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Abstract

In view of the problem that the conventional tracker does not adapt to abrupt motion, we propose a tracking
algorithm based on the hybrid extended ant lion optimizer with sine cosine algorithm (EALO-SCA) in this paper.
Firstly, the multiple elites is used to replace the single elite in the standard ant lion optimizer (ALO). The extended ALO
(EALO) can enhance the global exploration ability, which can handle abrupt motion. Secondly, considering that sine
cosine algorithm (SCA) has strong local exploitation operator, a hybrid EALO-SCA tracker is proposed using the
advantages of both EALO and SCA. The proposed approach can improve tracking accuracy and efficiency. Finally,
extensive experimental results in both quantitative and qualitative measures prove that the proposed algorithm is
very competitive compared to 7 state-of-the-art trackers, especially for abrupt motion tracking.
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1 Introduction
Visual tracking is a fundamental problem pertinent to
many real-world applications including video surveil-
lance, autonomous vehicle navigation, human-computer
interaction, medical imaging, and many more. Although
visual tracking has been studied for decades, it remains a
challenging problem due to various factors such as partial
occlusion, fast or abrupt motion, illumination changes,
motion blur, etc. To further improve tracking perfor-
mance, many tracking methods have been proposed [1,
2]. These methods can be roughly divided into generative
model [3, 4] and discriminative model [5, 6].
In recent visual tracking, significant attention has been

paid to discriminative correlation filters (DCF) [7, 8]
and deep learning [9, 10] based methods. Subsequently,
many improved DCF-based methods have been proposed
because of the high efficiency, such as scale adaptive ker-
nel correlation filter tracker (SAMF) [11] and accurate
scale estimation for robust visual tracking (DSST) [12]
for scale variation, spatially regularized correlation filter

*Correspondence: zhl_lit@163.com
2Software engineering college, Zhengzhou University of Light Industry, No.5
Dongfeng Road, 450002 Zhengzhou, People’s Republic of China
Full list of author information is available at the end of the article

(SRDCF) [13] and context-aware correlation filter track-
ing (CACF) [14] to reduce boundary effects, etc. How-
ever, most of these methods use manual features, which
reduces their accuracy and robustness. Therefore, meth-
ods based on deep learning have attracted attention of
researchers. Considering the effectiveness of DCF, many
methods have been proposed to improve the robustness of
the tracker by replacing the manual feature with the depth
feature, such as hierarchical convolutional features (HCF)
[15], deep features for SRDCF (DeepSRDCF) [16], etc. Of
course, another trend of deep trackers is to design a net-
work and pre-train it to improve tracking performance,
such as convolutional residual learning for visual track-
ing (CREST) [17], cascaded region proposal networks
(C-RPN) [18], etc.
Although achieving state-of-the-art performance, most

of these methods assume that the tracked target has
smooth motion conditions. However, the abrupt or fast
motion of targets often occur in real-world scenarios,
which will make the traditional methods difficult to track
targets well. In order to solve these problems, many meth-
ods have been proposed, including detection based track-
ing methods [19, 20] and motion model based tracking
methods [4, 21].
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Generally speaking, the first consideration method to
handle the problem of abrupt motion is that it has the
strong global search ability. Therefore, I would say that it
can be regarded as an optimization problem, which has
attracted more and more attention of researchers [22].
For example, Gao et al. [23] introduced firefly algorithm
into visual tracking, which had a strong superiority toward
other trackers in accuracy and speed. Zhang et al. [24]
proposed a sequential particle swarm optimization (PSO)-
based visual tracking, which was integrated sequential
information into PSO method to form a robust tracking
framework. This method was more robust and effective
in arbitrary motion or large appearance changes. Nguyen
et al. [25] presented a modified bacterial foraging opti-
mization algorithm, which was introduced into real-time
tracking with changes. The method had a good merit
compared with PSO and particle filter in speed and accu-
racy. These proposed methods have some advantages in
visual tracking. However, each optimization algorithm has
its limitations, there is no single optimization algorithm
that can solve all the problems perfectly according to no
free lunch (NFL) theorem [26].
As we all know, exploration and exploitation are two

important components of any meta-heuristic algorithm.
The purpose of global exploration is to find the best
desired region in a wider search area. Local exploita-
tion is to find a better solution by further searching
some areas of the group, based on the prior knowledge
or the new information found during the search pro-
cess. Therefore, an algorithm can improve convergence
speed and accuracy by properly balancing exploration and
exploitation performance. Hybridizing two algorithm is
the latest research trend for solving global optimization
to overcome the poor exploration ability of one algo-
rithm and poor exploitation ability of the other algorithm.
There are many hybrid meta-heuristic algorithms such
as hybrid gray wolf optimizer and genetic algorithm [27],
krill herd-differential evolution [28], hybrid bat algorithm
with harmony search [29], hybrid gravitational search
algorithm with PSO [30], etc. Of course, many researchers
have introduced hybrid optimization algorithms to visual
tracking. Chen et al. [31] proposed a euclid distance based
hybrid quantum PSO, which overcame the problem that
population diversity reduced during the latter period of
evolution in PSO. It improved tracking efficiency and
decreased detection time cost. Hao et al. [32] proposed a
particle filtering algorithm based on ant colony optimiza-
tion, which enhanced the performance of particle filter
with a small sample set. The method improved the effi-
ciency of visual tracking. Ljouad et al. [33] presented the
hybrid Kalman cuckoo search tracker using a modified
cuckoo search algorithm combined with the Kalman fil-
ter. The proposed algorithm had better performance than
PSO-based tracker. These hybrid optimization algorithms

have improved tracking performance of the original opti-
mization algorithm. In addition, in recent years, we have
focused a lot of attention on the problem of abrupt motion
tracking. Zhang et al. [34, 35] proposed extended kernel
correlation filter (KCF) tracker based on swarm intelli-
gence and extended cuckoo search-based KCF tracker.
A unified framework was designed to capture abrupt
motion. The performance of the hybrid approach is better
than that of the standard algorithm in these literatures.
In recent years, Mirjalili [36, 37] presented two novel

nature-inspired algorithms, ALO and SCA, respectively.
These two optimization algorithms had been applied in
lots of fields successfully [38, 39]. Subsequently, some
improved methods were proposed [40–43]. Especially,
Mirjalili presented that the SCA could be hybridized with
other algorithms in the field of stochastic optimization to
improve its performance in[37], and lots of hybrid meth-
ods had been applied [44–46]. Thus, a hybrid EALO-SCA
is proposed in order to solve abrupt motion tracking in
the paper (see Fig. 1). The approach leverages the comple-
mentary properties between exploratory stage of EALO
and the exploitation operator of SCA to improve tracking
performance.
The main contribution of our work includes three folds:

(1) EALO, an optimization algorithm called EALO is
proposed to enhance the global search ability, thus
increasing the diversity of candidate samples to
handle abrupt motion.

(2) EALO-SCA, a hybrid EALO-SCA is proposed using
global exploration of EALO and local exploitation of
SCA, which can properly balance exploration and
exploitation

(3) A unified tracking framework is designed based on
EALO-SCA, which can improve tracking
performance.

2 The basic sine cosine algorithm and ant lion
optimizer

2.1 Sine cosine algorithm (SCA)
SCA is a population-based optimization algorithm that
depends on sine and cosine operators, differing from other
optimization algorithms [47], for updating the movement
of the search agents toward the best solution [37]. Each
search agent in the initial population updates its position
with respect to the best solution using the Eq. (1).

Xt+1
i =

{
Xt
i + r1 × sin(r2) × ∣∣r3X∗t

i − Xt
i
∣∣ , r4 < 0.5

Xt
i + r1 × cos(r2) × ∣∣r3X∗t

i − Xt
i
∣∣ , r4 ≥ 0.5

(1)

where Xt
i indicates the position of the i-th individual at

the t-th iteration, X∗t
i is the position of the best individual

obtained so far in i-th individual, r4 is a random number in
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Fig. 1 Example tracking results of different methods. Sequence 1–2: BLURFACE, ZT

[ 0, 1] . r1 , r2, and r3 are random numbers. r4 is a random
number in [0,1], and || indicates the absolute value. Basic
principle of SCA is represented in Fig. 2.
Figure 2 shows that the current solution will be away

from the destination and explore the search space when
the individual moves in [−2,−1) or (1, 2]. However, the

current solution will be toward the destination and exploit
the search space when the individual moves in [−1, 1].
Exploration means that particles need to be searched

in a wider area. Exploitation is that particles are searched
locally in small areas. Therefore, the exploration and
exploitation phases seek conflicting objects. For SCA, the

Fig. 2 Updating toward or away from destination [37]



Zhang et al. EURASIP Journal on Image and Video Processing          (2020) 2020:4 Page 4 of 18

Fig. 3 Decreasing range of the sine and cosine with the increase of iterations [37]. a a = 3, b a = 2

range of sine and cosine is decreased during optimization
using Eq. (2) to balance exploration and exploitation.

r1 = a − t
a
T

(2)

where a is a constant, t is the current iteration, andT is the
maximum number of iterations. Figure 3 shows how this
equation decreases the range of sine and cosine functions
with the increase of iterations.
It can be seen from Fig. 3 that the range of the search

space gradually decreases and the exploitation becomes
more and more important with the increase of iterations.
In addition, the range of Fig. 3b is smaller than Fig. 3a.
This phenomenon shows that a = 2 is easier to enter the
exploitation phase than a = 3, but the ability to explore
is weakened. That is to say, the parameter a leads to bal-
anced exploration and exploitation of the search space. In
this study, we set the parameter model to be a = 2. In
a word, the basic SCA utilizes Eq. (1) as a special path
to converge to global optimum. Therefore, the basic SCA
performs well in exploitation operator.

2.2 The ant lion optimizer (ALO)
The ALO algorithm mimics the hunting mechanism of
antlions in nature [36]. This behavior can be summarized
into five main steps: the random walk of ants, building
traps, entrapment of ants in traps, catching prey, and
re-building traps. The following subsections discuss the
mathematical model in details.

2.2.1 The randomwalk of ants
This random walk is chosen for modeling ants’ movement
as follows:

Q(m) =[ 0, cumsum(2r(m1) − 1), cumsum(2r(m2)

−1), ..., cumsum(2r(mT ) − 1)]
(3)

where cumsum calculates the cumulative sum, T shows
the maximum number of iteration, m is the step of ran-
dom walk (iteration in this study), and r(m) is a random
number 0 or 1. In order to ensure that the ants are walk-
ing within the search space, they are normalized using the
following equation:

Qt
i =

(
Qt
i − ai

) × (
dti − cti

)
(bi − ai)

+ ci (4)

where ai is the minimum of random walk of i-th variable,
bi shows the maximum of random walk in i-th variable,
cti indicates the minimum of i-th variable at t-th iteration,
and dti is the maximum of i-th variable at t-th iteration.

2.2.2 Building traps
Random walks of ants are affected by antlions’ traps using
mathematic model:

cti = Antliontj + ct , dti = Antliontj + dt (5)

where ct is the minimum of all variables at t-th iteration,
dt is the vector including the maximum of all variables at
t-th iteration, Antliontj shows the position of the selected
j-th antlion at t-th iteration. In this study, the best antlion
obtained so far in each iteration is saved and considered
as an elite. Since the elite is the fittest antlion, it should
be able to affect the movements of all the ants during
iterations. Therefore, the ants’ position update can be
expressed as:

Antti = Rt
A + Rt

E
2

(6)

where Rt
A is the random walk around the antlion selected

by the roulette wheel at t-th iteration, Rt
E is the random

walk around the elite at t-th iteration, and Antti indicates
the position of i-th ant at t-th iteration.
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2.2.3 Entrapment of ants in traps
When an ant fell into a trap, antlions shoot sands out-
wards the center of the pit, so ants gradually moved to
the antlion. Finally, antlions preyed on ants. To simu-
late this behavior, ct = ct

/
I and dt = dt

/
I are proposed.

Parameter I controls the trade-off between exploration
and exploitation in the ALO. I is a ratio (I = 10w t

T ). w is
described as follows:

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2; t > 0.1T
3; t > 0.5T
4; t > 0.75T
5; t > 0.9T
6; t > 0.95T

(7)

where t is the current iteration, T is the maximum num-
ber of iterations. w gradually increases, then I gradually
increases, but ct and dt gradually decrease.

2.2.4 Catching preys and re-building traps
The final stage of hunt is when an ant reaches the bottom
of the pit and is caught in the antlion’s jaw. An antlion is
then required to update its position to the latest position
of the hunted ant to enhance its chance of catching new
prey. The following equation is proposed in this regard:

Antliontj = Antti if f
(
Antti

)
> f

(
Antliontj

)
(8)

where Antliontj shows the position of selected j-th antlion
at t-th iteration, and Antti indicates the position of i-th ant
at t-th iteration. The antlion will update its position where
the ant is last caught and rebuild the trap to hunt the next
ant.

3 The extended ant lion optimizer method
In the section, the motivation and implementation of
EALO algorithm are explained in detail.

3.1 Motivation of EALO
In the original ALO algorithm, the updated position of ant
for the next generation is given by Eq. (6). However, it is
observed that the roulette wheel selection method is more
likely to be selected Rt

E . That is, ants tend to move around
single elite. In addition, the information of single elite is
extremely limited, which will lead to local trapping prob-
lem. Therefore, it is necessary to establish elite library for
storing better individual (antlion).

3.2 Implementation of EALO
Based on the above problems, we introduce multiple
elites, and they are designed as an elite library (as shown
in Eq. (10)). During the early search, multiple elites par-
allel competition can not only enhance exploration ability
of the original ALO algorithm, but also ensure the conver-
gence speed of the algorithm. However, n becomes smaller

Algorithm 1 Pseudo-code of the EALO
Initialize: the population of ants and antlions,Max_iter
Calculate the fitness of ants and antlions
Find the best antlion and assume it as the elite
while Current_iter<Max_iter+1 do

for every ant do
Select an antlion using Roulette wheel
Update c and d using Eqs. (9) and (10)
Create a random walk and normalize it using Eqs. (3)
and (5)
Update the position of ant using Eq. (13)

end for
Calculate the fitness of all ants
Replace an antlionwith its corresponding ant if it becomes
fitter (Eq. (12))
Update elite library if an antlion becomes fitter than the
elite(Eq. (15))

end while
Return elite

during the later search, and it can reduce the unneces-
sarymovement of ants. In conclusion, EALO enhances the
optimization capability, meanwhile, the efficiency of the
original ALO has improved. Elite library is introduced into
Eq. (6)in order to achieve these effects and the resultant
modified equation is written as in Eq. (9).

Antti = Rt
A + 1

nR
t
E1 + 1

nR
t
E2 + · · · + 1

nR
t
En

2
(9)

n = round(10 − 9t
T

) (10)

where n is the number of elites, t is the current iteration,
T is the maximum number of iteration, Rt

En is the random
walk around the n-th elite at t-th iteration. Elite library is
described as follows:

sort_antliontp → elitetq f
(
sort_antliontp

)
> f

(
elitetq

)

p = 1, 2...N ; q = 1, 2, ...n
(11)

where f is fitness function, N is the number of antlions,
→ is the former n antlions as the elite library of the next
iteration.
Equations (9), (10), and (11) are used instead of Eq. (6)

in the original ALO to form a new optimization algo-
rithm, which we call EALO. This algorithm enhances the
global optimization ability through parallel cooperation of
multiple elites and avoids trapping in local optima. The
pseudo-code of the EALO is as shown in Algorithm 1.
Themain difference betweenALO and EALO is how the

ants’ location is updated. In addition, the EALO contains
the concept of elite library compared with ALO.
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Fig. 4 The tracking result with adaptive boundary shrinking mechanism

3.3 Performance evaluation of EALO
In order to verify the feasibility of our proposed method,
we selected the #0043 frame of the DEER video sequence,
as shown in Fig. 4, which had two similar targets. Fur-
ther, to make a fair comparison, the same target model
(histogram of oriented gradient, HOG), motion model
(random walk model), and parameters were used. As
aforementioned, there are three main parameters, namely
Np (population size), T (the number of iterations), and I
(the shrinkage factor, the value of I heavily depends on w),
respectively. In this study, n = 75; T = 200; t > 0.5T ,w =
1; t > 0.7T ,w = 2; t > 0.9T , and w = 2.7.
Figure 4 shows the searching process using adaptive

boundary shrinking mechanism. Firstly, at the beginning
of the first layer, we guarantee that original ALO and
EALO have the same initial position of search agent. Sec-
ondly, in the second layer, all search agents in the original
ALO algorithm always randomly walk around the false
DEER. In contrast, EALO has several different search
areas since it has elite library. Thirdly, in the third and
fourth levels, the original ALO algorithm always searches
around the false DEER and it is difficult to jump out of
the local optimum because of single elite. However, the
EALO can track the target successfully. And as shown by
Eq. (10), the number of elites decreases with the increase
of iterations. Therefore, in the later stages of the search,
EALO can reduce unnecessary search space and ensure

convergence speed. Moreover, we repeat this experiment
60 times. The original ALO is successful 47 times, and the
success rate is 78.3%. The EALO is successful 60 times,
and the success rate is 100%. Considering the above, the
proposed EALO has some advantages in this paper.

4 The EALO-SCA trackingmethod
In this paper, in order to enhance the exploitation perfor-
mance of EALO, a hybrid EALO-SCA is proposed, which
combines the better exploratory performance of EALO
with the better exploitation performance of SCA. Visual
tracking is considered to be a process of searching for
target by various ants and antlions in sequential images.
To this end, an EALO-SCA-based tracking framework is
presented as shown in Fig. 5.
As shown in Fig. 5, the target is first chosen by the user

in the first frame, and the state vector X =[ x, y, s] is ini-
tialized, where [ x, y] denotes the location of the target
pixel coordinates, and s is the scale parameter. Secondly,
according to a dynamic model, the predicted position of
the target is given in the next frame. Then, the features of
candidate sample generated by EALO-SCA and template
are extracted. Finally, the target candidate with the largest
similarity value is found by similarity function, which is
the target. In this work, our main contribution is how to
switch thresholds between EALO and SCA to generate
candidate sample images.
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Fig. 5 The flowchart of the EALO-SCA tracker

4.1 Basic idea
Although EALO enhances significantly in the exploratory
phase and avoids falling into local optimum, the method
suffers from a lack of an efficient exploitation operator
due to randomwalk rather than specific paths. Conversely,
the SCA has an efficient exploitation operator and suf-
fers from a lack of an exploration phase, and SCA adopts
a specific path to the target solution (the best solution so
far). Therefore, a novel hybrid EALO-SCA is proposed,
which can balance exploration and exploitation. In hybrid
EALO-SCA, EALO algorithm is utilized for global search,
which makes most solution move toward a more promis-
ing area. After exploration phase, SCA is utilized to search
locally with a small step to get the best solution.
The first advantage of the hybrid algorithm is to intro-

duce the updated formula of SCA into EALO, which will
force all solutions to update their positions faster toward
the target solution. This helps the EALO to enhance
exploitation operator. The second advantage of the hybrid
algorithm is that it can enhance the performance of SCA
in the exploratory phase. Because the solution in SCA is
limited to [−2, 2] and cannot move further away from the
destination.
Considering the above, EALO-SCA has obvious advan-

tages over the EALO and SCA.

4.2 The proposed tracking method
Suppose there is target in the image being searched.
And a group of target candidates are randomly gener-
ated in the image. The aim of EALO-SCA tracker is
to find the “best” candidate using the proposed hybrid
algorithm. In the EALO-SCA tracker, ants and antlions
can be considered as search candidates and storage can-
didates, respectively. They are both target candidates.
Search candidates and storage candidates are the loca-
tions generated by ants and antlions using the EALO-
SCA. In addition, ants and antlions are mixed, and the

individuals with high fitness value are selected as antlions
(storage candidates).

4.2.1 The fitness function
The fitness function measures the values of correlation
between the target and the target candidate. In addition,
the HOG is the structural feature of the extracted edge
with well geometric and optical invariance. Therefore,
their similarity is computed as:

ρ (X,Y ) = cov (X,Y )√
D (X)

√
D (Y )

(12)

where D(·) denotes the variance and Cov(·) denotes
covariance. X and Y are the HOG feature of the target
and candidate sample respectively. The fitness function is
defined as follows:

E = 2 + 2 ∗ ρ(x, y) (13)

where ρ(X,Y ) indicates the value of the correlation coeffi-
cient, and the function E(s) to be minimized is analogous
to the internal energy of the system. Finally, the optimal
value points to the best target candidate as the target
image.

4.2.2 The global motionmodel
Recently, tracking algorithms, using motion models to
capture uncertain motion, have attracted much attention.
In traditional visual tracking, a random walk model, a
nearly constant velocity model, and a Gaussian distribu-
tion model are commonly selected. Obviously, the three
models cannot solve abrupt motion tracking effectively.
Therefore, we design a global motion model to estimate
the position of candidate image samples.

xt+1 = Kt × (EALO) + (1 − Kt) × (SCA) (14)
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where x =[ x, y] is vector and it denotes a pixel location, K
is the model parameter and is obtained as follows:

Kt+1 =
{
1 if R > P
0 if R ≤ P (15)

In the next iteration, the model selection depends on
the parameter K. R is a random number in [0,1]. P shows
the threshold and its analysis is detailed in section 4.3.
Equations (14) and (15) are used to design a global motion
model, which combines the effective exploratory stage of
EALO with the effective exploitation operator of SCA.
The purpose of global motion model is to solve abrupt
motion tracking.

4.2.3 The tracking implement
In the EALO-SCA tracker, target candidates are firstly
generated by motion model of EALO-SCA. Then, the
features of template and target candidate are extracted,
and the best target candidate is found by similarity mea-
surement. Finally, the best target candidate is used as
the output of the current frame and the template of the
next frame. In addition, EALO-SCA tracker makes use of
EALO’s better global search ability and SCA’s better local
search ability to improve tracking accuracy and efficiency.
The pseudocode of proposed hybrid EALO-SCA tracker
is shown in Algorithm 2.

4.3 Parameters’ sensitivity and adjustment
Parameter tuning is often a key aspect in optimization
algorithms. The speed and accuracy should be consid-
ered simultaneously during the parameter tuning. In
hybrid EALO-SCA tracker, there are four main param-
eters, namely Np (the numbers of ants and antlions), I
(the shrinkage factor), T (the numbers of iteration), and
P (threshold), respectively. In this study, we discuss two
parameters Np and P; then, the parameter I and T are
designed to be t > 0.5T ,w = 1; t > 0.7T ,w =
2; t > 0.9T ,w = 2.7 and 500. We choose BOY video
sequence to test tracking performance because the target
undergoes fast motion and motion blur caused by camera
shaking. In this video sequence, their maximum displace-
ment between frames reaches 21 pixels. The BOY video
sequence is available on the website http://www.visual-
tracking.net.
We first analyze the population size Np. Other parame-

ters are fixed. We test the performance of the EALO-SCA
tracker by calculating the number of lost frames, the num-
ber of frames where the distance precision between its
upper left corner and the ground-truth is more than 17,
and costing time. The result is shown in Fig. 6.
Figure 6 shows that when the population sizeNp < 150,

the number of lost frames relatively decreases along with
the increase of Np. In other words, the accuracy is not
achieved. However, when the population size Np > 150, a

Algorithm 2 Pseudo-code of the EALO-SCA tracker
Input: Image sequence
Initialize: Locate the target object in the first frame
manually; The initial number of ants and antlions(Np),
Max_iter(T), the threshold(P); EALO: The shrinkage
factor(I); SCA: Constant(a), r2, r3, r4
Calculate the fitness of ants (search candidates) and antlions
(storage candidates)
Find the best antlion and assume it as the elite;
Tracking:
for i from 2 to the last frame do

while Current_iter<Max_iter+1 do
for every ant do

Update r1,r2,r3,r4
R=create a random number between 0 and 1
if (R≤0.5) then

if (r4 ≤0.5) then
Xt
i + r1 × sin(r2) × ∣∣r3Pti − Xt

i
∣∣

else if (r4 >0.5)
Xt
i + r1 × cos(r2) × ∣∣r3Pti − Xt

i
∣∣

end if
else if (R>0.5)
Select an antlion using Roulette wheel
Update c and d using Eqs. (9) and (10)
Create a random walk and normalize it using
Eqs. (3) and (5)
Update the position of ants using Eq. (13)

end if
end for
Calculate the fitness of all ants
Replace an antlion with its corresponding ant( if it
becomes fitter (Eq. (12))
Update elite library if an antlion becomes fitter than the
elite(Eq. (15))

end while
Display the elite indicating the best antlion, which is the
target

end for

large amount of time is wasted. That is to say, the tracking
efficiency is reduced. Therefore, comprehensive consider-
ing the tracking accuracy and speed, we set the population
size of the parameter model to be Np = 150.
Another parameter is the threshold P. The proper

threshold P makes an appropriate trade-off between
exploration and exploitation, which is key factor for a
good tracking result. The Euclidean distance between the
ground-truth and estimated by the different thresholds
is calculated in each frame visually, and the comparisons
results are shown in Fig. 7. It can be seen from Fig. 7 that
the EALO-SCA performs well in the BOY video sequence
at threshold P = 0.5. It can track the target successfully.
However, other parameters make the method fail to track
the whole BOY video sequence successfully.
In addition, we show partial sequences of BOY video to

visualize the results as shown in Fig. 8. All the selected

http://www.visual-tracking.net
http://www.visual-tracking.net
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Fig. 6 Performance comparison with different population size Np

parameters P can track by the tracker except for P = 0.3
at frame #0085. Only the selected parameters P = 0.5 and
P = 0.1 can track the target at frame #0115, and P = 0.5
completes the whole video sequence successfully. Thus,
we set the threshold of the parameter model to be P = 0.5.

5 Experimental results and discussion
We implemented the proposed tracker in MATLAB
R2014a. The experiments were conducted on a PC with
Intel Core i5-7500 3.40GHz and 8GB RAM. In order to
verify the effectiveness of EALO-SCA tracker, the experi-
ment is divided into three parts:

1. Comparison of tracking performance among
EALO-SCA, SCA, ALO, and EALO

2. Comparison of the state-of-the-art trackers

3. Discussion

In these experiment, the parameters of EALO-SCA are
set as follows: the threshold (P = 0.5); EALO, the shrink-
age factor (t > 0.5T ,w = 1; t > 0.7T ,w = 2; t >

0.9T ,w = 2.7; t is the current number of iteration); and
SCA, the constant (a = 2), r2 ∈[ 0, 2π ], r3 ∈[ 0, 2] and
r4 ∈[ 0, 1]. The parameters of SCA, ALO, and EALO are
consistent with EALO-SCA.

5.1 Comparison of tracking performance among
EALO-SCA, SCA, ALO, and EALO

Figure 9 shows the relation between the convergence
accuracy and the parameters setup, including the
population size and the iteration number. The X-axis
represents the population size, the Y -axis shows the

Fig. 7 Tracking accuracy comparisons of different threshold P. P=0.1, 0.3, 0.5, 0.7, 0.9
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Fig. 8 A visual tracking results with different threshold P. P=0.1, 0.3, 0.5, 0.7, 0.9

iteration number, and the Z-axis denotes the similarity
value.
It can be clearly seen from Fig. 9 that SCA-based tracker

has the best result when Np = 50 and T = 60, and
its fitness value is 0.9961. It still shows poor performance
because SCA does not have good global exploratory per-
formance. The result of EALO-based tracker is better than
that ALO-based tracker because EALO has the ability to
jump out of local optimum. In addition, the tracker based
on EALO-SCA shows the best performance and requires
less population size and iteration number to achieve sta-
ble tracking results than the other three optimization
algorithms. EALO-SCA tracker combines EALO’s global
exploration with SCA’s local exploitation, which makes an
appropriate trade-off between exploration and exploita-
tion for improving tracking performance.

5.2 Comparison of the state-of-the-art trackers
To prove the feasibility of the proposed tracker, we
selected 12 video sequences in the experiment. The source

of the FACE1 is the dataset AVSS2007. ZT, FHC, and ZXJ
are our own. Other sequences are available on the website
http://www.visual-tracking.net (listed in Table 1). Note
that we extracted the frames 306-310 in BLURFACE video
sequence, which could represent the problem of frame
dropping. Thus, it can provide scenes for abrupt motion.
The population size and iteration number are set to 150
and 500, respectively, in EALO-SCA tracker.
We compared our tracker EALO-SCA with 7 state-of-

the-art trackers(including DSST [12], fast compressive
tracking (FCT) [48], kernelized correlation filters (KCF)
[49], exploiting the circulant structure of kracking-by-
detection with kernels (CSK) [50], fast tracking via spatio-
temporal context learning (STC) [51], least soft-threshold
squares tracking(LSST) [52], and CACF [14]).In order to
ensure the consistency of the experiment, the parameters
of our tracker are consistent in the experiment. The exper-
imental data of other trackers come from the experimental
results executed by source code. In this experiment, we
divided the 12 video sequences into 3 groups based on

Table 1 The video sequences

Video Frame Max displacement X max displacement Y max displacement

MHYANG 1490 7 7 4

FISH 476 15 15 13

BOY 602 21 21 19

HUMAN7 250 31 31 21

JUMPING 313 36 18 36

DEER 71 38 38 34

FACE1 380 39 22 39

ZXJ 118 70 70 18

BLURBODY 334 76 76 26

FHC 123 188 188 104

BLURFACE 488 202 202 71

ZT 115 256 256 149

http://www.visual-tracking.net


Zhang et al. EURASIP Journal on Image and Video Processing          (2020) 2020:4 Page 11 of 18

Fig. 9 Similar values against population size Np and number of iteration T. a SCA, b ALO, c EALO, d EALO-SCA

the target’s displacement between image frames, includ-
ing the slight motion group, the middle motion group, and
the largemotion group. The displacement of slight motion
group is less than 35 pixels, including the MHYANG,
FISH, BOY, and HUMAN7 video sequences. The middle
motion group contains the JUMPING, DEER, FACE1, and
ZXJ video sequences, whose motion displacement is more
than 35 pixels and less than 75 pixels. The displacement
of large motion group is more than 75 pixels, the video
sequences are BLURBODY, FHC, BLURFACE, and ZT,
respectively.
Additionally, to evaluate the accuracy of the trackers,

the videos were manually labeled by identifying the upper
left corner of the tracked target in each frame visually.
The tracking results were evaluated by using distance
precision (DP), center location error (CLE), and over-
lap precision (OP) in [53]. DP is the relative number of
frames in the sequence where the center location error is
smaller than a certain threshold. CLE is computed as the
average Euclidean distance between the ground-truth and
tracking result. OP is defined as the percentage of frames
where the bounding box overlap exceeds a threshold t ∈
(0, 1).

5.2.1 Qualitative analysis
The slight motion group The tracking results with the
slight motion are shown in Fig. 10. MHYANG video
sequence has smallest motion at 7 pixels, it has the larger
illumination changing at frame #0378. FCT has slightly
worse tracking results, while others have similar perfor-
mance. In FISH video sequence, it is obvious that there is
camera shake at frame #0058 and #0312, and the bright-
ness is dimmed at frame #0178. Nearly all trackers can
catch up with the target successfully except for CSK.
Our tracker and KCF perform best. BOY video sequence
has severely blurred at frame #0330 because of camera
shaking. At first, LSST is failure at frame #0330, #0508,
and #0595, respectively. Then, STC is failure at frame
#0508 and #0595, respectively, and CSK deviates the target
because of serious blur. At the end, CSK is failure at frame
#0595, and FCT slightly drifted away from the target.
Other trackers complete the whole video sequence. For
HUMAN7 video sequence, it is covered by tree shadows
several times at frame #0090, #0168, and #0208. All track-
ers are failure except for CACF and our tracker. Although
the target is shaded under the tree, our tracker still can
track the target and get the better performance. All in
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Fig. 10 The tracking results with the slight motion. Sequence 1-4: MHYANG, FISH, BOY, HUMAN7

all, our tracker can keep the better performance with the
slight motion group.

The middle motion group In order to verify the excel-
lent performance of our tracker, we continue to enhance
the motion displacement. The tracking results with the
middle motion are shown in Fig. 11. It is obvious that
JUMPING video sequence has been seriously blurred
because of the camera shaking. In this case, CSK, DSST,
FCT, KCF, and STC lose the target unfortunately before
the frame #0096. Although our method drifts the object
slightly, it recovers quickly. And our tracker has a better
performance. In DEER video sequence, the target under-
goes fast motion and multiple similar targets. DSST, KCF,
STC, and CACF have been lost target at frame #0032.
Although KCF and CACF recover on several frames, they
still cannot complete the whole video sequence. However,
FCT, CSK, and our tracker complete the whole video

sequence, and CSK and our tracker obtain the better
tracking results. FACE1 video sequence displays that the
scale changes occur in video frames. Obviously, CSK and
LSST have lost target at frame #0210. Although other
methods work well, DSST shows the best performance.
In ZXJ video sequence, the target experiences abrupt
motion. All tracks can track the target before at frame
#0042, but all tracks deviate the target besides CACF and
our tracker at frame #0069. In addition, LSST deviates the
target because of abrupt motion, but it can recover track-
ing. Our tracker obtains the best performance. On the
whole, for the middle motion group, our tracker achieves
the better track performance compared with other track
methods.

The large motion group We continue to enhance the
motion displacement. For the large motion group, we
choose BLURBODY, FHC, BLURFACE, and ZT video
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Fig. 11 The tracking results with the middle motion. Sequence 1-4: JUMPING, DEER, FACE1, ZXJ

sequences, and their maximum displacements are 76, 188,
202, and 256 pixels, respectively. The tracking results
with the large motion are shown in Fig. 12. In BLUR-
BODY video sequence, the target goes through a large
displacement, and there was a very severe blur because
of the camera shaking. Firstly, LSST is failure at frame
#0100. Then, CSK and STC are also failure at frame #0212.
Finally, all tracks lose the target at frames #0271 except
for CACF and our tracker. Our tracker obtains the best
performance. For FHC video sequence, the maximum dis-
placements are 188 pixels. Our tracker performs much
better than other trackers, while other trackers all fail at
frame #0073 except for CACF and our tracker. For BLUR-
FACE video sequence, we design the problem of the frame
dropping. And there has a severe motion blur because of
fast motion at the frames #0153, #0241, and #0310. Other
trackers are failure, but our tracker still can track the tar-
get successfully. ZT video sequence has the largest motion

at 256 pixels, all tracks deviate or lose the target except
for CACF and our tracker at frame #0046. Although some
tracking methods recover at frame #0105, they still can-
not complete the whole video sequence. Therefore, our
tracker and CACF obtain the better performance. In a
word, our tracker has a strong superiority toward other
trackers for the larger motion group.

5.2.2 Quantitative analysis
Figures 13 and 14 show the OP and DP of 12 different
video sequences respectively. For Fig. 13, the X-axis rep-
resents the threshold, and the Y -axis represents the ratio
between the number of frames, overlap is greater than the
threshold, and the total number of frames. The larger the
area under the curve, the better the tracker. For Fig. 14, the
Y -axis also shows the ratio between the number of frames,
distance of predicted and ground truth bounding box is
below the threshold, and the total number of frames. The
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Fig. 12 The tracking results with the large motion. Sequence 1-4: BLURBODY, FHC, BLURFACE, ZT

higher the slope, the better the tracking performance, this
is because the center distance of more sequences is lower
than the threshold. Figures 13 and 14 can vividly show
the performance of different tracking methods, including
DSST, FCT, KCF, CSK, STC, LSST, CACF and our tracker.
In addition, in order to clearly observe the tracking

results of different trackers, we utilize data to display the
tracking results. Tables 2 and 3 list a per-sequence com-
parison of our tracker to DSST, FCT, KCF, CSK, STC,
LSST, and CACF, while Table 2 is concerned with aver-
age overlap rate and Table 3 refers to average center error
rate. For the average overlap rate, the larger the value, the
higher the tracking accuracy; however, for the center error
rate, the smaller the value, the higher the tracking accu-
racy. In the tables, the best and second best results are
shown in bold and italic. As can be seen from Tables 2 and
3, our tracker has a strong advantage in large displacement
video sequences. At the same time, our tracker performs
best on average in all videos.
As a result, it is obviously seen in Figs. 13, 14, Tables 2

and 3 that our tracker performs much better than 7

other trackers especially for large displacement video
sequences. In other video sequences, our tracker also
shows a better performance. As a whole, the proposed
tracker has a good merit for abrupt motion tracking com-
pared with other trackers.

5.3 Discussion
All the aforementioned experiments have validated the
proposed tracker in smooth and abruptmotions. For these
12 video sequences, ZXJ, FHC, and ZT video sequences
mainly go through abrupt motion. FACE1 video sequence
faces scale variation, motion blur, and abrupt motion. The
challenges of other video sequences can be seen in [53,
54].
FCT employs non-adaptive random projections, and

through training compressive samples the classifier is
update in time. It can handle pose variation well (e.g.
MHYANG video sequence). However, it adopts sam-
pling Haarlike features to represent the object appear-
ance; when target experiences motion blur and the occlu-
sion, the method loses or drifts the target frequently



Zhang et al. EURASIP Journal on Image and Video Processing          (2020) 2020:4 Page 15 of 18

Fig. 13 The average precision of OP

(e.g., HUMAN7, JUMPING, BLURBODY, and BLUR-
FACE video sequences). In addition, FCT obtains sam-
ples nearby the target position in the previous frame.
Therefore, when the target appears large displacement
motion, the sampling radius could not cover the uncer-
tainty motion so that it is difficult to maintain tracking
(e.g., ZXJ, FHC, and ZT video sequences).
CSK uses a density sampling strategy to process mul-

tiple sub-windows in a frame and classify them into a
cyclic matrix. STC and CACF use context information
to design a tracking framework so that they can han-
dle background clutters very well (e.g., MHYANG video
sequence). The main idea of the former is to model the
spatio-temporal relationships between the object of inter-
est and its locally dense contexts in a Bayesian framework.
The latter presents a framework that allows the explicit
incorporation of global context within correlation filter
trackers. Therefore, CACF performs well in the above
video sequences.
DSST and LSST show the relationship between all the

candidates and the targets in different forms. They per-
formwell in the smoothmotion (e.g., MHYANG and FISH
video sequences). However, when the tracking object
encounters motion blur (e.g., HUMAN7 video sequence),

or abrupt motion (e.g., BLURBODY, FHC, BLURFACE,
and ZT video sequences), they perform the bad track-
ing results. The main difference between KCF and DSST
is that DSST has scale variation. Therefore, the track-
ing result of DSST is generally better than that of KCF.
However, they are hard to cover the uncertain motion
states, which performs poor (e.g., ZXJ, BLURBODY, FHC,
BLURFACE, and ZT video sequences).
Our proposed method shows the better performance in

the smooth motion and abrupt motion since the method
benefits the mechanism by using EALO and SCA strate-
gies to produce samples. As shown in Tables 2 and 3,
our tracker can maintain good performance in smooth
motion (e.g., MHYANG, FISH, BOY, andHUMAN7 video
sequences). Further, it exhibits the best tracking results
in abrupt motion (e.g., ZXJ, BLURBODY, FHC, and
BLURFACE video sequences). Meanwhile, the method
also can cope with illumination variation and motion
blur well.

6 Conclusion
A hybrid optimization called EALO-SCA is proposed in
this paper, for solving abrupt motion tracking. Firstly,
elite library is introduced into standard ALO, which
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Fig. 14 The average precision of DP

enhances the global optimization capability to adapt to
abrupt motion. Secondly, EALO enhances exploitation
operator by hybridizing with SCA to improve track-
ing accuracy. Finally, a model switching method is
designed and a unified tracking framework is constructed,

which makes an appropriate trade-off between explo-
ration and exploitation for improving tracking perfor-
mance. The experimental results show that the algorithm
has better tracking performance, especially for abrupt
motion.

Table 2 Average overlap rate

Sequences EALO-SCA DSST FCT KCF CSK STC LSST CACF

MHYANG 0.75 0.81 0.59 0.80 0.80 0.69 0.78 0.78

FISH 0.84 0.80 0.66 0.84 0.21 0.58 0.63 0.83

BOY 0.69 0.84 0.60 0.77 0.65 0.55 0.36 0.79

HUMAN7 0.47 0.36 0.28 0.28 0.34 0.28 0.30 0.49

JUMPING 0.48 0.14 0.20 0.27 0.05 0.07 0.60 0.50

DEER 0.74 0.64 0.66 0.62 0.75 0.04 0.71 0.63

FACE1 0.69 0.79 0.63 0.72 0.33 0.65 0.26 0.72

ZXJ 0.85 0.48 0.45 0.45 0.49 0.46 0.79 0.83

BLURBODY 0.54 0.46 0.44 0.44 0.39 0.16 0.07 0.50

FHC 0.83 0.22 0.26 0.28 0.20 0.20 0.28 0.78

BLURFACE 0.71 0.53 0.23 0.51 0.51 0.30 0.51 0.51

ZT 0.81 0.65 0.09 0.59 0.66 0.35 0.09 0.84

Average 0.70 0.56 0.42 0.55 0.45 0.36 0.45 0.68

The best and second best results are shown in bold and italic
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Table 3 Average center error rate

Sequences EALO-SCA DSST FCT KCF CSK STC LSST CACF

MHYANG 7.27 2.43 14.72 3.61 3.61 4.22 2.60 6.71

FISH 4.28 4.36 11.99 4.08 41.19 4.64 3.97 4.32

BOY 5.58 1.96 7.43 3.12 20.29 25.69 59.01 2.47

HUMAN7 6.36 25.67 40.84 48.43 17.89 33.07 45.29 5.77

JUMPING 11.19 36.55 37.23 26.26 85.72 66.70 6.05 33.84

DEER 6.74 16.65 10.68 21.13 4.79 509.55 7.20 22.96

FACE1 7.14 5.30 12.09 5.82 100.45 6.71 183.77 5.08

ZXJ 4.08 21.19 26.74 88.46 189.55 23.68 5.06 4.84

BLURBODY 27.90 90.77 40.68 68.35 73.24 147.65 208.55 33.80

FHC 15.58 616.05 371.37 364.79 577.79 576.47 392.42 23.04

BLURFACE 14.19 74.93 116.33 84.83 1573.68 89.75 162.05 111.94

ZT 19.01 54.01 642.35 127.53 53.52 99.65 684.85 16.71

Average 10.78 79.16 111.04 70.53 228.48 132.32 146.74 22.62

The best and second best results are shown in bold and italic

The contribution of this paper attempts to utilize swarm
optimization method to handle abrupt motion. However,
the method obtains a large number of iterations to ensure
tracking accuracy, this will lead to a large amount of time
consumption.
In the future, we will design a unified tracking frame-

work based on state-of-the-art trackers and swarm opti-
mization methods, so that the real-time tracking can be
achieved by using swarm optimization when only the tar-
get undergoes large displacement between image frames.
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