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Abstract

The technique of reversible data hiding enables an original image to be restored from a stego-image with no loss of
host information, and it is known as a reversible data hiding algorithm (RDH). Our goal is to design a method to
predict pixels effectively, because the more accurate the prediction is, the more concentrated the histogram is, and it
minimizes shifting to avoid distortion. In this paper, we propose a new multi-directional gradient prediction method
to generate more accurate prediction results. In embedding stage, according to the embedding capacity of
information, we generate the best decision based on non-linear regression analysis, which can differentiate between
embedding region and non-embedding region to reduce needless shifting. Finally, we utilize the automatic
embedding range decision. With sorting by the amount of regional variance, the easier predicted region is prior for
embedding, and the quality of the image is improved after embedding. To evaluate the proposed reversible hiding
scheme, we compared other methods on different pictures. Results show that the proposed scheme can embed
much more data with less distortion.

Keywords: Reversible data hiding (RDH), Non-linear regression analysis, Multi-directional variation prediction

1 Introduction
Reversible data hiding (RDH) approach has been applied
to some sensible and crucial messages, such as medical
images, military pictures, criminal site pictures, digital
files of rare artworks. These applications are not allowed
to have any distortion. Over the past decade, the reversible
data hiding techniques have been proposed. It can be
divided into spatial domain [1–18] and frequency domain
[19, 20]. In the spatial domain, these techniques also can
be divided into three classifications: lossless compression,
expansion based (EB), and histogram shifting (HS). In
recent years, RDH was based on lossless compression [1–
4]. These methods utilized storage space for embedding.
[3] proposed the least significant bit (LSB) method, which
increases compression efficiency by means of change in
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least bits to act as supplementary information. However, it
cannot get a satisfying performance based on the method
of lossless compression, because of the capacity embed-
ding increases, more bit change is needed. As a result, dis-
tortion is more dramatic. Difference expansion (DE) was
first proposed by [5]. This method was divided an image
into pixel pairs and each pair to hide a message was used.
[6, 7] also proposed a concept of triplets and tetrads DE.
[8] first proposed histogram shifting (HS) in 2006. This
method makes a histogram statistic from an image. After
generating a histogram, the vacancies between the zero
point and the peak point are utilized for shifting. It relies
heavily on the most frequently found pixel value. As a
result, though HS has good image quality, its hiding ability
is lower than DE generally. [9] utilized relevant charac-
teristics of neighbor image by dividing an image into N
images by sub-sampling to improve the 0 bin performance
of the embedding histogram. Luo et al. [10] proposed the
median preservation in each group as a reference pixel to
generate an improved histogram. As a result, the RDH sys-
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tem is better than Kim et al.’s. [11] proposed an inverse
“s” scan method to increases the concentration of the
histogram. [12] proposed also another structure of predic-
tion. The author used a rhombus pattern arrangement to
split the image into two groups. Furthermore, [13] used
the 2-staged checkerboard prediction proposed by himself
[14]. Author assumed the hidden data must be embed-
ding in small-capacity of bins and bins − 2, − 1, 0, 1,
and 2 should be kept without change, due to all bins are
shift necessarily before embedding. Therefore, both the
embedding capacity and image quality still much left for
improvement to be improved.
Besides mentioned works above [1–14], many other

RDH algorithms are also based on histogram shifting
method using different techniques, i.e., Qin et al. [15]
proposed a prediction-based reversible steganographic
scheme based on image inpainting. This method uti-
lizes partial differential equation (PDE) based on CDD
model to effectively predict the structure and geomet-
ric information of the original image according to select
reference pixels. However, its thresholds of the reference
pixels are selected by experimental rule and it also has
a problem of large amount of the computation complex-
ity. [16] proposed a general framework, which can simply
designing the so-called shifting and embedding functions
to reduce the amount of distortion when embedding.
Their method actually has good effect when the amount
of embedding messages is small, but when the amount
of embedding messages gets bigger, the distortion will
relatively become higher. The use of least square predic-
tor has been proposed to overcome the limitation of the
fixed predictors by [17]. It applied least absolute shrinkage
and selection operator over normal least square predic-
tor with rhombus-shaped two-stage embedding scheme.
Wang et al. [18] proposed a reversible data hiding based
on multiple histogram shifting with rate and distortion
optimization. Traditional schemes used experimental rule
to determine the number of optimal peak and zero bin
pairs and their corresponding values. In order to solve this
problem, the genetic algorithm (GA) in optimization algo-
rithm is applied to search the nearly optimal zero and peak
bins, and to achieve the purpose of increasing capacity and
reducing distortion.
On the other hand, in recent years, due to privacy

requirement, image owners often encrypt the original
content before transferring it to a data manager. The data
manager wants to embed other messages in an encrypted
image for authentication, even the content of the original
image is unknown to him. Therefore, image encryption
is a method that protects the contents of the original
images for the owners of the images. Generally, there are
three roles in the reversible data hiding method on image
encryptions, including content owners, data hiders, and
receivers. The current encrypted RDH scheme embed-

ding mechanism can be divided into two processes, one
is reserving room before encryption (RRBE) [21–23], and
the other is vacating room after encryption (VRAE) [24–
28]. In general, the scheme of the RRBE process has bet-
ter hiding power and recovery ability than the scheme of
the VRAE process. But, VRAE process scheme does not
need additional pre-processing before image encryption,
which can reduce the computational burden for content
owners [28]. [21] applied the patch-level sparse represen-
tation to hide the secret data. Due to encoding by sparse
representation, it can achieve a large vacant space, thus
data hiding can embed more secret messages in image
encryption. [27] proposed a reversible data hiding scheme
for encrypted images based on the adaptive embedding
method. This method makes two different embedding
strategies for larger hiding capacity and applies progres-
sive decryption to obtain better quality of decrypted
image. [28] also proposed a new separable reversible data
hiding in encrypted images via adaptive embedding strat-
egy with block selection. Author separated the encrypted
blocks into two sets corresponding to smooth and com-
plex regions in original image. The data-hiding key is used
to vacate to accommodate additional bits by compressing
LSBs of the block set corresponding to smooth region.
After studying the algorithms that were developed by

previous RDH researchers, we find that the embedding
capacity and the image quality of embedding are quite
depended on the prediction method of RDH algorithm.
We find a common problem of previous algorithms for
embedding, that is, in order to achieve the reversible
requirement, even if the current position cannot be
embedded, it would also be shifted with the reversible
condition, and that will lead to the distortion of image and
lower the image quality after embedding.
In this paper, we propose a new multi-directional gra-

dient prediction, which can generate more accurate pre-
diction results. It is the most critical factor to affect the
performance of the RDH algorithm. And, we also design a
new method that can get the best decision method based
on non-linear regression analysis and self-block standard
deviation statistics to differentiate between embedding
region and non-embedding region, which can reduce the
shifting of the non-embedding region to generate the best
quality of image. Finally, the automatic embedding range
decision with sorting by the amount of regional variance
is proposed. It can prioritize the region which can be pre-
dicted easily to improve the quality of the image after
embedding.
Experimental results demonstrate that our proposed

method can effectively reduce the distortion of image after
embedding. Six images from the USC-SIPI standard test-
ing database [29] and 1000 images that we collected for
related performance evaluations are used, the results indi-
cated that the RDH algorithm we proposed is better than
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the existing five RHD algorithms, Kim et al. (2009) [9],
Sachnev et al. (2009) [12], Luo et al. (2011) [10], Zhao et
al.(2011) [11], and Rad et al. (2016) [13].
The main contributions of this paper are summarized as

follows:

1. We develop a new multi-directional gradient
prediction, which can generate more accurate
prediction results.

2. We design a new method that can get the best
decision method based on non-linear regression
analysis and self-block standard deviation statistics
to generate the best quality of image.

3. Automatic embedding range decision is proposed,
which can prioritize the region which can be
predicted easily to improve the quality of the image
after embedding.

The remainder of the paper is organized as follows.
Section 2 briefly reviews the embedding procedure of
two-stage embedding scheme using rhombus pattern [12].
The proposed reversible data hiding scheme is described
in Section 3. Experimental results and discussions are
generally described in Section 4. Section 5 concludes
this paper, highlighting the main conclusions and future
works.

2 Related work
In this section, we take Sachnev et al. [12] as an example
to introduce the details of two-stage embedding scheme
using rhombus pattern is exploited. Suppose the host
image I is am× n gray-scale image. The data embedding,
extracting, and reversing processes can be described in the
following steps.

1. Image classification
The host image is divided into two sets: “cross”
set and “circle” set. The cross set is used for
embedding data and circle set for computing
predictors.

2. Difference computation and histogram
construction
The cross set is predicted from the average of
four neighboring pixels with the circle set.
Suppose the center pixelM(i, j) of the black can
be predicted from four neighboring pixels
M(i, j − 1),M(i + 1, j),M(i, j + 1), and
M(i − 1, j). The predicted value P(i, j) is
computed as follows:

P(i, j)

=
⌊
M(i, j − 1) + M(i + 1, j) + M(i, j + 1) + M(i − 1, j)

4

⌋

(1)

The prediction error e(i, j) is computed based
on the predicted valueM(i, j) and original value
I(i, j) as

e(i, j) = I(i, j) − P(i, j) (2)

3. Use of sorting
Using sorted prediction errors can embed more
data into the image with less distortion. Note
that the cross and circle sets of the rhombus
scheme are independent each other, because
sorting is possible only when cells are
independent. Therefore, the blocks can be
rearranged by sorting according to the
correlation of neighboring pixels. Local variance
u(i, j) for each black can be computed from the
neighboring pixelsM(i, j − 1),M(i + 1, j) and
M(i, j + 1),M(i − 1, j) as follows

u(i, j) = 1
4

4∑
k=1

(�vk − �v̄)2

where
�v1 = ∣∣M(i, j − 1) − M(i − 1, j)

∣∣
�v2 = ∣∣M(i − 1, j) − M(i, j + 1)

∣∣
�v3 = ∣∣M(i, j + 1) − M(i + 1, j)

∣∣
�v4 = ∣∣M(i + 1, j) − M(i, j − 1)

∣∣
�v̄k = (�v1 + �v2 + �v3 + �v4)/4 (3)

4. Embedding method
After the blocks are rearranged by sorting local
variances, the hidden message h can be embed
by modifying the histogram shift scheme, where
h ∈ {0, 1}. Two threshold values T1 and T2 are
used, where T1 is the positive threshold value
and T2 is the negative threshold value. The
message embedding can be formulated as
follows:

e′(i, j) =
⎧⎨
⎩
e(i, j) + T1 + 1 if e(i, j) > T1 and T1 ≥ 0
e(i, j) + T2 if e(i, j) < T2 and T2 < 0
2e(i, j) + h if T2 ≤ e(i, j) ≤ T1

(4)

where h ∈ {0, 1} is the current scanned hidden
bit. After embedding the hidden data, the
stego-image S is obtained as

S(i, j) = e′(i, j) + P(i, j) (5)

5. Extracting and reversing methods
Prediction error e′(i, j) can be obtained by

e′(i, j) = S(i, j) − P(i, j) (6)

Hidden bit h can be extracted by
h = e′(i, j)mod 2 if 2×T2 ≤ e′(i, j) ≤ 2×T1+1

(7)
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Original prediction error e(i, j) can be generated
as follows:

e(i, j) =
⎧⎨
⎩
e′(i, j) − T1 − 1 if e′(i, j) > 2 × T1 + 1
e′(i, j) − T2 if e′(i, j) < 2 × T2
�e′(i, j)/2� if 2×T2≤e′(i, j)≤2 × T1+1

(8)

Recovery of the value of the original image I(i, j)
is as follows:

I(i, j) = e′(i, j) + P(i, j) (9)

In addition, the embedding, extracting, and reversing
methods for the “circle” set are the same.

3 Methods
Compared to existing reversible data hiding methods,
the proposed method can embed much more data with
less distortion. The proposed framework is mainly based
[12] and is divided into six sub-sections, including pre-
diction via multi-directional gradient scheme, embedding
algorithm, embedding selection by non-linear regression
analysis and self-block standard deviation statistics, auto-
matic embedding range decision, extracting and reversing
algorithm, and overflow and underflow problem.

3.1 Prediction via multi-directional gradient scheme
The accuracy of prediction method can determine the
embedding capacity of an RDH system as well as the image
quality after the embedding. In this paper, we propose

a multi-directional gradient prediction method. Original
image is divided into the cross set, the star, the circle, and
square for four embedding. The block diagram of embed-
ding process is shown in Fig. 1, and the block diagrams of
extracting and reversing process are shown in Fig. 2.
The prediction procedure is described as following:

1. Assume I is a 5 × 5 8 bit grayscale original
image, where I(i, j) is one pixel of the image, as
shown in Fig. 3a. First, all pixels of the image I
are divided into four groups “square,” “cross,”
“star,” and “circle” as shown in Fig. 3b. We
define the four groups as G1, G2, G3, and G4,
respectively. With their independency to each
other, we can utilize G2, G3, and G4 to predict
G1. We only discuss G1 in this section since
G2,G3, and G4 are the same cases.

2. Mirror the 5 × 5 original image I into 7 × 7
mirror image MI, as shown in Fig. 3c.

3. The G1 is hidden as missing image, and then the
four neighboring pixels are utilized to predict
central pixel by Eq. (10), whereMI(i, j) is the
position of the predicted central pixel, as shown
in Fig. 3d. Image PI is the prediction result of
the 7 × 7MI, as shown in Fig. 3e.

PI(i, j) = round
((
MI(i, j − 1) + MI(i + 1, j) + MI(i, j + 1)

+MI(i − 1, j)
)
/4

)
(10)

Fig. 1 The block diagram of embedding process
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Fig. 2 The block diagram of extracting and reversing process

Fig. 3 The operation steps of proposed method. a Original image. b Image classification. cMirroring image. dMissing image. e Prediction image. f
Mirroring prediction image
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4. In order to calculate the gradient information of
the pixels of the border, the prediction image PI
is mirrored into a 9 × 9mirroring prediction
image MPI, as shown in Fig. 3f. Afterwards, the
multi-directional gradient information is
generated through four kinds of sobel masks as
shown in Fig. 4. The four masks are defined as
mx, my, mxy, and myx, where mx is the
horizontal mask, my is the vertical mask, mxy is
45◦ mask, myx is 135◦ mask, respectively.
We use Eqs. (11)–(14) to calculate the gradient
information of the vertical direction �x, the
gradient information of the horizontal direction
�y, the gradient information of the 45◦
direction �xy, and the gradient information of
the 135◦ direction �yx.

�x = |mx × MPI| (11)

�y = |my × MPI| (12)

�xy = |mxy × MPI| (13)

�yx = |myx × MPI| (14)

5. In order to generate the estimated image EI, we
calculate the missing image MI by four kinds of
gradient information �x, �y, �xy, and �yx, as
indicated in Eqs. (15)–(22). With Eqs. (15)–(22),
we can generate eight weights of the eight
neighboring positions, x_weight1, x_weight2,
y_weight1, y_weight2, xy_weight1, xy_weight2,
yx_weight1, and yx_weight2, as shown in Fig. 5.

x_weight1 = Weight/
(
�x(i, j) + Coe × �x(i, j − 1)

+�x(i, j − 2) + 1
)

(15)

x_weight2 = Weight/
(
�x(i, j) + Coe × �x(i, j + 1)

+�x(i, j + 2) + 1
)

(16)

y_weight1 = Weight/
(
�y(i, j) + Coe × �y(i − 1, j)

+�y(i − 2, j) + 1
)

(17)

y_weight2 = Weight/
(
�y(i, j) + Coe × �y(i + 1, j)

+�y(i + 2, j) + 1
)

(18)

xy_weight1 = Weight/
(
�xy(i, j) + Coe×�xy(i−1, j−1)

+�xy(i − 2, j − 2) + 1
)

(19)

xy_weight2=Weight/
(
�xy(i, j) + Coe × �xy(i + 1, j + 1)

+�xy(i + 2, j + 2) + 1
)

(20)

yx_weight1=Weight/
(
�yx(i, j) + Coe × �yx(i−1, j + 1)

+�y(i − 2, j + 2) + 1
)

(21)

yx_weight2=Weight/
(
�yx(i, j)+Coe×�yx(i + 1, j − 1)

+�y(i + 2, j − 2) + 1
)

(22)

Where Weight and Coe are two weight
parameters. In general, the closer the positions
are, the more information is provided, such as
the vertical weight and the horizontal weight. In
contrast, the farther position results in the lack
of the information provided, such as the 45◦
weight and 135◦ weight. Therefore, we use two
parameters Weight and Coe to adjust the
weight of the rule. In this paper, we apply PSO
algorithm [30] to estimate the most appropriate
weight values. This algorithm is applied to solve
optimization problems, and refer to Section 4.3.
On the other hand, if the amount of gradient

Fig. 4 The sobel mask for four kinds of direction a is horizontal mask (mx); b is vertical mask (my); c is 45◦ mask (mxy); d is 135◦ mask (myx)



Hung et al. EURASIP Journal on Image and Video Processing          (2020) 2020:8 Page 7 of 20

Fig. 5 The positions of the eight weights

information of the neighboring pixel is
tremendous, the neighboring pixel contributes
less to predict the central pixel. On the contrary,
the pixel has more contribution. Moreover, the
eight weights of the eight neighboring pixels are
utilized by Eq. (23) to estimate the 5 × 5
estimated image P, where MI(i, j) represents
one pixel of the missing image MI.

P(i, j) = ⌊(
x_weight1 × MI(i, j − 1) + x_weight2 × MI(i, j + 1)

+ y_weight1 × MI(i − 1, j) + y_weight2 × MI(i + 1, j)

+ xy_weight1 × MI(i − 1, j − 1)+xy_weight2 × MI(i +1, j+1)

+yx_weight1 × MI(i − 1, j + 1) + y_weight2 × MI(i + 1, j−1)
)

/weight_sum
⌋

where

weight_sum = x_weight1 + x_weight2 + y_weight1 + y_weight2

+ xy_weight1 + xy_weight2 + yx_weight1 + yx_weight2

(23)

Then, the 5 × 5 difference histogram e is
generated from the difference values between
the original image I and the estimated image P
by Eq. (24).

e(i, j) = I(i, j) − P(i, j) (24)

3.2 Embedding algorithm
Assume T1 and T2 are two thresholds, where T1 ≥ 0 and
T2 < 0. Before embedding, the T1 and T2 thresholds are
decided appropriately by Section 3.4. Next, the embed-
ding position are differentiated into allowing embedding
or non-allowing embedding one by Section 3.3. If the
position is allowing embedding, the message is embed-
ded by Eq. (26). If the position is non-allowing embedding,

the position is skipped. A key pseudo-random binary
sequence generated by the encryption key is utilized to
encrypt secret message w through exclusive-or operation,
encryption data is generated h, as shown in Eq. (25).

h = w ⊕ key (25)

The procedure of embedding message is described
below:

e′(i, j) =
⎧⎨
⎩
e(i, j) + T1 + 1 if e(i, j) > T1 and T1 ≥ 0
e(i, j) + T2 if e(i, j) < T2 and T2 < 0
2e(i, j) + h if T2 ≤ e(i, j) ≤ T1

(26)

where h ∈ {0, 1} is the current encrypted hidden bit.
After embedding the hidden data, the stego-image S is

obtained as

S(i, j) = e′(i, j) + P(i, j) (27)

Likewise, embed the three sets cross, star, and circle as
above. Finally, the stego-image S and two threshold values,
T1 and T2 are outputted.

3.3 Embedding selection by non-linear regression
analysis and self-block standard deviation statistics

By Section 3.2, we can know that the difference his-
togram e and two thresholds T1, T2 are utilized to embed
messages. In general, the difference histogram is concen-
trated on 0, thus the 0 position is embedded preferentially
when embedding. Next, move current position to the left
or right for embedding, as shown in Section 3.4. When
embedding messages, not all positions can be embedded,
but in order to comply with the rule of a reversible data
hiding method, all positions must be shifted, which leads



Hung et al. EURASIP Journal on Image and Video Processing          (2020) 2020:8 Page 8 of 20

to the reduction of image quality after embedding. There-
fore, we hope design a rule that can classify these posi-
tions into allowing embedding positions and non-allowing
embedding positions, and then reduce the unnecessary
shifting to improve the image quality after embedding.

3.3.1 Training stage
First, we choose 30 nature images. Each image is passed
through stage 1 to 4 of Section 3.1 to generate mirror-
ing prediction image MPI and to calculate the standard
deviation value of the current position σi,j by Eq. (28)

σi,j =

∣∣∣∣∣∣∣

√√√√1
8

∑
(i,j)∈ω

[MPIi,j − MPIi,j]2

∣∣∣∣∣∣∣
where

MPIi,j = 1
8

∑
(i,j)∈ω

MPIi,j

ω = {
(i − 1, j − 1), (i + 1, j + 1), (i − 1, j + 1), (i + 1, j − 1),

(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)
}

(28)

Next, calculate the difference histogram e by the stage 5
of Section 3.1. The two thresholds T1 = 4, T2 = − 4 are
chosen to calculate the probability of the current position
that difference histogram e(i, j) is T2 ≤ e(i, j) ≤ T1 when

standard deviation value is σ , and that is the probability of
embedding EP(σ ), as shown in Eq. (29)

EP(σ ) = EC(σ )

EC(σ ) + NEC(σ )

where 0 ≤ σ ≤ 49 (29)

Where EC is the embedding capacity, and NEC is the
non-embedding capacity. Figure 6 indicates the histogram
of the embedding probability, where x axis is the size of
the standard deviation value σ , and y axis is the size of
the embedding probability EP. We can find that when the
lower the standard deviation leads to the higher prob-
ability of embedding, it represents the position is in a
smooth region, thus it is easy to predict. Otherwise, this
position is in a complex area, so it is difficult to predict.
We set a threshold th, when σ(i, j) ≤ th, the position is
used to embedding the message h by Eq. (26), otherwise,
the position is skipped. During embedding, the embed-
ding rage T1 = 4 and T2 = − 4 are applied. We also
utilize the 30 nature images to do the embedded statis-
tics, where threshold th is 2, 4, 6, 8, 12, 16, 20, and 24.
When the threshold th is the same and embedding rage
T1 = 0 ∼ 4, T2 = 0 ∼ − 4, we count the relation
between the PSNR and the embedding capacity, as shown
in Fig. 7, where the label origination denotes the threshold

Fig. 6 Histogram of the embedding probability
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Fig. 7 The PSNR versus the capacity curves of using the different thresholds

is not applied when embedding. Figure 7 shows that the
best embedding threshold is different in different embed-
ding capacity. It also shows that the image quality is really
improved after embedding when the embedding thresh-
old is used. We use non-linear regression analysis method
to predict a quadratic curve function in each embed-
ding threshold th, as shown in Eq. (30), where threshold
th = 2, 4, 6, 8, 12, 16, 20, and24 and x is the embedding
capacity.

y(th, x) = ath + bthx + cthx2 (30)

Figure 8 shows the relation figure of the embedding
capacity and the quality of the image when the threshold
th = 12. The solid line is the line graph after statistics
actually and the dotted line is the quadratic curve graph
by using the non-linear regression analysis. Therefore, we
can generate eight quadratic curve functions.

Fig. 8 The PSNR versus the capacity curves of using the 12 threshold and prediction function
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3.3.2 Testing stage
Before embedding, if this image is the type that has many
edges, the amount of the small standard deviation values
is relatively small, such as standard deviation values = 1,
2, and 3. It would cause some problems like the amount
of the embedding is limited or the embedding range is
increased too much, which reduces the quality of the
embedding. In order to avoid this special case, after gener-
ating mirroring prediction image MPI, count the amount
of the current standard deviation value σi,j in advance,
and then set the largest standard deviation value as initial
value init_th.
Next, employ the capacity of the embedding message x

to find the best threshold best_th by Eq. (31).

best_th = argmax
th

y(th, x) (31)

If best_th < init_th, the best threshold best_th =
init_th. If the best threshold best_th ≥ init_th, the best_th
is not changed. Finally, we can utilize the best threshold
best_th to generate the best decision and to differentiate
between embedding region and non-embedding region,
and then needless shifting is reduced.

3.4 Automatic embedding range decision
In Sections 3.1 and 3.3, our method needs to decide the
embedding rage T1 and T2. Therefore, we propose a
method that can utilize the size of the embedding mes-
sages to generate the best range T1 and T2 automatically

to achieve the best quality of the embedding, as show in
Figs. 9 and 10.
The proposed methodology is described in two stages:

1. Generating an initial embedding range
First, input the embedding messages x and the
best_th be generated by Section 3.3. Next, initialize
F_T1 = 0, F_T2 = 0 and D = R, and then employ
F_T1, F_T2 and th to embed messages by the
embedding method of Section 3.2. The embedding
range is F_T1 and F_T2, while the amount that can
be embedded is less than the capacity of embedded
messages x, the embedding range expands to the left
or right. In contrast, while the amount can be
embedded is more than or equal to the capacity of
embedded messages x, F_T1, F_T2, and D are
outputted, where D is used to judge left or right for
expansion. The aim is, when increasing the range, it
would balance expand to the left or right from center
to achieve the best image quality, as shown in Fig. 9.

2. Generating the best embedding range
First, input the F_T1, F_T2 and D that be generated
from stage 1 and the best_th that be generated from
Section 3.3. We use the best_th to let the embedding
position differentiate between allowing embedding
and non-allowing embedding. Next, it is expanded to
the left or right from center balanced again to
generate another embedding range S_T1 and S_T2.
We compare the image quality of the embedding
range F_T1, F_T2 with the image quality of the

Fig. 9 The flow diagram of generating initial embedding range
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Fig. 10 The flow diagram of generating the best embedding range

embedding range S_T1, S_T2. Sometimes, it would
add the total amount of the small standard deviation
values by increasing the embedding range. This will
increase the success rate of judging the embedded
position and the non-embedded position, thereby
increases the image quality after embedding.
However, due to this condition, the condition would
probably increase the unnecessary shifting to reduce
the image quality after embedding. Therefore, we
compare the image quality after embedding these
two kinds of status and find the best method to
output embedding range, as shown in Fig. 10.

Figure 11 shows the example of embedding hiding mes-
sages into a difference image. Assume x is 20,000 bits,
and we get the results of 8 quadratic curve functions by
Eq. (31), as follows:

1. th2 : y = 53.5, th4 : y = 55.3, th6 : y = 53.8, th8 :
y = 53,

2. th12 : y = 52.2, th16 : y = 51.8, th20 : 53.6, th24 :
y = 53.4

among them the max y is th4, so best_th = 4.
If the embedding position’s standard deviation value

σ ≤ 4, the position is allowing embedding position, oth-
erwise it is non-allowing embedding position. Assume a
message h = 0101. σ(1) ≤ 4, this position is allow-
ing embedding position. We can find that the position
can be an embedded message when − 1 ≤ e ≤ 1 by

Eq. (26); otherwise, it cannot be an embedded message,
but it still needs to be shifted. Thus, e(1) = 2 cannot
be an embedded message, but we still shift it. We can cal-
culate e′(1) = 4 by Eq. (26). Since σ(2) ≤ 4, it is an
allowing embedding position. e(2) = − 1 means it can
be embedded message h(1) = 0, then we can calculate
e′(2) = − 2 by Eq. (26). Similarly, σ(3) ≤ 4 is an allowing
embedding position, e(3) = 0 can be embedded message
h(2) = 1, then e′(3) = 1. σ(4) is an allowing embed-
ded position, the position of e(4) cannot be an embedding
message, thus e′(4) = 5. σ(5) > 4, so it is a non-allowing
embedding position, then e’(5) = 4 and it needs no shift-
ing. e′(6) = 2 is an allowing embedding position; it can
be an embedded message h(3) = 0, then e′(6) = 2. σ(7)
is a non-allowing embedding position, then e′(7) = 0 and
it needs no shifting. σ(8) and σ(9) are allowing embed-
ding positions, the position of e(8) cannot be an embedded
message, then e′(8) = − 3. The position of e(9) can be an
embedded message h(4) = 1, then e′(9) = − 1. Finally,
the embedded difference image e′ is generated.

3.5 Extracting and reversing algorithm
The procedure of message extraction and recovery are
described below:

1. Divide 5 × 5 stego-image S into 4 groups:
square, cross, star, and circle. We define the 4
groups as G1, G2, G3, G4, respectively. We only
discuss G4 in this sub-section because G3, G2,
G1 are the same cases.
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Fig. 11 Example of hiding data into an image of 3 x 3 pixels

2. Mirror the stego-image S into a 7 × 7mirror
image MS.

3. Hidden the G4 as missing image, and the four
neighboring pixels are utilized to predict center
pixel, and then a 5 × 5 prediction image PS is
generated.

4. Mirror prediction image PS into a 9 × 9mirror
prediction image MPS.

5. Calculate the weights of the eight neighboring
pixels. Then a 5 × 5 stego-estimated image P′ is
generated.

6. A 5 × 5 difference histogram e′ is generated by
Eq. (32).

e′(i, j) = S(i, j) − P′(i, j) (32)

7. The embedding position differentiates between
allowing embedding and non-allowing
embedding by Section 3.3. If the position is
allowing embedding, the hiding bit h is extracted
by Eq. (33). If the position is non-allowing
embedding, the position is skipped.

h = e′(i, j)mod 2 if 2×T2 ≤ e′(i, j) ≤ 2×T1+1
(33)

8. The key pseudo-random binary sequence is
utilized to decrypt h through exclusive-or
operation to get original secret message w.

9. If the position is allowing embedding, original
error prediction e(i, j) is obtained by Eq. (34). If
the position is non-allowing embedding,
e(i, j) = e′(i, j).

e(i, j)=
⎧⎨
⎩
e′(i, j) − T1 − 1 if e′(i, j) > 2 × T1 + 1
e′(i, j) − T2 if e′(i, j) < 2 × T2
�e′(i, j)/2� if 2 × T2 ≤ e′(i, j) ≤ 2×T1 + 1

(34)

Recovery of the value of the original image I(i, j)
is as follows:

I(i, j) = e(i, j) + P(i, j) (35)

Figure 12 shows the example of message extraction and
recovery image. Assume x is 20,000 bits, the best_th = 4
can be calculated by Eq. (34), and T1 = 1, T2 = − 1.
σ(1) and σ(2) are less than or equal to best_th, e′(1) and
e′(2) are allowing embedding positions. We can find that
− 2 ≤ e′ ≤ 3 is a position of the embedded message by
Eq. (34). Otherwise, it is a position of the non-embedded
message. Therefore, e′(1) = 4, the position is a posi-
tion of the non-embedded message, then we can calculate
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Fig. 12 Example of extraction and recovery from a processed image of 3 x 3 pixels

e(1) = 2 by Eq. (34). e′(2) = − 2 is a position of
the embedded message, it can be calculated h′(1) = 0
by Eq. (33) and it can be recovered e(2) = − 1 by
Eq. (34). Similarly, e′(3) is an allowing embedding posi-
tion, and it is also a position of the embedded message,
then h′(2) = 1, e(3) = 0. σ(4) is an allowing embed-
ding position, and e′(4) is a position of the non-embedded
message, then e(4) = 3. σ(5) > 4 is a non-allowing
embedding position, then e(5) = 4, it need not shifting.
σ(6) is a allowing embedding position, e′(6) is a position
of the embeddedmessage, then h′(3) = 0, e(6) = 1. σ(7)
is a non-allowing embedding position, then e(7) = 0, it
needs no shifting. σ(8) and σ(9) are allowing embedding
positions, e′(8) is a position of the non-embedded mes-
sage, e(8) = − 2. e′(9) is a position of the embedded
message, then h′(4) = 1, e(9) = − 1. Finally, the mes-
sage h′ = 0101 and the reduced difference image e can be
generated.

3.6 Overflow and underflow problem
A stego-image S is generated from Section 3.2. If the pixel
is outside of 0 ∼ 255, it is called overflow or underflow. It
cannot recover after embedding. Therefore, in embedding
stage, we must consider this problem. This study uses the
solution proposed by [13]. It is described below:

1. Construct them × n location map L, where m,
n is the length and width of the original image I,
respectively. Then, set all the positions L(i) = 1.

2. If embedding positions e(i, j) is [ 1, 254], set
L(i) = 0 and embedding message. Otherwise,
set L(i) = 1 and switch into the next
embeddable position.

3. Encode the location map L by the lossless
compression.

4. Record the least significant bits of first
2

⌈
log2(m × n)

⌉ + LS image pixels where LS is
the length of the compressed location map L.

During decoding processing, first the compressed loca-
tion map L is reconstructed from 2

⌈
log2(m × n)

⌉ + LS
image pixels of marked image. Then, the original loca-
tion map is further generated by lossless decompression.
Finally, the secret message is extracted and the host image
is recovered.

4 Experimental results and discussions
In this section, the proposed method was compared with
five methods, Kim et al. (2009) [9], Sachnev et al. (2009)
[12], Luo et al. (2011) [10], Zhao et al.(2011) [11],and Rad
et al. (2016) [13]. In the experiments, all standard 512 ×
512 grayscale images were served as test images, includ-
ing Baboon, Lena, Peppers, Elaine, Boat, and Barbara from
the USC-SIPI standard testing database [29] and 1000 nat-
ural images that we collected. The proposed method was
implemented using MATLAB Version R2012a on Intel
Core i5 2.5 MHz with 8 G of memory. In the prediction
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stage, after deciding the embedding range, the two param-
eters Weight and Coe were used, as shown in Table 1.
In the embedding selection stage, the non-linear regres-
sion analysis was applied to estimate eight quadratic curve
functions; these functions are as follows:

th = 2 : y = − 7E − 09x2 − 0.0005x + 66.399
th = 4 : y = − 2E − 10x2 − 0.0002x + 59.458

th = 6 : y = 3E − 10x2 − 0.0002x + 57.761
th = 8 : y = 3E − 10x2 − 0.0002x + 56.96

th = 12 : y = 3E − 10x2 − 0.0002x + 56.171
th = 16 : y = 3E − 10x2 − 0.0002x + 55.771
th = 20 : y = 3E − 10x2 − 0.0001x + 55.511
th = 24 : y = 2E − 10x2 − 0.0001x + 55.326

4.1 Prediction difference histograms comparison
In this sub-section, the proposed prediction method was
compared with five methods. It can be found that the
difference histograms that we proposed the prediction
method in Boat image and Peppers image are more con-
centrated and the peaks are higher than other meth-
ods. The prediction performance is better especially in a
smooth image, as shown in Fig. 13. In general, the more
concentrated the different histogram is and the higher
the peak is, the more accurate the prediction result is.
Therefore, ourmethod can reduce the probability of need-
less shifting to get huge embedding capacity and good
embedding quality.

4.2 Comparison hiding rate versus image quality
In this sub-section, the embedding capacity and image
quality of proposed embedding method was compared
with other five methods. In general, peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) for embed-
ding capacity are two kinds of performance indicators.
The bigger the value of PSNR, the smaller the image

Table 1 Optimum results in different thresholds

Two thresholds
Weight Coe

T1 and T2

T1 = 0, T2 = 0 3.06 1.876

T1 = 0, T2 = − 1 2.943 1.713

T1 = 1, T2 = − 1 2.312 1.943

T1 = 1, T2 = − 2 2.322 1.701

T1 = 2, T2 = − 2 2.065 1.798

T1 = 2, T2 = − 3 1.787 1.695

T1 = 3, T2 = − 3 1.783 1.772

T1 = 3, T2 = − 4 2.065 1.733

T1 = 4, T2 = − 4 1.884 1.844

distortion rate, where PSNR is defined as Eq. (36).

(dB) = 10 log10
2552

1
m×n

∑m−1
x = 0

∑n−1
y = 0

[
X(x, y) − X′(x, y)

]
(36)

Where X(i, j) is an original image, and X′ is a cover
image.
The SSIM index is calculated on various windows of

an image. The measure between two images x and y of
common sizem × n is:

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)
(μ2

x + μ2
y + c1)(σ 2

x + σ 2
y + c2)

(37)

Where x is an original image, and y is a cover image, μx
is the average of x, μy is the average of y, σ 2

x is the variance
of x, σ 2

y is the variance of y, σxy is the covariance of x and
y, c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabi-
lize the division with weak denominator, L is the dynamic
range of the pixel-values, k1 = 0.01 and k2 = 0.03 small
constants near zero [31]. The value of SSIM index belongs
to [ 0, 1]. When the two images are identical, the value of
the SSIM similarity is 1. The capacity of cover image is
defined as Eq. (38).

Capacity = hidden_bits
m × n

(38)

Where hidden_bits is the total number of hidden bits,
andm and n represent the length and width, respectively.
In our experiments, it is verified that the hidden mes-

sage can be extracted and the original image can be
reconstructed by our method. We used six test image to
draw the curve graph of the PSNR and the embedding
capacity, as shown in Fig. 14. It can be found that at the
same capacity, our proposed RDH algorithm achieve the
best image quality among the six RDH algorithms. There-
fore, it can demonstrate the embedding performance can
be improved with our method. In our experiments, it is
verified that the hidden message can be extracted and
the original image can be reconstructed by our method.
Figure 14 shows the PSNR and the embedding capacity
that generated by five RDH algorithms and our method
for the test images: Baboon, Lena, Peppers, Elaine, Boat,
and Barbara.
In addition, we make the statistic of the embedding

capacity and PSNR and SSIM with 1000 natural images
that we collected, and then the embedding capacity, PSNR
and SSIM are averaged to draw a curve graph, as shown
in Fig. 15. It can be found that our proposed method can
more improve the embedding capacity and embedding
quality more than the others.
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Fig. 13 The prediction error histograms. a Boat image. b Peppers image

Fig. 14 The PSNR versus the capacity curves of the seven compared RDH algorithms for the test images. a Baboon. b Lena. c Peppers. d Elaine. e
Boat. f Barbara

Fig. 15 The PSNR and SSIM versus the capacity curves of the six compared RDH algorithms for the 1000 images. a PSNR. b SSIM
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4.3 Parameter estimation
In this study, the two parameters Weight and Coe were
utilized in prediction stage, referring to Section 3.1. We
utilized 30 nature images and measured the optimal
parameters of T1 and T2 at different embedding thresh-
old values through an optimal algorithm, particle swarm
optimization (PSO) [30]. A definition of the objective
function of the optimal algorithm is provided in Eq. (39).

max
30∑

Image = 1
Capacity(Image) (39)

Where Image is a training image. The result of the
optimal parameters we obtained was given in Table 1.
Figure 16a shows the plot of the relation between genera-
tion number and fitness value, where the horizontal axis is
the number of generation number and the vertical axis is
the fitness value. Figure 16b shows the plot of generation
number and coefficient value, where the horizontal axis is
the number of generation number, the vertical axis is the
coefficient value,W is the coefficient Weight and C is the
coefficient Coe.

4.4 Performance comparison of the four neighborhood
and eight neighborhood with our method

Before the prediction stage, all pixels of this image are
classified. Therefore, we compare the four neighboring
pixels with the eight neighboring pixels at the same con-
ditioning embedding stage. First, we divide all pixels of
the image into two groups and utilized the four neighbor-
ing pixels to calculate and predict. Then, all pixels of the
image are divided into four groups, and we employed the
eight neighboring pixels to calculate and predict.Wemake
the statistics of the embedding capacity and PSNR with
six test images, including Baboon, Lena, Peppers, Elaine,
Boat, and Barbara, and then the embedding capacity and
PSNR are averaged to draw a curve graph, as shown in

Fig. 17. It can be found that using the eight neighbor-
ing pixels can more improve the embedding capacity and
embedding quality by than the four neighboring pixels.

4.5 Comparison of embedding after sorting and selection
embedding

In our embedding stage, the best standard deviation value
threshold will be generated to achieve optimal embedding
performance. Therefore, we compare below two embed-
ding methods. One is the embedding after sorting; it is
embedded after sorting by the size of the standard devi-
ation values. The other is the selection embedding; it
first makes to sort by the size of the standard deviation
value, next if the value of the current position is less than
the standard deviation value threshold, and the position
will be embedded messages; otherwise, there will be no
change. We make the statistics of the embedding capacity
and PSNR with six test images, including Baboon, Lena,
Peppers, Elaine, Boat, and Barbara, and then the embed-
ding capacity and PSNR to draw a curve graph, as shown
in Fig. 18. It can be found using the selection embed-
ding method can improve the embedding capacity and
the embedding quality of this system, in particular, when
the embedding capacity is small. We also compare with
three test images, including Baboon, Lena, and Peppers,
as shown in Tables 2, 3, and 4, where label Proposed is
embedding from left to right, from top to bottom. Label
Proposed(sort) is embedded after sorting with standard
deviation value. Label Proposed (selection) is sorted by
the size of the standard deviation value. Next, if the value
of the current position is smaller than the standard devi-
ation value threshold, we embed messages in the current
position; otherwise, there will be no change. We find
that sorting with standard deviation value in the same
embedding condition improve the embedding capacity. If
we further process images by selection embedding, we
can further improve the embedding capacity. Besides, the
performance is better for complex images than smooth

Fig. 16 Generation number comparison (a) vs. fitness value; (b) vs. coefficient value
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Fig. 17 Performance comparison of the four neighborhood and eight neighborhood with our method

images, in particular, when the embedding capacity is
small.

4.6 Comparison of automatic embedding range decision
In our system, we can find the best embedding range by
the size of the embedding capacity for the user. We used
four test images, Baboon, Lena, Boat, and Peppers, and
the embedding capacities are 10,000 and 20,000, respec-
tively, as shown in Table 5 and 6, where selection 1 is the
quality of PSNR generated in stage one, and selection 2
is the quality of PSNR generated in stage two. It can be
found that the embedding range can be expanded once to

obtain better image quality when the amount of embed-
ding is small. However, the expansion of embedding range
is not absolutely better when the amount of embedding
is large. Therefore, it compares the image qualities of two
embedding ranges in the second stage, and then it would
generate the optimal embedding range.

4.7 Comparison of the executing-time performance
The execution-time performance comparison among the
concerned six RHD algorithms, as shown in Table 7. We
can find that method Kim et al. (2009) proposed has the
best execution-time performance, because it only used

Fig. 18 Performance comparison of the original method and embedding selection method
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Table 2 Comparison of PSNR and SSIM for our schemes on
Baboon image

Scheme

Payload Payload Payload Payload Payload

= 7864 = 23,593 = 44,564 65,536 = 86,508

PSNR PSNR PSNR PSNR PSNR

SSIM SSIM SSIM SSIM SSIM

Proposed 52.56 45.85 40.17 38.33 36.23

0.9981 0.9894 0.9824 0.9695 0.9571

Proposed (sort) 53.03 46.24 41.60 38.78 36.52

0.9999 0.9942 0.9853 0.9748 0.9644

Proposed (selection) 55.78 47.39 42.72 39.55 37.27

0.9999 0.9943 0.9857 0.9755 0.9643

Difference + 3.22 + 1.54 + 2.55 + 1.22 + 1.04

+ 0.0009 + 0.0049 + 0.0033 + 0.006 + 0.0072

Table 3 Comparison of PSNR and SSIM for our schemes on Lena
image

Scheme

Payload Payload Payload Payload Payload

= 36,700 = 123,208 = 170,394 191,365 = 201,851

PSNR PSNR PSNR PSNR PSNR

SSIM SSIM SSIM SSIM SSIM

Proposed 50.99 42.73 40.31 39.51 38.86

0.9846 0.9308 0.9038 0.8887 0.8836

Proposed (sort) 51.03 42.85 40.51 39.59 38.99

0.9912 0.9321 0.9045 0.8953 0.8874

Proposed (selection) 51.74 43.12 40.70 39.58 39.10

0.9912 0.9330 0.9064 0.8959 0.8885

Difference + 0.75 + 0.39 + 0.39 + 0.07 + 0.24

+ 0.0066 + 0.0022 + 0.0026 + 0.0072 + 0.0049

Table 4 Comparison of PSNR and SSIM for our schemes on Boat
image

Scheme

Payload Payload Payload Payload Payload

= 15,729 = 57,672 = 99,615 133,693 = 159,908

PSNR PSNR PSNR PSNR PSNR

SSIM SSIM SSIM SSIM SSIM

Proposed 52.39 44.99 40.56 38.33 36.82

0.9929 0.9768 0.9461 0.9189 0.9027

Proposed (sort) 52.51 45.16 40.85 38.40 36.95

0.9942 0.9771 0.9480 0.9255 0.9087

Proposed (selection) 53.97 45.37 41.12 38.42 36.98

0.9960 0.9776 0.9484 0.9268 0.9095

Difference + 1.58 + 0.38 + 0.56 + 0.09 + 0.16

+ 0.0031 + 0.0008 + 0.0023 + 0.0079 + 0.0068

Table 5 Comparison of [PSNR,SSIM] for two stages
(messages = 10,000)

Image Proposed (selection 1) Proposed (selection 2)

Baboon [54.71,0.9976] [54.71,0.9976]

Lena [57.35,0.9936] [57.99,0.9936]

Peppers [55.25,0.9949] [56.04,0.9954]

Boat [55.18,0.9952] [56.07,0.9963]

Average [55.62,0.9953] [56.20,0.9957]

a simple shifting. Rad et al. (2016) proposed method
has the worst execution-time performing, because the
embedded rule processing is applied. Then, our proposed
methods, Label Proposed, needs a little bit more embed-
ding time due to the following two main factors. One,
the original image is divided into four groups. Second,
multi-directional gradient prediction is calculated. Label
Proposed (sort) needs more time, because it is embedding
after sorting with standard deviation value. Finally, Label
Proposed (select) is determining whether the position is
suitable for embedding messages. If it is not suitable, it
needs to determine the next position, so it also affects a
little processing time.

5 Conclusions
In this paper, we proposed a new multi-directional gra-
dient prediction method to generate more accurate pre-
diction result. Next, in embedding stage, according to
the embedding capacity of information, we generate the
best decision based on non-linear regression analysis,
which can differentiate between embedding region and
non-embedding region, and then needless shifting was
reduced. Finally, we employ automatic embedding range
decision with sorting by the amount of regional variance.
It can be prioritized to embed for the region which was
easy to predict, and the quality of the image was improved
after embedding. The experimental results showed our
difference histograms of the proposed prediction method
are more concentrated and their peak are higher than
other methods. In the selection of embedding method,
experimental results indicated our method can improve
embedding performance, especially when the image is a

Table 6 Comparison of [PSNR,SSIM] for two stages
(messages = 20,000)

Image Proposed (selection 1) Proposed (selection 2)

Baboon [48.15,0.9907] [48.15,0.9907]

Lena [54.51,0.9918] [55.06,0.9886]

Peppers [53.05,0.9905] [53.05,0.9905]

Boat [52.78,0.9913] [52.78,0.9913]

Average [52.12,0.9902] [52.26,0.9910]
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Table 7 The execution-time comparison among the concerned
five RHD algorithms and our methods

Scheme Execution-time (seconds)

Kim et al. (2009) 0.1114

Sachnev et al. (2009) 0.2696

Luo et al. (2011) 1.3105

Zhao et al.(2011) 0.1573

Rad et al. (2016) 6.7887

Proposed 2.7555

Proposed (sort) 3.9089

Proposed (selection) 4.2216

complex or the amount of embedding is small. More-
over, the experimental results also demonstrated that the
embedding capacity of our proposed the method outper-
forms other methods with less distortion. In the future,
we hope to apply the proposed method to JPEG reversible
data hiding and encrypted image reversible data hiding.
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