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Abstract

Deep neural networks are vulnerable to adversarial samples, posing potential threats to the applications deployed
with deep learning models in practical conditions. A typical example is the fingerprint liveness detection module in
fingerprint authentication systems. Inspired by great progress of deep learning, deep networks-based fingerprint
liveness detection algorithms spring up and dominate the field. Thus, we investigate the feasibility of deceiving
state-of-the-art deep networks-based fingerprint liveness detection schemes by leveraging this property in this
paper. Extensive evaluations are made with three existing adversarial methods: FGSM, MI-FGSM, and Deepfool. We
also proposed an adversarial attack method that enhances the robustness of adversarial fingerprint images to
various transformations like rotations and flip. We demonstrate these outstanding schemes are likely to classify fake
fingerprints as live fingerprints by adding tiny perturbations, even without internal details of their used model. The
experimental results reveal a big loophole and threats for these schemes from a view of security, and enough
attention is urgently needed to be paid on anti-adversarial not only in fingerprint liveness detection but also in all
deep learning applications.
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1 Introduction
The rapid growth in deep learning and in particular con-
volutional neural networks (CNNs) brings new solutions
to many problems in computer vision, big data [1], and
security [2]. These breakthroughs are gradually being
put into use of various practical applications like face
identification [3–5], pedestrian detection [6, 7], and un-
manned vehicles [8, 9]. While deep networks have seen
phenomenal success in many domains, Szegedy et al.
[10] first demonstrated that through intentionally adding
certain tiny perturbations, an image remains indistin-
guishable to original image but networks probably mis-
classify it as other classes instead of the original
prediction. This is calledadversarial attackand the per-
turbed image is the namelyadversarial sample. Part of
their results is shown in Fig.1. It is interesting that we
notice the perturbation images show some similarity
with the encrypted images [12–16], but the former are

magnified noise while the latter are sophisticated de-
signed encrypted files. Recent researchers have created
serval methods to craft adversarial samples which vary
greatly in terms of perturbation degree, number of per-
turbed pixels, and computation complexity.

There are serval sorting criterions of adversarial at-
tacks concerning the level that attackers are in the know
of target models or whether the misclassified label is
specified. Generating adversarial samples with the archi-
tecture and parameters of the target model is referred to
aswhite-box attackwhile black-box attackwithout them.
For an image, if not only the attack is required to be suc-
cessful, but also the adversarial sample generated is re-
quired to classified to a specific class, it is calledtargeted
attack and otherwiseuntargeted attack. Generating ad-
versarial samples is a constrained optimization problem.
Given a clean image and a fixed classifier that originally
makes correct classification, our goal is to make the clas-
sifier misclassify the clean image. Note that the predic-
tion results can be regarded as a function of the clean
image about the classifier of which the parameters are
fixed. Thus, general adversarial attack methods comput-
ing gradients of the clean image about the classifier to

© The Author(s). 2020Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence:xia_zhihua@163.com
1Jiangsu Engineering Center of Network Monitoring, Jiangsu Collaborative
Innovation Center on Atmospheric Environment and Equipment Technology,
School of Computer and Software, Nanjing University of Information Science
and Technology, Nanjing 210044, China
Full list of author information is available at the end of the article

EURASIP Journal on Image
and Video Processing

Feiet al. EURASIP Journal on Image and Video Processing         (2020) 2020:1 
https://doi.org/10.1186/s13640-020-0490-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-020-0490-z&domain=pdf
http://orcid.org/0000-0001-6860-647X
http://creativecommons.org/licenses/by/4.0/
mailto:xia_zhihua@163.com


make the prediction deviate from the original result, and
modify the clean image accordingly.

Since Szegedy et al. [10] explored this property, and
with many efficient, robust attack methods being crafted
continuously, a potential security threat for practical
deep learning applications came into view. For instance,
face recognition systems using CNNs also show vulner-
ability against adversarial samples [17–19]. Such biomet-
ric information is always used with sensitive purposes or
scenarios requiring high security, especially fingerprint
due to its uniqueness varies individuals. Considering
this, we extend similar work on another application re-
ferred to as fingerprint liveness detection in this paper,
notice that we are the first introducing adversarial at-
tacks into this area to our knowledge. The fingerprint
liveness detection module is always deployed in finger-
print authentication systems. This technology aims to
distinguish whether the fingerprint is an alive part of a
person or a fake one forged with silicone, etc. It is in
general divided into hardware- and software-based ap-
proaches depending on whether additional sensors are
required. The latter can be easily developed into most
systems therefore received more attention, and it can be
further classified as feature- and deep learning-based.
Among them, deep learning-based solutions caused a
rising interest in recent years thanks to the rising of
deep learning. Although they reached much more out-
standing performance than feature-based solutions, the
vulnerable property of CNNs leaves a potential risk.
That is, the correctly classified fake fingerprint can pass
through the detection module by presenting its adversar-
ial sample. Even though attackers cannot successfully
cheat fingerprint recognition system with fake finger-
print, they may still against the system by supplying an

adversarial fingerprint image. In this paper, we thor-
oughly evaluate the robustness of several state-of-the-art
fingerprint liveness detection models by both white-box
and black-box attacks in various settings and demon-
strate the vulnerability of these models in this setting.

In our paper, we successfully attack deep learning-
based fingerprint liveness detection methods, including
the-state-of-the-art one by adversarial attack technology.
Sufficient experiments show that once these methods
are open source, for almost any fingerprint, the mali-
cious can make its adversarial sample to pose as an alive
one and cheat the detection algorithms. Our work also
shows even if the details of these detection algorithms
are unknown, there is still a definite possibility to realize
this attack. We also propose an enhanced adversarial at-
tack method to generate adversarial samples that are
more robust to various transformations and achieve a
higher attack success rate compared to other advanced
methods.

2 Related work
In this section, we will review the development of adver-
sarial attack methods and deep learning-based finger-
print liveness detection models. On the basis of current
knowledge, deep neural networks achieve high perform-
ance on tasks in computer vision and natural language
processing because they can characterize arbitrary con-
tinuous function with an incalculable number of cas-
caded nonlinear steps. But as the result is automatically
computed by backpropagation via supervised learning, it
can be difficult to interpret and can have counterintui-
tive properties. And with deep neural networks’ increas-
ing usage in the physical world, these properties may be
used for malicious behavior.
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Fig. 1 a Adversarial samples generated with AlexNet [11] in [10]. The left column shows the correctly predicted samples, and the middle column
is the magnified value of perturbations. The adversarial samples and target labels are shown in the rightmost column.b Fake fingerprints made
from different materials and cheating authentication system or unlocking smartphones with them
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Szegedy et al. [10] first revealed that adding a certain
hardly perceptible perturbation which increasing the
prediction error could cause networks to misclassify an
image. They also found this property is not affected by
the structure and dimensionality of networks or data dis-
tribution, and even more, the same perturbation could
cause misclassifications on different networks with the
same original input image. They proposed an equation
that searches the smallest perturbation added to cause
misclassification:

minimize pk k2 s:t: f Xc þ pð Þ
¼ ytarget;Xc þ p∈ 0; 1½ � ð1Þ

This is a hard problem, hence the author approxi-
mated it using a box-constrained L-BFGS [20] and it
turns into a convex optimization process. This is com-
pleting by searching the minimumc > 0 where the
minimizer p of the following problem satisfiesf(Xc +
p) = ytarget:

minimize c j p j þLossf Xc þ p; ytarget

� �
:s:t Xc

þ p∈ 0; 1½ � ð2Þ
As shown in Fig.1a, by solving this optimization prob-

lem, we could compute the perturbations to which a
clean image that could successfully fool a model should
be added, but the adversarial images and original images
are hardly distinguishable to human. It was also ob-
served that a considerable number of adversarial exam-
ples will be misclassified by different networks as well,
namely, cross model generalization.These astonishing
discoveries aroused strong interest of researchers in ad-
versarial attacks of computer vision and gave birth to re-
lated competitions [21, 22].

In ICLR 2015, Goodfellow et al. [23] proposed a
method referred to as Fast Gradient Sign Method
(FGSM) to efficiently compute the perturbation by solv-
ing the following problem:

p ¼ ε sign ∇J θ;Xc; ytarget

� �� �
ð3Þ

where∇J(…) computes the gradient of the cost function
around parameters of the model w.r.t. Xc and ε notes a
small coefficient that restricts the infinite norm of the per-
turbation. They successfully caused a misclassification rate
of 99.9% on a shallow softmax classifier trained on
MNIST while ε = 0.25 and 87.15% on a convolutional
maxout network trained on CIFAR-10 whileε = 0.1.
Miyato et al. [24] then normalized the computed perturb-
ation with L2-norm on this basis. FGSM and its varietas
are classic one-shot method that generates an adversarial
sample with one step only. Later in 2017, Kurakin et al.
[25] developed an iterative method that takes multiple
steps increasing the loss function namelyBasic Iterative

Method (BIM). Their approach exceedingly reduces the
size of perturbation for generating an adversarial sample
and shows a serious threat to deep architecture models
such as Inception-v3 [26]. Similarly, Moosavi-Dezfooli
et al. [27] proposed Deepfool that also computes the mini-
mum perturbation iteratively. This algorithm disturbs the
image with a small vector, pushing the clean image con-
fined in the decision boundary out of the boundary step
by step until the misclassification occurs. Dong et al. [28]
introduced momentum into FGSM, in their approach, not
only the current gradient is computed during every iter-
ation but also the gradient of the last iteration is added,
and a decay factor is used to control the influence of the
previous gradient. This Momentum Iterative Method
(MIM) greatly improves cross model generalization and
black-box attack success rate, their team won the first
prize in NIPS 2017 Non-targeted Adversarial Attack and
Targeted Adversarial Attack competitions [21]. The above
methods all compute the perturbation by solving a gradi-
ent related problem, usually requiring direct access to tar-
get models. To realize a more robust black-box attack, Su
et al. [29] proposed One Pixel Attackthat searches the
perturbation by differential evolution that causes mis-
classification with the highest confidence instead of com-
puting the gradient. This method made no restraint of
perturbation size, meanwhile, it limits the number of per-
turbed pixels.

With the development of adversarial attack technology,
some scholars began to conduct research on attacking real-
world systems embedded with deep learning algorithms.
Kurakin et al. [25] first proved that the threat of adversarial
attack also exists in the real world. They printed adversarial
images and took snapshots from smartphones. Results show
that even through captured by camera, a relatively large part
of adversarial images are misclassified as well. Kevin et al.
[30] designed Robust Physical Perturbations (RP2) which
only perturbs the target objects in physical world such as
guideposts and keeps the background unchanged. For in-
stance, sticking several black and white stickers on a stop
sign according to RP2’s result could prevent YOLO and
Faster-RCNN from detecting it correctly. Bose et al. [31]
also successfully attacks Faster-RCNN with adversarial ex-
amples that crafted from their proposed adversarial gener-
ator network by solving a constrained optimization
problem.

In addition to face location, another key problem in face
recognition is liveness detection. Biometrics like faces are
usually applied in systems with high-security require-
ments, thus the systems are always accompanied by live-
ness detection module to detect whether a captured face
image is alive or from photos. We note that fingerprint
identification systems also require liveness detection to
distinguish live fingers from fake ones [32], and with more
and more fingerprint liveness detection algorithms based
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on deep learning are developed, the adversarial attack has
risen a potential risk in this domain as well. To our know-
ledge, Nogueira et al. [33] first detected fake fingerprint
using CNNs, later in [34], they fine-tuned the fully con-
nected layer of VGG and Alexnet with fingerprint data-
sets, leaving previous convolutional and pooling layers
unchanged. This work has reached astonishing perform-
ance compared to feature-based approaches in fingerprint
liveness detection. Chugh et al. [35] cut fingerprint
patches centered on pre-extracted minutiaes and trained
them with Mobilenet-v1. Their results are state-of-the-art
as we got on with this work. In the literature, Kim et al.
[36] proposed a detection algorithm based on deep belief
network (DBN) that is constructed layer by layer using re-
stricted Boltzmann machines (RBM). Nguyen et al. [37]
regarded the fingerprint as a global texture feature and de-
signed an end-to-end model following this idea. Their ex-
perimental results show that networks designed to
combine the inherent characteristics of fingerprints can
achieve better performance. Pala et al. [38] constructed a
triple dataset to train their network. A triple set consists
of a fingerprint to be detected, a fingerprint of the same
class as it and a fingerprint of the other class. This data
structure could make a constraint to minimize within-
class distance and maximize between-class class distance
is as large as possible. It is noteworthy that all these
methods mentioned are based on CNN, and achieved very
competitive performances.

3 Methods
3.1 Networks to be attacked
3.1.1 VGG19 and Alexnet-based method
In this section, we will briefly introduce the target net-
works we attempt to attack, including specific structure
and training processes. Before we conduct adversarial at-
tacks on the state-of-the-art fingerprint liveness detec-
tion networks, a pre-evaluation would be carried on

[34], the finetuned VGG and Alexnet. This is because
the way that finetuning classical models for new tasks is
widely used, though these models are a bit out of date,
they stood the test of time and from which more ad-
vanced models derive. Equally thorough experiments will
also be carried on [35]. According to Nogueira’s method
in [34], both models are finetuned with stochastic gradi-
ent descent (SGD) while batch size is 5, momentum [39]
is 0.9, and the learning rate is fixed at 1E−6.

In these two models, both outputs fully connected layers
are replaced by 2 units which were 1024 in original net-
works as shown in Fig.2. For keeping a concise but intuitive
impression, the size of these feature maps is not prorated
and pooling operations are represented by shrinkage of it. In
pre-process, the training set is augmented by the implemen-
tation similar to the one in [11], patches with 80% of each
dimension of the original images are cut for each fingerprint
image, thus we totally obtain five patches from four corners
and center and create horizontal reflection version of them.
The whole training set is therefore 10 times larger than the
original edition. During the testing phase, the testing set
adopts the same approach and fuse the 10 patch’s prediction
as to the final classification results for a single fingerprint
image.

3.1.2 Mobilenet-v1-based method
Chugh’s method also utilizes an existing structure called
Mobilenet-v1 but train it from scratch. The last layer is
replaced by a 2-unit softmax layer as well. In pre-
process, they extracted minutiaes using the algorithm
from [40] for a fingerprint image, a minutiae is a key
point in fingerprint images, for instance, ridge ending,
short or independent ridge and the circle in the ridge
pattern. A minutiae object returnsx, y coordinate and
its direction. Then cut out patches centered on the coor-
dinates, and align the patches according to the directions
in order to cut out smaller ones. All the patches are used

227*227*3Conv 11*11*96Conv 5*5*256Conv 3*3*384 Conv 3*3*256 FC4096 FC2Conv 3*3*384

224*224*3Conv 3*3*64Conv 3*3*128 Conv 3*3*256 Conv 3*3*512 Conv 3*3*1024 FC4096 FC2

Fig. 2 The upper is Alexnet and the lower is VGG19
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to train a Mobilenet-v1, the result is a fusion of all the
patches’ scores Fig.3. This series of operations is on the
basis that a fingerprint image has large blank areas sur-
rounding the ridge region, directly resizing these images
would lead to a serious discriminatory information loss.
The noise involved in the fingerprint forgery process
provides salient cues to distinguish a spoof fingerprint
from live fingerprints, thus patches centered at minu-
tiaes could maximize this difference. This is the best fin-
gerprint liveness detection method at present to our
knowledge.

3.2 Methods to generate samples
In this paper, we totally compared four algorithms regard-
ing success rate, visual impact, and robust to transforma-
tions. FGSM is the first basic adversarial algorithm we
tested using the function (3), and its effectiveness is evalu-
ated by adjustingε. MI-FGSM is an upgraded version of
FGSM that used in this paper, the number of iterationsT
and momentum degreeμ is two other hyperparameters to
be controlled instead ofε. We then made another evalu-
ation with Deepfool and tested our own modified method
based on MI-FGSM. The Deepfool automatically com-
putes the minimum perturbations without setting up a
fixed ε. Since it has been shown that iterative methods are
stronger white-box adversaries than one-step methods at
the cost of worse transferability, our method can keep the
transferability to a certain extent.

3.2.1 Deepfool
In our case, fingerprint liveness detection is always
treated as a binary classification problem, and therefore
the Deepfool algorithm is used here for binary classifiers
as well. The author assumeŝkðxÞ ¼ signð f ðxÞÞ where f
represents a binary image classification function and de-
rives the general algorithm, which can be applied to any
differentiable binary classifierf. That is, to adopt an it-
erative process to estimateΔ(x; f). Specifically,f is linear-
ized around the current pointxi at each iteration where
i is the current number of iterations, and the minimal
perturbation of linearizedf can be computed through:

argmin rik k2 subject tof xið Þ þ ∇ f xið ÞT r i ¼ 0 ð4Þ
The algorithm terminates whenxi changes sign of the

classifier’s result or maximum iterations is reached. The
Deepfool algorithm for binary classifiers is summarized
as follows.

3.2.2 Momentum iterative fast gradient sign method
Momentum iterative fast gradient sign method (MI-
FGSM) is upgraded twice in the basic version of FGSM.
The I-FGSM iteratively applies multiple steps with a small
step sizeα, and MI-FGSM further introduces momentum
[41]. Momentum method is a technique to accelerate and
stabilize stochastic gradient descent algorithm. Gradients
in the previous iteration are accumulated in the current
gradient direction of the loss function, it can be consid-
ered a velocity vector pass through every iteration. Dong
et al. first applied the technique of momentum to generate
adversarial samples and get tremendous benefits. The MI-
FGSM is summarized below.
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Fig. 3 The flow chart of Chugh’s method
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