Traffic intensity N File size in packets

p Packet arrival probability Np Total number of packets

q Packet departure probability Nm Minimum file size

 × 1 Start-up threshold in packets θ Mean of exponential file size
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channel sequence attention. We use the structure of Squeeze-and-Excitation (SE) 
block to accomplish this task. The first stage of SE block is the compression operation. 
It achieves feature compression along the dimension of the state sequence, and a real 
number can be obtained, which has a global receptive field to some extent. The output 
dimension matches the feature channel and sequence number. This number character-
izes the global distribution of responses on characteristic channels and sequences, and 
enables layers close to the input to obtain global receptive fields. The second stage is the 
excitation operation, which uses parameters to assign weights for each feature sequence 
and channel.

The recurrent neural network part uses a three-layer bilateral GRU structure. GRU is a 
variant of LSTM, but it has only two gates (update and reset). The GRU block can make 
the training phase easier to converge due to its simple structure, and it can avoid the 
problem of gradient disappearance to a certain extent. The bilateral GRU block combines 
the forward GRU and the backward GRU to solve the problem that the one-way struc-
ture cannot encode backward-to-forward sequence information, so that it can capture 
more comprehensive semantic dependence between different channel state sequences.

This module is mainly divided into three parts, the first is the channel information 
extraction layer, and the second is the channel information representation layer, and the 
last one is called the buffer starvation behavior prediction layer.

•	 The channel information extraction layer. After adding the attention mechanism, the 
information matrix is used as the input for the next step.

•	 The channel information presentation layer. Considering that both the front and 
back directions during the video stream transmission process may contain timing 
information, the bilateral GRU encoding structure is used as the representation of 
channel information.

•	 The buffer starvation behavior prediction layer is completed by a fully connected 
layer of perceptron structure as a prediction of starvation behavior at a certain 
moment.

After the recurrent network, the model adopts a multi-task structure. That is, for a 
channel state input, the network simultaneously outputs the buffer starvation probabil-
ity value and the starvation event distribution. When multiple tasks are forecasting at 
the same time, a large part of the weight is shared, which reduces the scale of the overall 
model parameters and makes the forecast more efficient. In addition, the two tasks are 
highly correlated, which has been verified by experiments to stably improve the accuracy 
of buffer starvation behavior prediction.

3.3 � Buffer starvation behavior loss

The loss function is represented by the sum of two parts

where α, β denote discount factors.
The first part of the formula is the starvation probability loss. The specific calculation 

is given by

(1)Loss = α ·meansquareerror + β · cross− entropy,



Page 6 of 18Su et al. J Image Video Proc.         (2021) 2021:29 

In this part, YS represents the output value of the model which fits the buffer starvation 
probability, and PS is given by the following formula based on the famous Ballot theorem 
[18]:

The detailed proof can be found in [10].
During the file transfer process, starvation events may occur multiple times. Given a 

fixed file size N, the maximum number of starvation events is J = ⌊N/x1⌋ , where ⌊·⌋ is 
the lower limit of real numbers. PS

(
j
)
i
 represents the probability of meeting j starva-

tions. Therefore, the second part is the distribution loss of the starvation events, using 
cross-entropy loss:

The vector YD = (PS(0),PS(1), . . . ,PS(J )) . We let Pε(kl) , PSl(kl),PUj(kj) be the probabili-
ties of events ’the buffer becoming empty for the first time in the entire path’, ’the empty 
buffer after the service of packet given that the previous empty buffer happens at the 
departure of packet kl and ’the last empty buffer observed after the departure of packet 
kj . The calculation process of PS

(
j
)
 is given by

where T denotes the transpose. The detailed analysis can be found in Ref. [10].

3.4 � Video streaming scheduling model

3.4.1 � Reinforcement learning model environment settings

The purpose of reinforcement learning (RL) algorithm is to train the model so that the 
agent can complete specific tasks. In order to achieve this goal, it is necessary to abstract 
the video streaming scheduling problem as an RL problem, which requires the definition 
of the environment of the RL model. The environment describes the state of a certain 
task within a specified period of time, a series of actions that can be taken, and the final 
impact of these actions [33].

The state in the environment is represented by a vector, which mainly describes the 
network state during video streaming in the wireless network. The elements in the vec-
tor include: packet arrival rate, packet service rate, duration of service time slot, start 
delay, traffic intensity, file size in the packet, packet arrival probability, total number of 
packets, packet departure probability, The minimum file size, the start threshold in pack-
ages, and the average value of the index file size.

The action of the agent is to reconfigure the packet prefetching strategy in each state 
and reconfigure the start-up delay when buffer starvation occurs. Every action will 

(2)
{\text{mean}}\, {\text{square}}\, {\text{error}} = \, \left\
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\right\
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result in a change of the state. The state is not only determined by these actions, but also 
related to the current network state. Therefore, the environment has a certain degree of 
randomness, and the model is a model-free RL approach.

The reward function in the environment assigns an actual value to each possible pair 
of state and action. In the video stream scheduling problem, we define the reward func-
tion to be composed of two parts, which, respectively, represent the current state buffer 
starvation probability and the expected interval between two adjacent buffer starvations. 
This reward function Re is also a quantitative form of QoE:

Ps is the buffer starvation probability. The calculation of it is based on Ballot theorem.
Ballot theorem: In a ballot, candidate A gets NA votes, candidate B gets NB votes, 

where NA > NB. Assuming that all orders are the same when counting votes, the prob-
ability that A will always lead in the number of votes during the whole counting process 
is (NA—NB)/(NA + NB).

After the start of a transmission service, for a given initial queue length x1 and total 
size N  , the starvation probability is given by:

The detailed proof process can refer to [9].
E(T ) is the expected time interval between two starvations. We let g(·) be a strictly 

mono-increasing and convex function of the expected start-up delay:

3.4.2 � Internal reward mechanism

In the actual video stream transmission scheduling process, due to the network may 
produce unpredictable fluctuations at any time, its status cannot be determined [34, 
35]. Therefore, a problem arises, that is, random environment and sparse reward (or 
even almost no reward) may cause the agent to be unable to effectively explore the 
environment. In response to this problem, we propose an internal reward mechanism. 
Independent of external reward signals, the mechanism is modeled as the difference 
between the predicted state and the actual state in the feature space [36]. Meanwhile, 
a self-supervised inverse dynamic model is used to extract state features from the fea-
ture space. When the environment changes, the model can have strong adaptability. The 
structure of this mechanism is shown in Fig. 2.

Different from the traditional reinforcement learning reward form, the reward signal 
is divided into two parts. It means the function is rewritten into R = Ri + Re , where Ri 
represents the internal reward due to the mechanism we proposed, and Re represents 
the reward inherent in the environment, which is calculated by Eq. (6). Then we use the 
strategy learning method to find the corresponding strategy by optimizing accumulated 
rewards.

(6)Re = −(Ps + γ
(
g(E(T ))

)
.

(7)PS =
∑N−1

k=x1

x1

2k − x1

(
2k − x1

k − x1

)
pk−x1(1− p)k .

(8)E(T ) =
x1

�(1− ρ)
.



Page 8 of 18Su et al. J Image Video Proc.         (2021) 2021:29 

The essence of this mechanism is to learn the effective information that actually affects 
the agent. We use a deep neural network to extract the feature from the state s . Through 
which we can obtain ϕ(s) . Then we use the feature extraction ϕ(s′) of the next state to pre-
dict the action between these two states:

By minimizing the error between the predicted aprediction and the actually adopted action 
a , back propagation is used to allow the neural network to extract the features that are truly 
influenced by the action. Considering that the action here is discrete, we can take SoftMax 
function on the predicted action, and then set the corresponding loss function through 
maximum likelihood estimation, that is

After obtaining the feature ϕ(s) from the current state, we also use a neural network to 
predict the feature of the next state s′:

Since the predicted feature is a vector, the L2 norm is used as the loss:

At the same time, we use the above loss LF
(
ϕ

(
s
′
)
, (\hat{s{\prime}})

)
 to calculate the 

internal reward:

(9)aprediction = DNN
(
s, s

′

; θI

)
.

(10)minθI L1
(
aprediction, a

)
.

(11)
\varphi

(
\hat

{
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}){
\text

{
= f

}}
\varphi({\text{s}}), {\text{a}}; \theta

(
{{\text{F}}}

)
.
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(
ϕ
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′
)
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)
=

1

2

∣∣∣ϕ
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)
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ŝ
′
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2

2
.

(13)Ri = ηLF
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ϕ
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s
′
)
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)
.

Fig. 2  Structure of the internal reward mechanism (ERM)
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The learning goal of this model is given by:

where α > 1, 0 ≤ β ≤ 1 is only a measure of the scale of the corresponding item.
In the training phase, after the initial part of the prediction is accurate, in order to 

obtain more internal rewards, this mechanism will actively explore more unknown 
states.

3.4.3 � Optimal strategy learning

Our model uses a Deep Q network (DQN) method to learn the best strategy. DQN 
and Q-learning are similar to algorithms based on value iteration [37]. In the ordinary 
Q-learning method, if the state and action space are high-dimensional continuous, it is 
hard to use the Q table. Therefore, we convert the Q table update into a function fitting 
problem and use a deep neural network instead of the Q table fitting function to gener-
ate the Q value. DQN uses a neural network to approximate the value function. After 
obtaining the value function, DQN takes the ϵ − greedy strategy to select action. The 
structure of the approach is shown in Fig. 3.

The algorithm has two main structures:

•	 The experience replay (experience pool) method is used to solve the problem of cor-
relation and non-static distribution.

•	 A MainNet is introduced to obtain the real-time Q value, and the target Q value is 
obtained through another TargetNet.

The memory mechanism in the experience pool is used to learn from previous experi-
ences. For the reason that Q-learning is an off-policy learning method, it can learn from 
the current experience as well as the past experience. Thus, randomly adding previous 
experience during the learning process will make the deep neural network more effi-
cient. The experience pool stores the transfer samples (st , st , rt , st+1) obtained by the 
interaction between the agent and the environment at each time step into the playback 

(14)MinθPθI θF

[
−αEπ(st ;θP)

[∑
t
Re
t

]
+ (1− β)L1 + βLF

]
,

Fig. 3  DQN algorithm diagram
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memory network, and randomly takes out some batches to disrupting the correlation 
while training.

Q-targets is actually an approach to disrupt correlation. It will build two networks 
with the identical structure. However, they have completely different parameters. The 
network for predicting Q estimation, MainNet, uses the latest parameters, while the Tar-
getNet parameters of the network that predicts Q reality use a long time ago. Q(s, a; θi) 
represents the output of the current network MainNet. They were used to measure the 
value function of the current state action pair. Q(s, a; θ−i ) represents the result of Tar-
getNet, which can be used to calculate the target Q and update the MainNet parameters 
based on the loss function. They can also copy the MainNet parameters to TargetNet 
after a certain number of iterations.

In the value function network training phase, the environment will give an observation 
at first; then, the agent will get all the Q values about this observation calculating by the 
value function network, and use ϵ − greedy method to select the action and make a deci-
sion. After the environment receives this action, it will feedback a reward and the next 
observation. This is a complete step. At this time, we update the parameters of the value 
function network according to the reward, then enter the next step. This cycle continues 
until we have trained a satisfying value function network.

The update of the value function in this algorithm is given by:

The loss function of DQN is as follows, θ indicates that the network parameter is the 
mean square error loss:

There are two structures which have nearly the same design but different parameters 
in DQN. The network MainNet predicts Q estimation value by latest parameters, while 
the TargetNet predicts Q reality value by parameters of a long time ago. It means when 
the agent in the model takes action a in the RL environment, Q can be calculated accord-
ing to the above formula and the MainNet parameters can be updated. They will be cop-
ied to TargetNet after a certain number of iterations. Thereupon, a learning process is 
completed.

4 � Results and discussion
4.1 � Experiment settings

In the experiment, in order to verify that the model is effective and robust in complex 5G 
NAS network, a 5G-powered drone (DJI M210 UAV) equipped with a communication 
module (Hubble I) provided by China Mobile was used as the video streaming transmis-
sion equipment (as shown in Fig. 4). The trace-driven simulation proves the accuracy of 
our method.

On the issue of experimental settings, we once considered pure simulation experi-
ments, which generate the required data and variables through random distribution. 
However, this has another very big flaw. The pure simulation method cannot represent 

(15)Q(s, a) ← Q(s, a)+ α

[
R+ γmaxa′Q

(
s
′

, a
′
)
− Q(s, a)

]
.

(16)L(θ) = E[
(
R+ γmaxa′Q

(
s
′

, a
′

; θ

)
− Q(s, a; θ))2

]
.
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the fluctuating network environment, nor can it simulate the noise problem in the 
random environment. At the same time, when there are enough random events, this 
approach will converge to a specific mathematical model. However, this runs counter to 
our purpose. Because even if the pure simulation method can verify the correctness of 
the model, it is not enough to evaluate the accuracy of the model. In combination with 
the above considerations, our experiment finally adopts a tracking-driven simulation 
method, and randomly selects requests in the 5G-powered UAV video streaming ser-
vice in a real wireless network environment. Such an experimental method can not only 
effectively test the performance and robustness of the model in actual scenarios, but also 
artificially control the parameter range to a certain extent for targeted measurement.

The video resolution used in the experiment includes 1080p, 2 k and 4 k, and the video 
frame rate includes 24fps and 30fps. Since 5G base stations cover 100–300 m, the drone’s 
flying range is within 100 m of the base station. The terrain for the experiment includes 
above the lake, above the woods, and above the buildings.

For different network environments, the accuracy of the buffer starvation probabil-
ity evaluation model can reach about 96.3%. Using the channel data generated during 
the transmission of videos with a total duration of about 100 h for training, the model 
converges within 22  min. Under the same experimental conditions, the cumulative 
QoE finally achieved by the reinforcement learning scheduling model is more than 15% 
higher than that of the existing methods, and the training process converges after about 
130,000 episodes.

4.2 � Starvation of transmission process

4.2.1 � Starvation behavior prediction

For a comprehensive evaluation, video streams of different lengths have been tested up 
to 8000 times. We use four different parameter settings: ρ = 0.95 or 1.25, × 1 = 40 or 60 
packets. If not specifically mentioned, the departure rate μ is normalized to 1. The video 
size in the experiment is between 300 and 9000 packets. Figure 5 shows the probability 
of 0–4 starvations with the parameters ρ = 0.95 and × 1 = 40. As the file size increases, 
the none starvation probability decreases. We can learn that the probability of multi-
ple starvations first increases and then decreases. Figure 5 also shows that our analysis 
results are in great agreement with the simulation results. When the starting threshold 
is 50 packets, Fig. 6 shows similar results. The none starvation probability decreases as 
the video is longer. However, the probability of multiple starvations increases at first and 
then decreases. Figure  7 verifies the asymptotic none starvation probability with the 

Fig. 4  DJI M210 UAV equipped with a 5G communication module provided by China Mobile Chengdu 
Institute of Research and Development
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traffic intensity ρ = 1.25, × 1 = 50 and 100. When the video is short and the data pack-
ets are small, the total transmission time is relatively short. Thus the network status has 
not changed much during the whole process, and the probability of buffer starvation is 
relatively small. That is, there is no starvation most of the time. This can explain why 
the model line is farther away from the asymptote when the data packets is smaller. Fig-
ure 8 plots the asymptotic probability of a single starvation event with the same settings. 
The probability of one starvation occurring increases as the video file is larger. More 
prefetching packets will cause smaller starvation probability.

Fig. 5  Probability of 0–4 starvations with × 1 = 40

Fig. 6  Probability of 0–4 starvations with × 1 = 60

Fig. 7  Asymptotic probability of no starvation
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4.3 � Reward metrics and analysis

4.3.1 � Cumulative QoE

In order to make the base station under a heavy load but not exceed the capacity area, 
we finally set the traffic intensity ρ = 0.98 , while the video request intensity � = 0.009 . 
This can also make the attainment rate of the video request within a stable range. In 
specific experiments, we will evaluate the overall objective quality of experience and the 
performance of the model in different start-up states of the video transmission process.

First, we divide the video stream into two categories to measure the model, respec-
tively. The Poisson arrival rate of the k-th video request is �k . The total arrival rate is 
� = �1 + �2 . The service time of a video stream in a state is equal to the video request 
size in bits divided by its throughput. Since viewing time follows a super-exponential 
distribution, the service time of each category is also exponentially distributed. Here, 
we use the state pair (m, n) to indicate that there are currently m first-class flows and n 
second-class flows passing through the bottleneck. As more video streams share bottle-
necks, the probability of buffer starvation during the transmission process will increase.

Figure 9 illustrates the change in the objective QoE of the first-class stream and the 
second-class stream scheduling by our model when the video transmission duration 
increases from 0 to 3000 s. Figure 10 shows the results of scheduling in the same experi-
mental environment through the method in [5]. It can be found that although our sched-
uling model is unable to make the QoE index higher than the result obtained by the 

Fig. 8  Asymptotic probability of 1 starvation

Fig. 9  QoE vs transmission duration (ours)
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method in [5] at each moment of the transmission process, it can effectively improve the 
long-term cumulative reward during the process.

When the video streaming transmission process started in different states, we also 
evaluated the fluctuation of the objective QoE, as shown in Figs. 11 and 12. We used 
the state pairs of (0, 6), (2, 6), (4, 8) to conduct experiments. In addition, Figs.  13 
and 14 compare the long-term cumulative QoE of first-class and second-class flows 
with different maximum numbers of coexisting flows, respectively. As the maximum 
number of streams increases, more video streams may coexist in the base station, 
thus causing buffer starvation to occur more often. Comparing the cases where the 

Fig. 10  QoE vs transmission duration ([5])

Fig. 11  QoE (class-1) under different initial states

Fig. 12  QoE (class-2) under different initial states
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maximum flow number is 5, 10 and 15, it can be found that the long-term cumulative 
QoE has a strong correlation with the maximum flow amount. Therefore, our model 
can be used to design a video stream admission control strategy that can tolerate a 
certain degree of starvation probability.

4.4 � Mean DT/VT ratio

The DT/DV ratio is an important indicator that reflects the best buffer ratio during 
the entire video streaming period. In Figs.  15 and 16, we plot the average DT/DV 
ratio when the maximum number of streams increases from 5 to 15. It can be seen 
from the curve that the increase of the number of flows leads to a higher average DT/
DV ratio. However, our scheduling strategy can effectively reduce the video buffering 
time compared to the method in [5] and transmission without scheduling.

Our reinforcement learning model provides an effective scheduling strategy for the 
QoE trade-off of heterogeneous video streams. When different types of video streams 
have different perceptions of buffer starvation, our algorithm can empower the base 
station, so that it has the ability to intelligently schedule different flows, which can 
optimize the long-term cumulative QoE. For example, if a flow is more sensitive to 
buffer starvation behavior at a certain moment, the scheduling strategy can provide it 
with higher priority.

Fig. 13  QoE (c1) under different flow amount

Fig. 14  QoE (c2) under different flow amount
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5 � Conclusion
In this article, we first propose a regression model which combines the recurrent 
neural network and attention mechanism. This model can accurately calculate the 
buffer starvation probability and the specific distribution of starvation events in 
any state during the video streaming transmission process, that is, the buffer starva-
tion behavior is precisely evaluated and analyzed at the packet level. After obtaining 
the starvation probability distribution, we propose a reinforcement learning model 
which introduces an intrinsic reward mechanism to intelligently schedule the trans-
mission of video streams. This method can not only maximize the long-term cumu-
lative QoE by dynamically adjusting the start-up delay and data packet prefetching 
strategy regardless of random noise, but also is highly adaptable to different network 
environments.

The effectiveness of the approach proposed in this paper has been verified in the 
5G-powered UAV video streaming transmission scenario. It is found that our model can 
stably improve the quality of video transmission service in a complex wireless network 
environment, and thus provide broader ideas for 5G low-latency research topics.

Fig. 15  Mean DT/DV ratio vs max flow amount

Fig. 16  Mean DT/DV ratio vs max flow amount
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Abbreviations
5G: 5Th generation mobile networks; UAV: Unmanned aerial vehicle; qoE: Quality of experience; DL: Deep learning; RL: 
Reinforcement learning; RNN: Recurrent neural network; LSTM: Long short-term memory; GRU​: Gated recurrent unit; 
DQN: Deep Q-learning; DT/VT: Delay time/video time.
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