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Abstract

The methods combining correlation filters (CFs) with the features of convolutional neural network (CNN) are good at
object tracking. However, the high-level features of a typical CNN without residual structure suffer from the shortage
of fine-grained information, it is easily affected by similar objects or background noise. Meanwhile, CF-based methods
usually update filters at every frame even when occlusion occurs, which degrades the capability of discriminating the
target from background. A novel scale-adaptive object-tracking method is proposed in this paper. Firstly, the features
are extracted from different layers of ResNet to produce response maps, and then, in order to locate the target more
accurately, these response maps are fused based on AdaBoost algorithm. Secondly, to prevent the filters from
updating when occlusion occurs, an update strategy with occlusion detection is proposed. Finally, a scale filter is used
to estimate the target scale. The experimental results demonstrate that the proposed method performs favorably
compared with several mainstream methods especially in the case of occlusion and scale change.
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1 Introduction
Video surveillance is significant for public security [1],
while object tracking is the key technology of video
surveillance [2, 3]. Object tracking has many practical
applications in video surveillance, human-computer inter-
action and automatic driving [4–6]. Object tracking aims
to estimate the target position in a video sequence by
giving an initial position of the target. Due to the defor-
mation, illumination variety, occlusion, and scale change,
it is possible that the appearance changes significantly.
Therefore, the usage of the powerful convolutional neural
network (CNN) features to describe the target appearance
can effectively improve the success rate and accuracy of
object-tracking algorithms [7, 8].
CNN pre-trained for image classification, such as

AlexNet [9] and VGG[10], are used to extract target fea-
tures in most deep-learning-based trackers. Those meth-
ods have high computational complexity as they need
to extract the features of positive and negative samples.
While correlation filter (CF)-based trackers have shown
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efficient performance by solving a ridge regression prob-
lem in the Fourier frequency domain. Therefore, the
combination of CNN features and efficient CFs has been
exploited in object-tracking research. The multi-channel
features are extracted from CNN instead of the hand-
crafted features for CF-based methods, which achieves
the state-of-the-art results on object tracking benchmarks
[11, 12]. However, there are still some problems:

1. Target localization relies heavily on the high-level
features from CNN, such as the outputs of the last
layer of VGG network. The high-level features
contain more semantic information but lack of
detailed information of the target.

2. The weights are fixed in the fusion of response maps.
Inaccurate predictions are inevitable if the filters with
a large error have large weights.

3. The filters need to be updated to maintain its
discriminative ability as the target appearance
changes in the video sequence. Generally, CF-based
trackers adopt the updating strategy in all frames,
even the frames in which the target is occluded,
which degrades the discriminative ability of the filters
and results in the loss of tracked target.
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4. The change of target scale commonly affects the
position estimation, since the size of search area is
highly correlated with the target scale.

Themain contributions and originality of this paper are as
follows:

1. The CNN with residual structure is used to extract
features. DenseNet [13] and Inception [14] are two
networks with residual structure. However, the
features from DenseNet are not comparable to those
of ResNet [15] in terms of success rate and accuracy
of tracking. Meanwhile, the features from Inception
have large number of channels, and accordingly its
implementation is time-consuming. Thus, ResNet is
used in this paper due to its advantages of success
rate, accuracy, and efficiency. The residual structure
of ResNet integrates low-level and high-level features
with identical mapping [16]. The high-level features
contain more fine-gained details, which are more
robust to similar objects and background noise.

2. The response maps are fused based on AdaBoost
algorithm. AdaBoost algorithm enlarges the weights
of the filters with small error rates while reduces the
weights of the filters with large error rates.
Consequently, the stronger the discriminative
abilities of the filters are, the greater roles they can
play in the tracking process.

3. An update strategy with occlusion detection is
adopted. When the target is occluded, there are
many local maxima in the response map, so the
number of effective local maxima (NELM) is used to
detect occlusion. If the occluded target is detected,
the filters stop the update to avoid the interference of
background information.

4. Scale filters are used to track the scale change of the
target to solve the scale variation problem.

In the remainder of this paper, we first review some
related works in Section 2. Then, we propose a scale-
adaptive object-tracking algorithm with occlusion detec-
tion in Section 3. The experiments and comparisons are
reported in Section 4. We end the paper with a conclusion
in Section 5.

2 Related works
2.1 Tracking by deep learning
Visual representation is significant in the tracking algo-
rithm [17]. The traditional tracking-by-detectionmethods
focus on the discriminative ability of the discrimina-
tor, for example, Zhang et al. [18] proposed a multi-
ple experts using entropy minimization (MEEM) scheme
based on support vector machine with hand-crafted fea-
tures. While, most methods based on deep learning usu-
ally focus on the expression of the target feature. Wang

and Yeung [19] trained a multi-layer auto-encoder to
encode the appearance of the target. Li et al. [20] used face
dataset to train CNN and then used the pre-trained CNN
to extract face features for tracking. Nam and Han [21]
trained a convolutional network to extract target features
in multi-domain way and used full connection layers to
classify target and background. Hong et al. [22] used the
features extracted by a pre-trained CNN and learned dis-
criminative saliency map with back propagation and then
used a support vector machine as the classifier. Pu et al.
[23] used back propagation to generate attention map to
enhance the discriminative ability of full connection layers
in [21]. Wang et al. [24] built two complementary predic-
tion networks based on the analysis on the features of the
different levels of CNN to obtain the heat map for tar-
get localization. Lu et al. [25] proposed a deconvolution
network to upsample the features with low spatial resolu-
tion; then, the features of the low and high levels are fused
by the sum operation to get better target representation.
Song et al. [26] solved the problem of unbalanced positive
and negative samples based on the generative adversarial
networks [27].
The above methods usually need to compute the fea-

tures of a large number of candidates, while our method
only needs the features of search region. Moreover, these
methods need back propagation for time-consuming
online update; in contrast, our method can online update
efficiently thanks to linear interpolation.

2.2 Tracking by correlation filter
CF-based methods have shown continuous performance
improvements in terms of accuracy and robustness. Bolme
et al. [28] proposed a minimum output sum of squared
error filter. Meanwhile, peak-to-sidelobe ratio (PSR) was
introduced to measure the confidence of response map.
It was pointed out that PSR would decrease to about
7.0 when tracking failed. Henriques et al. [29] employed
the circulant structure and the kernel method (CSK) to
train filters on the basis of [28]. Henriques et al. [30] used
the cyclic shift of target features and the diagonalization
property of cyclic matrix in the Fourier domain to obtain
closed-form solutions based on kernel correlation filter
(KCF), which improved the effectiveness and efficiency of
the algorithm. Danelljan et al. [31] used position filter and
scale filter for discriminative scale space tracking (DSST).
Li and Zhu [32] applied scale adaption with multiple
features (SAMF) to estimate the target scale adaptively.
Danellian et al. [33] performed spatial regularization on
the discriminative CFs to alleviate the boundary effect. Li
et al. [34] introduced temporal regularization to [33]. Cen
and Jung [35] proposed a complex form of local orienta-
tion plane descriptor to overcome occlusion; this descrip-
tor effectively considers the spatiotemporal relationship
between the target and background in CF framework.
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The above methods usually use hand-crafted fea-
tures [36], [37], which lack robustness to target appear-
ance variance. Furthermore, they update filters even
when the target is occluded, which degrades the dis-
criminative capability of filters. In our method, robust
convolutional features deal with the target appearance
variance. In addition, occlusion detection avoids the
updating when the target is occluded. Similar to [31],
we apply scale filters to track the target scale vari-
ance, and we decrease the number of the scale for
efficiency.

2.3 Tracking combining deep learning and correlation
filter

As the robustness of CNN features and the efficiency of
CF, some algorithms combined the two methods. Danell-
jan et al. [38] used the feature extracted from only one
layer of CNNon the basis of [33]. In order to use themulti-
resolution deep feature maps, Danelljan et al. [39] applied
a continuous convolution operators for visual tracking,
and after that, Danelljan et al. [40] proposed an effi-
cient convolution operators based on [39] for efficiency.
Ma et al. [41] developed CFs using hierarchical convolu-
tional features (HCF). Li et al. [42] localized the target
using the deep convolution operator in a large search area
firstly, and then performed a shallow convolution opera-
tor around the location given by the first step. Li et al. [43]
trained background-aware filters using a set of represen-
tative background patches as negative samples to handle
background clutter, and trained scale-aware CFs using a
set of samples with different scales to handle scale vari-
ance. Qi et al. [44] used convolution operation to model
the correlation between the apparent features of the target
and background, and employed a two-layer convolution
network to learn geometirc structural information for
scale estimation. Qi et al. [45] applied CFs on the multi-
ple CNN layers, and then all layer trackers were integrated
to a single stronger tracker by Hedge algorithm. Wang et
al. [46] proposed a discriminative CFs network (DCFNet)
to learn the convolutional features and performed the
correlation tracking process simultaneously. Similar to
[46], Jack et al. [47] used correlation filters as one
layer of the neural network and proposed an end-to-end
algorithm.
In some algorithms, ResNet is also used. Zhu et al.

[48] proposed a CF-based algorithm using temporal and
spatial features. They used two ResNets to learn spatial
and temporal features, respectively. He et al. [49] used
ResNet to extract features instead of the deep learning
features from VGG and hand-crafted features in [40], but
the response maps are fused with fixed threshold weights.
The boundary effect in correlation filters is dealt with in
the algorithms based on [40], but it is not a focus of this
paper.

Our method seems similar to HCF, but there are some
differences as follows. In HCF, typical CNNwithout resid-
ual structure is used to extract features which lack fine-
gained details, and the response maps are fused with
fixed weights. Moreover, in HCF, the filters are updated
at all frames even when the target is occluded, which def-
initely declines the discriminative ability of the filters. In
our work, the features are extracted with the pre-trained
ResNet, which are more robust to background noisy and
occlusion. In addition, the response maps are fused based
on AdaBoost algorithm [50], which can choose more reli-
able weights. Meanwhile, the filters are updated while
considering occlusion detection to ensure that the filters
are not disturbed by noise.

3 Methods
3.1 Procedure
Figure 1 illustrates the procedure of our method. Our
method initializes the filters according to the given tar-
get position. In the subsequent frames, we first crop the
search area centered at the target location in the previous
frame, and then, extract the CNN features from differ-
ent layers of pre-trained ResNet. Secondly, the learned
linear filters convolved with the extracted features to gen-
erate the response maps of different layers. Then, multiple
response maps are weighted and fused to one response
map. The target position is located according to the posi-
tion of the maximum value in the fused response map.
After that, in the estimated target location, the histogram
of oriented gradient (HOG) features in the regions with
different scales are used to find the optimal target scale by
scale filters. Finally, the NELM and the PSR of the fused
response map are performed to decide whether to update
the filter or not.

3.2 Convolutional features
The convolutional feature maps from ResNet are used to
encode target appearance. With the increment of CNN
layer number, the spatial resolution of feature map is grad-
ually reduced. For object tracking, low resolution is not
sufficient to accurately locate target. Thus, we ignore the
features from the last convolutional layer (conv5) and
full connection layers. The features from different layers
have different spatial resolutions that are relatively low
compared with the input image. Therefore, bilinear inter-
polation is used to enlarge the resolutions of the features
to the same size by:

xi =
∑

k
αikhik (1)

where h represents the features, x represents the features
enlarged by interpolation operation, and the interpolation
weight depends on the position of i and k-neighbor feature
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Fig. 1 Procedure of the proposed method

value. The visualization of the features from ResNet is
shown in Fig. 2.

3.3 Correlation filter
Denote xl as the feature from the conv-l layer with the
size of M × N × D after bilinear interpolation opera-
tion, where M,N , and D indicate the width, height, and
the number of channels, respectively. The shifted sample
x(m,n), (m, n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . ,N − 1} has
a Gaussian function label y(m, n) = e−

(m−M/2)2+(n−N/2)2
2δ2 ,

where δ indicates the kernel width. Correlation filters wl
are obtained by minimizing the objective function:

min
w

‖wl � xl(m, n) − y(m, n)‖2 + λ‖wl‖2 (2)

where �means circular correlation and λ indicates the reg-
ularization parameter. The optimization problem can be
solved in Fourier domain and the solutions are:

Wl = Ȳ � X
∑D

d=1 Xd
l � X̄d

l + λ
(3)

Here, X and Y are the fast Fourier transformation (FFT)
F(x) and F(y), respectively. The over bar represents the
complex conjugate. The symbol � denotes the element-
wise product. At the detection process, the features of the
search patch are extracted and transformed to the Fourier
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Fig. 2 Visualization of the features from ResNet. a Input frame. b–e Features are extracted on convolutional layers conv1, conv2, conv3, and conv4
of ResNet; their original spatial resolutions are 128 × 128, 56 × 56, 28 × 28, and 14 × 14, respectively. The red boxes indicate the tracking results by
our approach

domain, the complex conjugate is Z̄. The response map at
conv-l layer can be computed by:

fl = F−1(
D∑

d=1
W̄d

l � Zd
l ) (4)

where F−1 is the inverse FFT.

3.4 Response map fusion based on AdaBoost
In order to select the appropriate weights to fuse the
response maps, AdaBoost algorithm is used for adaptive
weight adjustment. The error rate e is computed between
the normalized response maps at different layers fl, and
the desired response map g peaked at the estimated target
position in t − 1 frame is:

et−1
l = Mean(

abc(f t−1
l − gt−1)

f t−1
l + gt−1

) (5)

where abs represents absolute value, Mean denotes the
operation of average, the weight of conv-l layer βl is:

βl = log
1 − et−1

l
et−1
l

(6)

Then, at t frame, the fused response map is:

f t =
∑

l=3,4
βlf tl (7)

The target position (m̂, n̂) is estimated as:

(m̂, n̂) = argmax
(m,n)

f t(m, n) (8)

After the filters are initialized, the filters of different lay-
ers can correctly track the target in the initial frame, as
the computation is performed in the initial frame. In other
words, these filters have the same error rate; thus, the
initial weights are both set to 0.5.

For scale estimation, we construct a feature pyramid
center in the estimated target position. Let P×R denote
the target size in the current frame, S be the size of the
scale dimension, and a represent the scale factor. For each
n ∈

{
�− S−1

2 �, . . . , � S−1
2 �

}
, we crop the image patch of

the size anP×anR and extract the HOG features; then, the
scale response map Rn is computed by:

Rt+1(n) = F−1{
K∑

k=1
H̄t+1
k (n)�Ikt+1(n)} (9)

where

Ht(n) = Ḡ(n)�It(n)
∑K

k=1 Ikt (n)�Īkt (n) + λs
(10)

where I is the FFT of HOG features, and Ḡ is the complex
conjugate of Gaussian label. We can find the n̂ corre-
sponded maximum value as:

n̂ = argmax
n

Rt+1(n) (11)

Then, the best scale of target is an̂P×an̂R.

3.5 Optimized update strategy with occlusion detection
The filters need to be updated to maintain discriminative
ability as the target often undergoes appearance variance.
However, when the target is occluded, the filters should
avoid using background information to update, or it may
cause model drift.
In minimum output sum of squared error (MOSSE) fil-

ter [28], PSR was used to describe the state of the response
map to detect tracking failure. The peak means the maxi-
mum, and the side lobe is defined as the rest of the pixels,
excluding an 11 × 11 window around the peak. The PSR
is defined as PSR = gmax−μ

σ
, where gmax is the peak value,
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μ is the mean and σ is the standard deviation of the side
lobe. The PSR is between 20.0 and 60.0 when the tracking
is normal, while PSR drops to lower than 7.0 when the tar-
get is occluded or the tracking failed, as shown in Fig. 3.
However, when the target moves rapidly or is of low res-
olution, the PSR stays in a low value, as shown in c and d
of Fig. 3. Therefore, PSR cannot accurately reflect whether
the target is occluded or not.
In this work, NELM is employed to detect occlusion.

Observing the response maps, we found that the response
maps have more local maxima when the target is occluded
than when the target is not occluded. As shown in Fig. 4,
the red dotted lines show the locations of the local maxima
in the 3D response map.
Let f denote the fused response map in current frame

and fmax be the peak of f. For each local maximum f iloc(i ∈
{1, 2, 3, . . . , L}), L is the number of local maximum except
fmax, the ratio between f iloc and fmax is Ti = f iloc

fmax
. In the

response map, some local maxima are possibly generated
because of the background interference which needs to
be avoided. The motion of the target between the initial
frame and the second frame should be smooth. Therefore,
in the response map obtained from the second frame of
the video sequence, the local maximum except the peak
(which is the target position) is taken as the threshold γ :

γ = max(Ti) (12)

In the response map of subsequent frame, Ti is greater
than the threshold γ ; then, fi is recorded as the effec-
tive local maximum, and the number of effective local
maximum is expressed as:

NELM = Crad{Ti|Ti > γ } (13)

where Crad represents the number of elements in a col-
lection. If the effective local maxima exist, i.e., NELM > 1,
and the PSR is less than the given threshold, the algorithm
does not update the filters. PSR is only used to evaluate the
response map, similar to MOSSE, the PSR threshold is set
to 7.000. If no effective local maximum exists or the PSR
is greater than the given threshold, the algorithm allows
updating the filters. In Fig. 3b, the PSR value is lower than

the empirical value and the NELM is equal to zero, target
occlusion is not detected, then the filters can be updated
at this time. At t frame, the filter in (3) is represented by
Wt , At is the molecule of Wt , and Bt is the denominator.
The updating formulae are:

At = (1 − ηp)At−1 + ηp ∗ Ȳ�Xt (14)

Bt = (1 − ηp)Bt−1 + ηp ∗
D∑

d=1
Xd
t �X̄d

t (15)

Wt = At
Bt + λ

(16)

C and D represent the molecules and denominators of the
filters Ht in (10) , respectively. The updating formulae are:

Ct = (1 − ηs)Ct−1 + ηs ∗ Ḡ�It (17)

Dt = (1 − ηs)Dt−1 + ηs ∗
K∑

k=1
Ikt �Īkt (18)

Ht = Ct
Dt + λ

(19)

where ηp and ηs are the learning rates for Wt and Ht ,
respectively.

4 Experimental
We compare the proposed method with the state-of-the-
art methods on OTB and VOT [51]. Pre-trained ResNet
is used to extract features. The learn rate ηp is set to 0.01,
the same as [30], and ηs is set to 0.01, the same as [31]. The
scale factor is set to 1.087. The number of scale dimension
is set to 5. The parameters are not changed during test.
Our tracker is implemented by Python with PyTorch.

The experiments are performed on Intel Core i7-6850K
3.6GHz CPU and a NVIDIA GTX-1080Ti GPU. Our
tracker runs at an average of 8 fps on GPU.
The algorithm is validated on standard tracking data

sets OTB-13 and OTB-15. OTB-13 and OTB-15 contain
50 and 100 video sequences, respectively. These video

Fig. 3 “Jogging-1”, “Freeman3” sequences with the PSR and NELM. The red bounding boxes indicate the tracking results by our method. a
PSR = 37.50, NELM = 0. b PSR = 5.19, NELM=2. c PSR = 5.42, NELM = 0. d PSR = 5.71, NELM = 0
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Fig. 4 The response maps with and without target occlusion. The red dotted lines show the locations of the local maxima in the 3D response map.
Notice that, NELM does not count the global maximum, so NELM less than the number of dotted lines. a The response map without occluded
target, PSR = 45.61, NELM = 0. b The response map with occluded target, PSR = 5.79, NELM = 2

sequences contain common challenges in target tracking,
including illumination variance, scale variance, occlusion,
deformation, motion blur, fast motion, in-plane rotation,
out-of-plane rotation, background interference, and low
resolution. OTB recommends three evaluation methods,
one pass evaluation (OPE), spatial robustness evaluation
(SRE), and temporal robustness evaluation (TRE). OPE
gives the exact location of the target in the first frame
for initialization and then runs the tracker on all frames.
Unlike OPE, SRE initializes the tracker by moving or scal-
ing the target position in the first frame, including four
kinds of center offset, four kinds of angle offset, and four
kinds of scale variance. While, TRE runs the tracker at the
part of the whole sequence. The algorithm is evaluated by
calculating the precision score and success rate in three
evaluation methods. Precision ε is the Euclidean distance
between the center positions of the tracked target and the
ground truth:

ε =
√

(xc − xg)2 + (yc − yg)2 (20)

where (xc, yc) and (xg , yg) denote the locations of the
tracked target center and the real target center. Precision

score is defined as the percentage of the frames whose pre-
cision values are lower than a certain threshold in the total
number of frames.
The overlap rate is the ratio of the overlap area of

the ground truth and the bounding box obtained by the
tracking algorithm to the total area of the two boxes:

IoU = area(Bbox)∩area(Gbox)
area(Bbox)∩area(Gbox) (21)

where Bbox and Gbox represent the bounding box
obtained by the algorithm and the ground truth, respec-
tively. The success score is the percentage of the number of
the frames whose overlap rates are greater than a certain
threshold.

5 Results and discussion
5.1 Quantitative evaluation
The proposed method is compared with seven main-
stream algorithms including MEEM [18], CSK [29], KCF
[30], DSST [31], SAMF [32], HCF [41], CFNet [47], and
DCFNet [46]. HCF and DCFNet combine the correlation
filters and CNN features. KCF, DSST, SAMF, and CSK use
the correlation filters based on the hand-crafted features.



Yuan et al. EURASIP Journal on Image and Video Processing          (2020) 2020:7 Page 8 of 15

Fig. 5 Overlap success plots and Distance precision plots over 100 benchmark sequences in OPE, SRE, TRE

While the scale variance of the target is processed in
SAMF and DSST.

5.1.1 Results over all OTB
The results of the algorithms are evaluated in three meth-
ods. In Fig. 5, the score in overlap success plots legend
represents the area under curve (AUC), the score in dis-
tance precision legend represents the distance precision
score at a threshold of 20 pixels. Our algorithm achieves
the best results in OPE. In TRE and SRE, HCF uses
more convolution layer features for target localization,
the accuracy score of proposed algorithm is slightly lower
than that of HCF. Please notice that some algorithms,
including CFNet, do not supply the data for SRE and
TRE.

5.1.2 Results at fixed threshold
Table 1 shows the comparison results at the distance pre-
cision threshold of 20 pixels and the overlap threshold of
0.5 on OTB-13 and OTB-15. Note that OTB-15 has more

Table 1 Results at fixed threshold

Ours DCFNet HCF SAMF KCF

DP(%)
OTB-50 85.7 79.5 89.1 78.5 74.0

OTB-100 84.4 75.1 83.7 75.1 69.6

OS(%)
OTB-50 76.0 77.9 74.0 73.2 62.3

OTB-100 73.3 70.7 65.5 67.4 55.1

SPEED(FPS)
OTB-50 8.3 41.1 11.0 18.6 245

OTB-100 8.0 41.2 10.4 16.9 245
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Table 2 Results on VOT2016

Supervised UnSupervised

Accuracy Robustness EAO Accuray

Ours 0.49 27.22 0.22 0.39

DSST 0.53 44.81 0.18 0.33

HCF 0.44 23.86 0.22 0.37

KCF 0.49 38.08 0.19 0.30

challenging videos than OTB-13. DP, OS, and SPEED rep-
resent the score of distance precision, the score of overlap
rate, and the speed of the algorithm, respectively. The first
and second best results in each row are highlighted by
bold and italics. Under the above threshold, the tracking
precision and success rate of the proposed algorithm are
the best on OTB-15. However, the speed of this algorithm
is about 8 frames per second (fps), as the interpolation
operation lower the speed of the algorithm.

5.1.3 Results on VOT2016
VOT-2016 dataset contains 60 video sequences. There
are two kinds of evaluation methods for VOT, namely
supervised and unsupervised evaluation methods. Super-
vised evaluation method provides the target position to
re-initialize the algorithm for continue tracking when the
tracked target is lost. In contrast, the unsupervised eval-
uation method does not re-initialize the algorithm. In
VOT, accuracy, robustness, and expected average over-
lap (EAO) [52] are used to evaluate the tracking results.
Accuracy refers to the average overlap rate of tracking

algorithm results, robustness refers to the average number
of tracking failures (when the overlap rate is 0, it can
be determined as failure), and EAO is the average of the
average overlap rate on a short-term sequence.
The comparison results are shown in Table 2 and the

results of the best algorithm are in bold, and the results
of the second best algorithm are with italics. The accu-
racy and robustness of the proposed algorithm rank the
second in the case of supervised. The supervised eval-
uation re-initializes when target occlusion occurs; then,
the algorithms can track the target in the video sequence
after occlusion. Thus, the advantages of our method is
not remarkable in supervised evaluation. Without re-
initialization, the accuracy and robustness of the proposed
method are the best.
The A-R plot shows the performance of tracker directly.

The abscissa and the ordinate of A-R plot are Accuracy
and Robustness, respectively. Since the robustness has no
upper bound, the reliability of VOT is replaced by robust-
ness and the reliability is computed by Rs = e−SM, where
M represents the mean time-between-failures, S is the
number of the successful object tracking frames since the
last failure. The closer the dot is to the upper right cor-
ner, the better accuracy and robustness the algorithm has.
In Fig. 6, the accuracy and robustness of the proposed
algorithm are remarkably good.

5.1.4 Videowith occlusion
The convolution operation further degrades the frame
resolution. The proposed algorithm focuses on the solu-
tion of the occlusion problem, so the experimental results

Fig. 6 A-R plot
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in the OTB-15 dataset without some low-resolution
sequences (Skiing and Walking) are shown in Figs. 7 and
8. The proposed algorithm achieves the best results in
the video sequences with the challenges of occlusion,
fast motion, deformation, illumination variance, and scale
variance.
Occlusion is a great challenge for CF-based methods.

The conventional filters usually need to be updated at
all frames, including the frames in which the target is
occluded, so it is possible that the background informa-
tion is used to update the filter, and declines the dis-
criminative ability of the filters. The standard CF-based
trackers obtain the AUC scores of 0.560 (SAMF), 0.467
(KCF), and 0.464 (DSST). We use the features extracted
by ResNet and a novel update strategy to improve the
robustness to occlusion. In the video sequence with occlu-
sion, the proposed method obtains the best AUC score

(0.592), which is 5.1% higher than that of HCF (0.541),
followed by DCFNet (0.584), as shown in the first row
of Fig. 7.

5.1.5 Videowith scale variation
The tracking overlap rate of ourmethod is improved in the
video sequences with target scale variation. The variance
of target scale remarkably affects the position estimation,
since the size of search area is highly correlated with the
target scale. In the video sequences with scale variation,
the standard CF-based trackers, without the considera-
tion of scale variation, obtain the scores of 0.425 (KCF)
and 0.343 (CSK), while the standard CF-based trackers
considering scale variation can obtain the scores of 0.522
(SAMF) and 0.498 (DSST).
The features also can affect the scale estimation, so

deep features are used in HCF without the consideration

Fig. 7 Overlap success plots in sequence with out-of-plane rotation, occlusion, motion blur, and background clutter
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Fig. 8 Overlap success plots in sequence with deformation, fast motion, illumination variation, and scale variation

of scale variance, the AUC score of HCF is 0.502. Our
method takes into account both deep features and scale
variance, as shown in the first row of Fig. 8. Our method
achieves the best AUC score (0.597), which is higher 9.5%
than that of HCF (0.502).

5.2 Qualitative evaluation
Figure 9 shows the qualitative evaluation of the pro-
posed method, HCF, DCFNet, KCF, and DSST on 8
video sequences including occlusion and scale variance.
HCF performs well in fast moving (Skiing) while fails
to track the occluded target (Girl2, Lemming). DCFNet
is good at low-resolution sequences as the resolutions
of the extracted features are the same as that of the
input image, and it is prone to track unsuccessfully for
fast moving, target deformation, and background clutter
(Skiing, Human9, and Football). HOG features and ker-
nel method are used in KCF to improve the operation

efficiency, so it performs well in the cases of fast mov-
ing and background interference (Human9), but it is easy
to fail when the target is occluded (Girl2, Lemming).
In DSST, scale filter is employed to find the current
scale (Dog1) of the target when the target scale changes.
The proposed method applies the features extracted with
ResNet, which are more robust to several challenges.
At the same time, it is not easily disturbed by target
occlusion due to the optimized update strategy. There-
fore, the proposed algorithm can still track the target
stably (Girl2, Lemming, Skiing, Football) in the cases of
occlusion, deformed and background interference. We
also use scale filters for the variance of the target scale
(Human9).

5.3 Feature comparison
In order to compare the different combination strategies,
the features from different layers of ResNet are combined,
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Fig. 9 Qualitative evaluation of the proposed method, DCFNet, DSST, KCF, and HCF on seven challenging sequences

as shown in Table 3. The best results are in bold. On the
OTB-15 dataset, the combination of the features extracted
from conv3 and conv4 layers achieves the best results,
which verifies the rationality of the feature selection of the
proposed algorithm.

Table 3 Results of different features

ConvLayer 2 3 4 3, 4 2, 3, 4

AUC 0.523 0.565 0.567 0.597 0.573

Precision 0.714 0.781 0.827 0.852 0.804

5.4 Update strategies
NELM and PSR are two methods for occlusion detection.
NELM + PSR represents an update strategy combining
the two methods, and None represents an update strategy
without occlusion detection. The result are shown in

Table 4 Results of different update strategies

Update strategy NELM + PSR NELM PSR None

AUC 0.597 0.588 0.575 0.557

Precision 0.852 0.583 0.827 0.788
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Table 5 Results of different networks

Network Feature size AUC (background clutter)

VGG [10] 1×512 × 14×14 0.544

DenseNet [13] 1×384 × 14×14 0.562

ResNet [15] 1×256 × 14×14 0.574

Table 4 and the best result are in bold. The proposed
method achieves the best results by combining the two
methods, which verifies the effectiveness of the proposed
update strategy.

5.5 Different networks
We compare the features extracted from different net-
work structures, and the results are shown in Table 5. The
best results are in bold. DenseNet [13] is also a network
with residual structure, with fewer parameters and deeper
network layers than ResNet, in the same time, its extracted
features have more channels. According to the classifi-
cation of OTB-15, we choose the video sequences with
background clutter. What is more, we use only one fea-
ture with the same resolution from each network and
we do not use any strategies. The experimental results
show that the results of DensNet are slightly lower than
ResNet. However, the results of ResNet and DensNet have
achieved better results than VGG.

5.6 Failure cases
We show a few failure cases in Fig. 10. For the Panda
sequence, the resolution is 312 × 233. When the target
becomes very small, the proposed tracker fails to follow

the target because it has few pixels, which can result in
poor performance features. An alternative implementa-
tion using the feature from conv2 alone is able to track
the target, because the conv2 features have higher reso-
lution than the features from deeper layers. For the Biker
sequence, the target suddenly moves violently beyond the
search area of the proposed tracker. This sequence is still
a challenge sequence for many trackers.

6 Conclusions
Object tracking is a very useful public safety technology.
The object tracking algorithm can track specific target in
the surveillance video. In addition, combined with some
ReID technologies [53], object tracking algorithms can be
in used across camera scenes.
A scale-adaptive object-tracking algorithm with occlu-

sion detection has been proposed in this paper. ResNet
was used to extract more robust features. In the tracking
process, the response maps computed from the differ-
ent layers are weighted and fused based on AdaBoost
algorithm for accurate localization. The NELM and
PSR of the response map were used for the opti-
mized update strategy, which can handle the problem
of target occlusion. Scale filters have been extended for
scale tracking. Compared with the mainstream algo-
rithms, the experimental results showed that the pro-
posed method could track the target robustly and
accurately even in the cases of occlusion and scale
variation.
In the future, we will try to further improve the robust-

ness of algorithm to low-resolution and the real-time
performance.

Fig. 10 Failure cases. Red and green boxes represent tracking results and ground truth, respectively. a “Panda” sequence. b “Biker” sequence
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