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Abstract

A stable enhanced superresolution generative adversarial network (SESRGAN) algorithm
was proposed in this study to address the low-resolution and blurred texture details in
ancient murals. This algorithm makes improvements on the basis of GANs, which use
dense residual blocks to extract image features. After two upsampling steps, the feature
information of the image is input into the high-resolution (HR) image space to realize
an improvement in resolution, and the reconstructed HR image is finally generated. The
discriminator network uses VGG as its basic framework to judge the authenticity of the
input image. This study further optimized the details of the network model. In addition,
three loss optimization models, i.e., the perceptual loss, content loss, and adversarial
loss models, were integrated into the proposed algorithm. The Wasserstein GAN-
gradient penalty (WGAN-GP) theory was used to optimize the adversarial loss of the
model when calculating the perceptual loss and when using the preactivation feature
information for calculation purposes. In addition, public data sets were used to pretrain
the generative network model to achieve a high-quality initialization. The simulation
experiment results showed that the proposed algorithm outperforms other related
superresolution algorithms in terms of both objective and subjective evaluation
indicators. A subjective perception evaluation was also conducted, and the
reconstructed images produced by our algorithm were more in line with the general
public’s visual perception than those produced by the other compared algorithms.

Keywords: Superresolution reconstruction of murals, Generative adversarial networks,
Dense residual block, WGAN-GP

1 Introduction
Ancient Chinese murals once boasted a glorious history. After thousands of years of

accumulation and deposition over different dynasties, splendid art classics such as

Dunhuang murals have emerged. Over a long period, most of the artistic research on

ancient Chinese murals has been based on the discovery, exploration and

summarization of traditional painting techniques. Reproducing the grandeur of these

previous works has become the main direction of research. Because ancient murals

were previously subject to sabotage and weathering, the original smooth and clear im-

ages have been obscured by a layer of mist, and the texture details of the murals have
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become blurred. Some murals have been damaged, and the existing ancient murals

have sustained various types of damage to varying degrees. Therefore, it is necessary to

carry out preventative protection and restoration for the extant murals. Briefly, the tar-

get of image restoration is to repair an image damaged by blur or noise, which does

not change the original size of the image or increase its number of pixels, whereas

image preventative protection refers to superresolution reconstruction, the focus of

which is to restore the missing details, i.e., the high-frequency information, of the

image. The greater the amount of information after reconstruction, the higher the reso-

lution of the image will be. In recent years, among many computer-aided mural restor-

ation technologies, deep learning has gradually become the main restoration

technology. One important method is to carry out superresolution reconstruction of

the existing ancient murals to restore the original clear images. This method can also

improve the texture details of murals and promise a bright future for research in this

area.

As an important image processing method in the field of computer vision, superreso-

lution reconstruction uses a group of low-resolution (LR) images as input and generates

a single high-quality, high-resolution (HR) image through a certain procedure, which

can improve the recognizability and accuracy of the image. Therefore, superresolution

reconstruction plays a critically important role in image-related applications [1]. Com-

mon superresolution algorithms are based on either traditional machine learning or

deep learning. Traditional superresolution algorithms include interpolation-based

methods [2, 3], reconstruction-based methods [4], and learning-based methods [5].

One interpolation-based method is a relatively simple algorithm proposed earlier. By

calculating the registration relationship between the LR image and the desired HR

image, the actual HR image is obtained by a suitable interpolation algorithm, such as

bilinear interpolation [6] and bicubic interpolation (BI) [7]. However, these methods

have relatively poor adaptability, can address only monotonous scenes, and are riddled

with issues such as blurred edges and the loss of high-frequency details.

Reconstruction-based methods, on the basis of the derived registration relationship, ob-

tain the dependence relationship between HR and LR images as a prior and then use

the prior to reconstruct the HR image. Farsiu et al. [8] proposed superresolution recon-

struction of additional high-frequency information restored from multiframe images in

the Fourier transform domain, thereby paving the way for the reconstruction of multi-

frame images. Irani et al. [9] adopted the iterative back-projection method, and Stark

et al. [10] used the method of projection onto convex sets (POCS). These methods can

effectively guarantee the quality of the image edges and details. However, the recon-

structed images have jagged edges, and the algorithms exhibit slow convergence and

entail a large number of calculations. Learning-based methods adopt a large number of

high-definition, superresolution images and their corresponding LR images to continu-

ously train the designed model so that the model can not only recover clear images but

also allow images to have many high-frequency details. Chang et al. [11] proposed a

superresolution reconstruction algorithm based on domain embedding, particularly lo-

cally linear embedding (LLE), by using the idea of manifold learning. This method finds

the k neighbors that are closest to the input image blocks (the LR image patches) and

then solves the constrained least-squares problem to obtain the weights, which are then

used for reconstruction. This method has a strong dependence on samples and is prone
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to overfitting or underfitting. In 2008, Yang et al. [12] used sparse signals to propose a

reconstruction algorithm based on sparse representation. This method requires learn-

ing and understanding much information about the relationship between HR images

and LR images, establishing a complete dictionary, finding LR images and their corre-

sponding matrix arrays and coefficients, and finally completing the reconstruction by

weighting the corresponding HR matrix array. The incompleteness of the dictionary

used in this method leads to low detail levels in the reconstructed image edges.

In 2014, Dong et al. [13] proposed the “superresolution using a convolutional neural

network” (SRCNN) algorithm. The SRCNN algorithm was the pioneering work of deep

learning in the field of superresolution. BI was used for the first time to enlarge LR im-

ages to the size of the original image. Only a three-layer convolutional network and

nonlinear mapping were used to produce HR images. They interpreted the three-layer

convolutional structure in three steps, i.e., image block extraction and feature represen-

tation, nonlinear mapping of the feature representation, and final reconstruction, and

their method had a better effect than those of the common traditional methods. In

2016, Dong et al. [14] improved the SRCNN algorithm. They used the deconvolutional

layer to enlarge the image size in the last layer and change the feature dimension and

used a smaller convolution kernel and more mapping layers than did Dong et al. Fur-

thermore, a shrinking layer and an expansion layer were added, and the data set was

enhanced. Tong et al. [15] proposed a superresolution dense skip connections network

(SRDenseNet) algorithm. The dense block was used to input the features of each layer

into all subsequent layers so that the features of all layers were connected in series.

This structure alleviated the disappearance of gradients, enhanced the transfer of fea-

tures, and reduced the number of parameters. In 2016, Anagun et al. [6], using a variety

of loss functions combined with the Adam optimizer, selected the loss function with

the best convergence, which increased the residual module of the network and im-

proved the model performance, and used the Charbonnier or L1 loss functions to re-

duce the time cost of building the model. In 2017, Zhang et al. [16] proposed a

superresolution reconstruction method based on transfer learning and deep learning.

This method can not only obtain high-quality, HR images but also reduce the time cost

of building the model. Kim et al. [17] proposed a deep-recursive convolutional network

(DRCN) by including a recurrent neural network in the overall network, which greatly

reduces the number of network parameters. In 2017, Lim et al. [18] proposed the en-

hanced deep superresolution (EDSR) algorithm, which eliminates batch standardization,

reduces the space used during training, removes the unnecessary modules in the con-

ventional residual error network, and achieves good superresolution reconstruction re-

sults. In 2017, Ledig et al. [19] proposed the superresolution generative adversarial

network (SRGAN) algorithm and applied GANs to solve the superresolution problem.

They used the perceived loss and adversarial loss to alleviate the loss of high-frequency

details and image smoothness so that images could give good visual perception. How-

ever, the peak signal-to-noise ratio (PSNR) obtained based on this strategy was not suf-

ficiently high. In 2017, Arjovsky et al. [20] used the Wasserstein GAN (WGAN) to

solve the issue of instability during GAN training; they used the Wasserstein distance

instead of JS divergence to measure the distance between the real image and the recon-

structed image. Due to the weight pruning strategy, however, there are still issues with

this method, such as gradient explosion and disappearance. In 2018, Wang et al. [21]
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improved the SRGAN algorithm. They used dense residual blocks for feature extraction

from the generative network with the relativistic discriminator as the discriminator.

The generator could generate more real texture details and retain more image feature

information than could the original SRGAN algorithm. Although all the abovemen-

tioned deep-learning-based algorithms have improved the reconstruction results com-

pared with traditional machine learning algorithms, their effects are unsatisfactory

when directly applied in mural data set processing. Additionally, during the network

model training process, they become unstable. Due to the unclear texture details, lost

smoothness and undesired reconstruction effects of the reconstructed images, their re-

search value is low.

Based on the abovementioned literature review, we propose a stable enhanced SRGA

N (SESRGAN) algorithm in this study, which is based on the GAN. The main contribu-

tions of this study are as follows:

1. A new SESRGAN model is proposed. This model expands the deep learning

algorithm and may have reference value for the stable training of other GANs. It

utilizes the GAN as its framework and integrates the residual dense blocks with

residual scaling (RS-RDB) structure in the generative network to fully capture the

feature information of the image and therefore to increase the generalization

capacity and robustness of the model. For perceived loss calculation, the SESR

GAN model uses the feature information before activation and utilizes the

WGAN-gradient penalty (WGAN-GP) to counter loss, thereby enhancing its train-

ing stability.

2. The proposed SESRGAN model is applied in the superresolution reconstruction of

ancient mural images and improves the overall esthetic and artistic values of the

images. In this study, the proposed model completes the superresolution

reconstruction of ancient mural images based on the idea of deep learning. It

provides a new technical route for ancient mural image restoration, breaks through

the existing technical bottleneck of ancient mural digital protection, and provides a

technical demonstration of the image content restoration of similar information in

the field of cultural heritage digitization.

2 Methods
2.1 Relevant theories

2.1.1 Generative adversarial networks

The GAN [22] has become a popular deep learning model in recent years and is one of

the most promising methods for unsupervised learning with complex distributions. The

generative network first captures the distribution of random noise in an image and then

uses the distribution of this noise to generate a sample similar to the real data as the in-

put of the discriminator network, which functions to estimate the probability that a

sample comes from the training data to judge whether the input data come from the

real data or the generated sample. During the process of training the network, the gen-

erative network continuously improves its ability to generate real samples to deceive

the discriminator network, while the discriminator network continuously improves its

ability to discern the authenticity of samples. Through continuous learning in the
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mutual game between the generative network and the discriminator network, the

model is optimized. As time elapses, the generative network and the adversarial net-

work are continuously trained and optimized, and finally, the two networks reach a dy-

namic equilibrium: the generated sample approximates the distribution of the real

sample, and the discrimination probability of the discriminator network for a given

sample is 0.5. The loss formula of the GAN is as follows:

min
G

max
D

V D;Gð Þ ¼ Ex�Px logD xð Þ½ � þ Ez�Pz zð Þ log 1−D G zð Þð Þð Þ½ � ð1Þ

where X represents the real image data, z represents the noise image data, PX repre-

sents the probability distribution of the real image data, pz(z) represents the probability

distribution of the generated data, G(z) represents the reconstructed image data, and

D(x) represents the probability that the discriminator network correctly judges whether

the image data are real or fake. D(G(z)) represents the probability that the discriminator

network correctly judges whether the reconstructed image data are real or fake, log

D(x) represents the judgment of the discriminator network on the real image data, and

log (1 - D(G(z))) represents the judgment on the reconstructed image data. The struc-

ture of the generative adversarial network is shown in Fig. 1.

2.1.2 Residual network and dense network

The residual network (ResNet) [23] addresses the fact that the gradient is prone to dif-

fuse or disappear and that the training accuracy and test accuracy decrease due to the

saturated and degraded network performance when the convolutional neural network

becomes deeper. The ResNet structure is shown in Fig. 2. Suppose that the output of

the previous layer is the input x of the current layer; then, the residual of the current

layer is F(x), and the output of the next layer is H(x). x is passed on to the next layer

H(x) by means of a skip connection. Then, H(x) = F(x) + x. The residual of this layer

can be expressed as F(x) = H(x)-x. This residual structure can improve the performance

of a relatively deep network [24]. Therefore, this paper introduces the residual block as

a part of the generative network.

Fig. 1 Basic structure of the GAN
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The dense network (DenseNet) [25] commits itself to improving the performance of

a network from the perspective of feature reuse. It is a convolutional neural network

with dense and close connections between any two layers. Each layer of the DenseNet

receives input from all previous layers and then outputs its feature mapping to all sub-

sequent layers, thereby improving the transmission efficiency of information and gradi-

ents in the network. The merits of this structure are that it can realize the reuse of

features, alleviate the disappearance of gradients, strengthen feature transmission, and

substantially reduce the number of parameters. The DenseNet structure is shown in

Fig. 3.

Fig. 2 Structure of the ResNet

Fig. 3 Structure of the DenseNet
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2.1.3 WGAN-GP

The WGAN-GP theory [20, 26] was proposed to solve problems with the WGAN, such

as the difficulty in training and slow convergence speed in the real experimental

process. Compared with the conventional GAN, its improvement in terms of effects is

not obvious. Therefore, the WGAN-GP approach pinpoints the root cause of WGAN

defects: the WGAN directly adopts weight clipping in the process of addressing the

Lipschitz limitation condition. Every time the parameters of the discriminator are up-

dated once, the condition is then checked to see whether the absolute values of all pa-

rameters in the discriminator exceed a threshold n. If any exceed the threshold, these

parameters are clipped back to the range of [− n, n]. By ensuring that all parameters of

the discriminator are bounded during the training process, the approach ensures that

there is not a large difference in the discrimination of two slightly different samples by

the discriminator; therefore, the Lipschitz condition is realized indirectly. However, this

leads to most weights approximating the two extremes. Therefore, the WGAN-GP ap-

proach uses a gradient penalty and adopts the Adam optimizer to replace the RMSprop

optimizer, which increases Gaussian noise in the generated image. Compared with the

WGAN, this method can train the GAN model more stably, requires almost zero re-

peated adjustments of the superparameters, can enable the model to converge quickly,

and can generate images of good quality.

2.2 Stable enhanced generative adversarial network algorithm

The designed GAN can better reconstruct HR images than can other networks. Its

architecture is shown in Fig. 4. The generative network takes an LR mural image as in-

put, extracts features through the dense ResNet, reconstructs the image through

upsampling and convolution, and outputs the HR mural image. The HR and real HR

are input into the discriminator network together. Finally, the discriminator network is

responsible for determining whether the input images are real or fake.

2.2.1 Residual dense blocks with residual scaling

To extract as many features of the murals as possible and restore the image quality

well, this study makes the following adjustments to the generative network: residual

dense blocks with residual scaling (RS-RDB) is used to replace the original residual

Fig. 4 Stable enhanced generative adversarial network structure

Cao et al. EURASIP Journal on Image and Video Processing         (2021) 2021:28 Page 7 of 23



block (RB) for extracting the deep features of the input image. Since increased numbers

of layers and connections always improve the performance of a network, the combin-

ation of residual networks and dense connections increases the depth of the network

used in this study. The structure of the RS-RDB is shown in Fig. 5. To extract the max-

imum number of image features and prevent overfitting caused by overly deep net-

works, we use 23 RDBs in this study, which are helpful for restoring the image texture

and eliminating noise. One RDB is composed of 3 dense blocks, and residual scaling is

introduced. The residual is multiplied by a numerical value β in (0, 1) to increase the

stability of the trained deep network. Among them, the dense block is composed of 4

convolutional layers and 4 leaky ReLU layers. For the sake of the consistency, stability

and generalizability of the model, the BN layer in the dense block module is removed

to reduce the computational complexity and memory usage. For different PSNR-based

tasks, such as superresolution and deblurring, removal of the BN layer has been dem-

onstrated to improve the effect of the model and reduce its computational complexity;

the BN layer is prone to generating undesired artifacts, thereby limiting the

generalization ability of the model [27]. The dense block is shown in Fig. 6. The input

image features are extracted through the abovementioned residual dense blocks, and

then HR images are generated. Two subpixel convolutional layers (pixel shufflers) are

used to enlarge the size of the image, and finally, a 3*3 convolutional layer is used to

output a 3-channel HR image.

2.2.2 Design of the discriminator network

The discriminator network first uses a 64-channel convolutional layer to extract shal-

low features from the input image and then uses 8 convolutional layers, each of which

contains a BN layer. Leaky ReLU is used as the activation function. Because the

WGAN-GP approach uses the Wasserstein distance instead of JS divergence to meas-

ure the distance between the real sample and the generated sample, the task corre-

sponds to a regression model. Therefore, the following adjustments are made in this

study: The sigmoid activation function designed by the original discriminator network

is not used. Instead, two fully connected layers are used to directly output the real

probability of the image. Details about the discriminator network are shown in Table 1.

Fig. 5 Structure of an RDB with residual scaling
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2.2.3 Loss function

A loss function is used to judge whether the image reconstructed by the model is good

or not. To generate a genuine visual effect for the reconstructed image, the perceptual

loss and content loss are used to optimize the generative network, and the adversarial

loss is used to optimize the adversarial network. The final calculation formula for the

loss function is as follows:

lG ¼ lSRMSE þ λ1l
SR
VGG þ λ2ladv ð2Þ

where λ1 and λ2 represent the coefficients used to balance the different losses.

First, the content loss is introduced. To ensure the accuracy of the reconstructed

image and the original image information, the mean squared error (MSE) loss is taken

as the content loss of the generative network. The spatial error between the generated

image pixels and the real image pixels is calculated to determine the pixel-level loss.

The formula for determining the pixel-level MSE loss is:

lSRMSE ¼ 1
r2WH

XrW
x¼1

XrH
y¼1

IHRx;y−GθG ILR
� �

x;y

� �2
ð3Þ

Then, the perceptual loss is introduced. The MSE loss enables the reconstructed

image to have a very high PSNR. However, high-frequency content is absent in the

Fig. 6 Structure of the dense block

Table 1 Details of the discriminator network

Name Type Kernel Stride Padding Output

Conv0_0 conv 3 × 3 1 × 1 1 64

Conv1_0 conv 4 × 4 2 × 2 1 64

Conv1_1 conv 3 × 3 1 × 1 1 64

Conv2_0 conv 4 × 4 2 × 2 1 128

Conv2_1 conv 3 × 3 1 × 1 1 128

Conv3_0 conv 4 × 4 2 × 2 1 256

Conv3_1 conv 3 × 3 1 × 1 1 256

Conv4_0 conv 4 × 4 2 × 2 1 512

Conv4_1 conv 3 × 3 1 × 1 1 512

FC0 FC – – – 100

FC1 FC – – – 1
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image, which blurs the details of the image. In the generative network, the perceptual

loss in the VGG [23] network is also introduced, and the feature information before ac-

tivation (instead of after activation) is used for calculation purposes. To calculate the

VGG loss, the generated HR image and the real HR image are input into the VGG19

network for feature extraction, and then the RMSE is used to calculate the Euclidean

distance on the extracted feature map. The calculation formula for the VGG is:

lSRVGG=i; j ¼
1

Wi; jHi; j

XWi; j

x¼1

XHi; j

y¼1

φi; j I
HR

� �
−φi; jGθG ILR

� �
x;y

� �2
ð4Þ

where φi, j represents the feature map obtained between the jth convolution (before ac-

tivation) and the ith pooling layer of the VGG19 network. Then, we define the VGG

loss as the feature of the reconstructed image, representing the Euclidean distance be-

tween GθG (ILR) and the reference image IHR. Wi, j and Hi, j are the dimensions of the

corresponding feature map in the VGG network.

Finally, the adversarial loss is introduced. To make the model training process more

stable, we introduce the WGAN-GP [14] method proposed by researchers at Monterey

University to further improve the objective function of the model on the basis of the

WGAN. The gradient penalty is applied to the discriminator network. The formula for

calculating the loss function of the WGAN is:

L Dð Þ ¼ −Ex�pg D xð Þ½ � ð5Þ

The added Lipschitz condition is:

k∇xD xð Þk≤K ð6Þ

When the input sample does not change significantly after the input sample changes,

K is generally set to 1. Through the weighting and merging of the original discriminator

loss, the formula to calculate the adversarial loss of the WGAN-GP discriminator can

be derived as:

ladv ¼ −Ex�p D xð Þ½ � þ Ex�pg D xð Þ½ � þ λEx�px̂ ∇xD xð Þk kp−1
� �h i2

ð7Þ

2.3 Training process of the SESRGAN algorithm

The specific process of the superresolution generative adversarial network (SESRGAN)

algorithm proposed in this study is described as follows:

Input: the LR image data set and the corresponding HR image data set.

Output: the generative network G and the adversarial network D.

Step 1: Feed the LR image to the generative network G and output the generative HR

image HRg obtained after reconstruction.

Step 2: Calculate the MSE between the HR image and HRg image and update the pa-

rameters of the generative network.

Step 3: Repeat step 1–step 2 n1 times to obtain and save the pretrained generative

network model ladv.

Step 4: Input the LR image into ladv and output the generated HR image ladv.

Step 5: Input HR1 and the corresponding HR into the adversarial network D, calcu-

late the adversarial loss ladv, and update the parameters of the adversarial network D.
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Step 6: Input HR1 and the corresponding HR into the pretrained VGG network, and

then use the eigenvalues before activation to calculate the perceptual loss lVGG.

Step 7: Calculate the content loss lMSE between HR1 and the corresponding HR.

Step 8: Calculate the total loss lg, and update and save the generative network G and

the adversarial network D.

Step 9: Repeat step 3–step 8 n2 times, and continuously update and save the genera-

tive network G and the adversarial network D.

The training process of the SESRGAN algorithm is shown in Fig. 7.

2.4 Experimental environment and design

The hardware environment set up for the experiment was as follows: an Intel Corei7-

7700K CPU, 16 GB of memory, and an NVIDIA GeForce GTX1080Ti graphics card.

The software environment set up in the experiment was as follows: CUDA version 9.0,

cuDNN version 7.0, and the Windows 10 operating system. Python 3.6 and the

PyTorch framework were used to write the experimental test. The software compiler

was pycharm2019_3.1_x64.

Fig. 7 Training flow of the SESRGAN algorithm
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The training data set used in the experiment consisted of 800 DIV2K images, 2650

Flickr2K images, and 90 mural images. The test data set was made up of 30 mural im-

ages. The mural data set in this study consisted of murals of different styles and types.

First, the data set was expanded. The data were enhanced by flipping them and rotating

them 180°, as shown in Fig. 8. The downsampling factor for the HR and LR images was

4. To increase the input and output speeds during training, the LR images were clipped

to a size of 120*120, and the HR images were clipped to a size of 480*480; all the im-

ages were then fed into the model. The optimizer used was the Adam optimizer, with

β1 = 0.9 and β2 = 0.99. The initial learning rate was set to 0.0001, and the attenuation

parameter of the learning rate was 0.5. The residual scaling strategy was introduced in

the generative network model, where β = 0.2. This study, incorporating the idea of sec-

ond transfer learning proposed by Yuan [15], used the DIV2K data set to pretrain a

Fig. 8 Enhanced ancient murals
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generator on the generative network, which was used to initialize the parameters to ob-

tain high-quality images and fast convergence speeds. Then, the Flickr2K images were

fed into the network for training, and finally, the mural data set was fed into the net-

work to complete the training process. The generator and discriminator models were

updated alternatively, and finally, the experimental results were obtained and analyzed.

2.5 Evaluation indexes

To demonstrate the effectiveness of our algorithm, we use both reference and no-

reference indexes to assess the quality of the reconstructed image, with the former type

including the PSNR, structural similarity index method (SSIM), multiscale structural

similarity index method (MS-SS), and Firchet inception distance (FID) and the latter in-

cluding the natural image quality evaluator (NIQE). A higher PSNR value (unit: dB) be-

tween the two images indicates less distortion between the reconstructed image and

the HR image, that is, a higher-quality reconstructed image; the SSIM reflects the simi-

larity of the reconstructed image to the real image in terms of the brightness, contrast

and structure. The closer the SSIM is to 1, the higher the similarity between the two

images, indicating that the generated image better conforms to the visual perceptual ef-

fects of the public. MS-SSIM is the average obtained from the calibration procedures of

image assessments with different resolution scales. IS is the scoring system for the gen-

erated image in terms of diversity and quality using the training inception-v3 network.

A high IS score indicates better diversity and quality of the generated image. FID is a

measure of the distance between the feature vector of the authentic image and that of

the generated image, based on which the similarity between the authentic image and

the generated image is evaluated. A lower FID means a higher similarity. The NIQE

does not require distorted images to be visually scored for training. Instead, after calcu-

lation of the locally mean subtracted contrast normalized (MSCN) image, part of the

image blocks are used as training data according to the local activity. The NIQE takes

model parameters that are obtained based on a generalized Gaussian model fitting as

the features. It adopts a multivariable Gaussian model to describe the features and as-

sesses the quality of the generated image based on the distance between the model par-

ameter of the image and the pre-established model parameter. A lower NIQE score

indicates a higher perception quality of the image.

The subjective evaluation standard commonly used at present is the mean opinion

score (MOS), which grades images using 5 levels (bad, poor, fair, good, and excellent).

To obtain the MOS, we invited 50 evaluators to grade each algorithm from 1 to 5

points on the basis of the overall perception effects and local details/texture of the

image, and then we counted the results of each evaluator’s score of the image and com-

puted the average score, which was taken as the MOS to evaluate the performance of

each algorithm.

3 Results and discussion
3.1 Model training loss and analysis

The loss function is a tool to measure the quality of the architecture of a network. Dur-

ing the training process, the SESRGAN algorithm realizes gradient optimization by

continuously updating and calculating each parameter. After training the model 160 ×
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103 times, the parameters achieve their optimal values, thereby minimizing the loss

function. The various losses are shown in Fig. 9, where Fig. 9a is the content loss, Fig.

9b is the perceptual loss, Fig. 9c is the adversarial loss, and Fig. 9d is the total loss.

In Fig. 9, the content loss is stable between 4 × 10−4 and 5.5 × 10−4, indicating that

the pixels of the generated images are sufficiently similar to the pixels of the real im-

ages, with no excessive pixel errors. The perceptual loss steadily decreases within a

range of 0.8–1.2 and finally stabilizes at approximately 0.9, indicating that the error be-

tween the feature extraction of the generated image and the feature extraction of the

real image is small and demonstrating that the generative model can extract image fea-

tures well. The adversarial network is stable within a range of 0–0.5. The discriminator

loss periodicity begins at a high level and then declines because the discriminator is

locked when the generator is being trained, causing the capability of the discriminator

to decrease. Then, the generator is locked. The discriminator is continuously optimized

during training so that the loss is reduced, indicating that the discriminator finally be-

comes sophisticated enough that it can successfully judge whether an image is a gener-

ated image or a real image. The total loss of the generator is stable within a range of

0.03–0.04, indicating that the generator is relatively mature after training and can suc-

cessfully generate the reconstructed HR image from the corresponding LR image.

3.2 Analysis of the murals reconstructed by the SESRGAN algorithm

To verify the effectiveness of the algorithm in reconstructing the ancient murals, 4 im-

ages were randomly selected from the reconstructed 4-fold HR mural images and com-

pared with the corresponding LR mural images, as shown in Fig. 10.

As shown in Fig. 10, the texture details of each LR ancient mural image after recon-

struction by the algorithm in this study are relatively ideal. The reason for this is that a

deep network was used to extract high-frequency features, and a pretrained VGG net-

work was used to extract feature information before activation rather than after activa-

tion. An observation of the LR images is that those that retain more details are clearer

after reconstruction than those that retain fewer details, and these images show good

consistency in terms of brightness and contrast. In addition, it is clear that after the re-

construction of LR images that retain few details, the restored images are relatively

complete, and they are not inferior to other reconstructed mural images in terms of de-

tails. As shown in Table 2, the reconstructed images exhibited satisfactory scores in

terms of both the reference and no-reference assessment indicators, which indicates

that the algorithm proposed in this study exhibits excellent stability.

3.3 Comparison experiment and analysis

To ensure the desired effect of this experiment, one mural image from each of six styles

of mural images was selected as a representative for comparison, as shown in Fig. 11,

in which Fig. 11a is the Yonglegong mural, Fig. 11b is the Baigong mural from the Qing

dynasty, Fig. 11c is the Chaoyuan mural, Fig. 11d is the Lushui Temple mural, Fig. 11e

is the Landscape mural, and Fig. 11f is the Life mural from the Ming dynasty. The BI

algorithm in reference [7], the SRGAN algorithm in reference [19], and the ESRGAN

algorithm in reference [21] were employed for the comparison experiment. To observe
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Fig. 9 Four different losses incurred during network training. a Content loss. b Perceptual loss. c Adversarial
loss. d Total loss
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the contrast effect clearly, the locally reconstructed and enlarged details of these 6 mu-

rals were selected, as shown in Fig. 12.

As shown in Fig. 12, for the Yonglegong mural and Baigong mural, each algorithm

restores details well. However, the BI and SRGAN algorithms do not perform as well as

the algorithm in reference [28], the ESRGAN algorithm and the SESRGAN algorithm

proposed in this study in terms of brightness. For the Chaoyuan mural, an examination

of the face of the figure in the mural reveals that the image reconstructed by the SESR

GAN algorithm is smoother and that the noise elimination effect of the proposed

Fig. 10 Reconstruction display effects of ancient murals

Table 2 Different mural evaluation indicators

Indicator a b c d

PSNR 28.71 32.03 30.04 32.11

SSIM 0.876 0.782 0.851 0.768

MS-SSIM 0.868 0.729 0.874 0.770

IS 15.5 20.1 16.3 19.7

FID 12.3 11.9 13.4 10.8

NIQE 6.162 2.575 3.984 2.639
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algorithm is better than those of other algorithms. In the Lushui Temple mural, by ob-

serving the accessories of the mural portrait, one can find that the texture details of

other algorithms are missing, while the algorithm in this study retains these texture de-

tails. In the Landscape and Life murals, the BI algorithm does not take the feature in-

formation of the entire image into account, resulting in a lack of high-frequency

details. The feature information extracted by the SRGAN algorithm is insufficient be-

cause it adopts a rather shallow network. Therefore, their details and textures are

poorer than those extracted by the algorithms in references [28–30], the ESRGAN algo-

rithm, and the algorithm in this study. The ESRGAN algorithm and that in reference

[30] have an excellent restoration effect. However, they introduce some unpleasant

noises. In summary, the reconstruction effect of the SESRGAN algorithm is superior to

those of the other algorithms in terms of image details. The BI algorithm is inferior to

the other algorithms in terms of brightness and detail restoration for various styles of

mural images. The SRGAN algorithm restores part of the high-frequency information.

Because both the BI and SRGAN algorithms use few network layers, some high-

frequency details are not learned, and the edges are seriously sharpened. The overall ef-

fect of the ESRGAN algorithm is better than those of the BI and SRGAN algorithms in

terms of the restoration of details, but it adds unpleasant artifacts and noise informa-

tion. Although the reconstruction effects of the algorithms in references [28–30] are

satisfactory, they do not perform as well as the SESRGAN algorithm in terms of local

details. Therefore, the algorithm proposed in this study is improved to a certain extent

in terms of texture details, overall brightness, and resolution compared with the other

algorithms.

Fig. 11 Ancient murals in different styles. a Yonglegong mural. b Baigong mural. c Chaoyuan mural. d
Lushui Temple mural. e Landscape mural. f Life mural
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Figure 13 shows the subjective scores given by the 50 evaluators to the reconstruction

effects of different styles of ancient murals in Fig. 12. After evaluation and discussion

by the evaluators, it was unanimously agreed that the overall perception of the algo-

rithm proposed in this study conformed more to human visual perception than that of

the other algorithms, and it achieved better effects in terms of brightness and image

smoothness than did the other algorithms. In terms of local texture details, the evalua-

tors believed that the reconstruction effect achieved by this algorithm was more desir-

able, and more accurate details were restored in LR images than those obtained by the

other algorithms. Through comparison, it is shown that this algorithm is also superior

to the other algorithms in terms of the overall perception and local detail texture.

Therefore, the proposed algorithm also gives a more persuasive outcome than do the

other algorithms in terms of subjective scoring.

To validate the superiority of the SESRGAN model, the averages in terms of the con-

sidered assessment indicators that are obtained by different algorithms on the mural

data sets are calculated, and the results are summarized in Table 3.

As shown in Table 3, the SESRGAN overperforms all other algorithms in terms of

the PSNR, SSIM, FID, and NIQE. However, its performance in terms of the MS-SSIM

is poorer than that of the algorithm in reference [29], which may be attributed to more

detailed features being extracted by the algorithm used in reference [29] because of the

adoption of layered RBs. Therefore, in the future, layered feature extraction will be in-

corporated into the proposed algorithm to obtain more subtle mural texture features.

In addition, the SESRGAN exhibits excellent performance in terms of the IS, being sec-

ond only to the ESRGAN. In summary, because the SESRGAN adopts the RS-RDB

Fig. 12 Comparison of the superresolution reconstruction effects of different mural images obtained with
different algorithms
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structure in a generative network to fully extract features and calculates the perceived

loss before rather than after activation, it exhibits excellent performance in terms of

both the reference and no-reference image indicators.

3.3.1 Ablation experiment: influence of modules on model performance

To validate the influence of the modules on the performance of the proposed model,

we design the modules, as given in Table 4, to evaluate their influence on the assess-

ment indicators of the model.

As shown in Table 4, RS-RDB has the largest influence on the performance of the

model. Compared with the model with the classic RDB, that with RS-RDB achieves no-

ticeable improvements in all indicators. The preactivation perceived loss calculation has

the second-largest influence, which is primarily manifested in the NIQE. Although the

WGAN-GP presents the smallest influence, it improves the performance of the model

to some extent.

Fig. 13 Subjective scoring of the reconstruction effects of the ancient murals of different styles in Fig. 12

Table 3 The average value of various types of indicators achieved by different algorithms on the
images of the mural data set

BI SRGA
N

ESRG
AN

Reference
[28]

Reference
[29]

Reference
[30]

Algorithm proposed in this
study

PSNR 25.58 29.24 31.76 31.02 31.99 29.06 32.53

SSIM 0.697 0.751 0.774 0.791 0.796 0.764 0.816

MS-
SSIM

0.706 0.749 0.777 0.782 0.812 0.773 0.805

FID 23.4 16.7 13.5 12.6 14.1 16.9 11.5

IS 14.3 17.5 21.2 20.1 19.4 18.3 20.8

NIQE 11.202 7.416 4.154 5.125 5.261 5.311 3.969
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3.4 Ablation experiment: influence of superparameters on model performance

To validate the influence of superparameters on the performance of the proposed

model, we design the residual scaling factor (Table 5) and the learning rate (Table 6) to

evaluate their influence on the model performance.

As shown in Table 5, when β = 0.2 and β = 0.3, the model exhibits excellent perform-

ance, and when β = 0.2, the model is in the optimal state. Therefore, β = 0.2 is most

suitable for the SESRGAN model. Table 6 shows that when the learning rate is 0.5, the

model exhibits satisfactory performance.

The algorithm proposed in this study achieved a good superresolution reconstruction

effect for the ancient mural data set. However, during the process of mural reconstruc-

tion, mural images whose reconstruction effects were not ideal also existed, as shown

in Fig. 14. The image on the left is the generated image, while the image on the right is

the HR image. An observation of the facial features and eave texture in the generated

image reveals differences from those in the HR image. This is mainly because there was

an insufficient number of murals of this style; thus, the model did not learn sufficient

feature information about murals of this style and therefore lacked high-frequency de-

tail information. As a result, the model failed to restore the complete murals when

reconstructing them.

4 Conclusions
We proposed the SESRGAN algorithm in this study to reconstruct ancient murals and

solve the problems of blurring and low resolution, which are responsible for the low

appreciation and research value of ancient murals. In our GAN, the RDB module was

Table 4 The average value of various types of indicators achieved by different algorithms on the
images of the mural data set

PSNR SSIM FID IS MS-
SSIM

NIQE

RDB + Calculate the perceptual loss after activation + No WGAN-
GP

28.59 0.751 17.1 17.9 0.768 7.521

RDB + Calculate the perceptual loss before activation + No
WGAN-GP

29.93 0.762 15.1 18.5 0.770 4.621

RDB + Calculate the perceptual loss before activation + WGAN-GP 29.99 0.769 14.8 18.7 0.771 4.623

RS-RDB + Calculate the perceptual loss after activation + No
WGAN-GP

30.45 0.784 12.34 19.6 0.774 6.497

RS-RDB + Calculate the perceptual loss before activation + No
WGAN-GP

32.41 0.801 11.6 20.5 0.801 4.016

RS-RDB + Calculate the perceptual loss before activation + WGAN-
GP

32.53 0.816 11.5 20.8 0.805 3.969

Table 5 Influence of the residual scaling factor on the model evaluation indicators

PSNR SSIM FID IS MS-SSIM NIQE

β = 0.1 30.59 0.731 19.2 16.3 0.781 4.941

β = 0.2 32.53 0.816 11.5 20.8 0.805 3.969

β = 0.3 31.11 0.816 14.3 21.6 0.804 4.623

β = 0.5 29.45 0.784 12.34 19.6 0.774 6.497

β = 0.7 30.16 0.784 15.5 18.9 0.780 5.651

β = 0.9 30.05 0.783 16.4 19.1 0.779 5.481
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used for extracting deep features, which was beneficial for extracting feature informa-

tion. Then, the WGAN-GP theory was introduced to improve the adversarial loss. The

Wasserstein distance was adopted to calculate the distance between the reconstructed

image and the real image. The gradient penalty was applied to the discriminator net-

work to improve the stability of the network training process. The preactivation fea-

tures were used to calculate the perceptual loss, which was conducive to restoring

texture details and a satisfactory level of brightness. Second transfer learning was

adopted to train the model, and finally, a stable enhanced mural reconstruction model

was obtained. Compared with other superresolution algorithms, the algorithm proposed

in this study achieved improvements in terms of different types of objective assessment

indicators. In terms of the subjective evaluation index, it outperformed other algo-

rithms in terms of the MOS and obtained a higher score in terms of local detailed tex-

ture than that obtained by other algorithms. This model achieved a good

reconstruction effect for both the overall mural images and the local mural images.

After reconstruction, the HR mural images were clear and bright. The reconstructed

images retained rich texture details, and the ornamental and research values of the mu-

rals were enhanced to a certain extent. This model can help prevent the loss of ancient

mural images.

The deficiency of this study lies in the superresolution reconstruction process being

carried out only after the murals were enlarged 4 times. However, the reconstruction

Table 6 Impact of the learning rate on the model evaluation indicators

PSNR SSIM FID IS MS-SSIM NIQE

LR = 0.1 29.54 0.721 18.3 15.9 0.781 5.642

LR = 0.5 32.53 0.816 11.5 20.8 0.805 3.969

LR = 0.01 32.11 0.806 15.3 19.4 0.791 4.625

LR = 0.05 31.45 0.781 15.5 18.1 0.780 6.551

LR = 0.001 30.13 0.784 15.5 18.9 0.780 5.651

LR = 0.005 28.16 0.761 20.1 17.5 0.764 7.162

LR learning rate

Fig. 14 Reconstructed mural images with unsatisfactory results
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process was not carried out at multiple scales. Next, the global feature information and

local feature information were not fully utilized. In addition, the texture details of some

reconstructed murals were not recovered completely, and the training period of the

model was long. The main tasks in the next stage of our research include (1) collecting

more mural data sets of different styles to adapt to the depth of the generative network

and increase the generalizability and stability of the model; (2) conducting multiscale

superresolution reconstruction of murals, showing the artistry and research value of

murals at different scales; and (3) simplifying the network structure to reduce the train-

ing time and integrating the global and local features into the training process to obtain

more detailed texture features and higher-quality mural images than before.
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