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Abstract

The excellent cover estimation is very important to the payload location of JPEG
image steganography. But it is still hard to exactly estimate the quantized DCT
coefficients in cover JPEG image. Therefore, this paper proposes a JPEG image
steganography payload location method based on optimal estimation of cover co-
frequency sub-image, which estimates the cover JPEG image based on the Markov
model of co-frequency sub-image. The proposed method combines the coefficients
of the same position in each 8 × 8 block in the JPEG image to obtain 64 co-
frequency sub-images and then uses the maximum a posterior (MAP) probability
algorithm to find the optimal estimations of cover co-frequency sub-images by the
Markov model. Then, the residual of each DCT coefficient is obtained by computing
the absolute difference between it and the estimated cover version of it, and the
average residual over coefficients in the same position of multiple stego images
embedded along the same path is used to estimate the stego position. The
experimental results show that the proposed payload location method can
significantly improve the locating accuracy of the stego positions in low frequencies.
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1 Introduction
Digital steganography is the technique that embeds information, known as the payload,

into the redundant parts of multimedia data such as digital images, video, audio, and

text, termed the cover, to conceal secret communications. In the past decades, a series

of steganographic algorithms have been proposed with image, text, audio, or video as

cover [1–8]. Correspondingly, many steganalysis algorithms also have been proposed

to detect the stego object [9–14]. However, in real life, the investigators often not only

satisfy with distinguishing the cover objects and the stego objects, but also are eager to

extract the hidden information. Compared with the detection of the stego objects, the

extraction of hidden information is much more difficult and requires more clues, such

as the stego key space, the stego positions, and the selection scheme of stego positions.

The technique to identify the stego positions is referred as steganography payload loca-

tion. In [15, 16], Yang et al. and Liu et al. have reported that when the selection
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scheme of stego positions is known, if the investigator can locate the steganography

payload with the accuracy higher than randomly guessing, he (or she) can extract the

hidden information by a collision attack.

Although Quach [17] has proved the locatability of modified pixels in a single stego

image, the actual steganography payload algorithms designed for a single stego image

can only locate the steganography payload with low accuracy because it is very diffi-

cult to precisely estimate the cover of the given stego image and about half of the

stego elements are still unchanged [18]. However, for the convenience of communica-

tion, many communication participants use the same key in a certain period of time

and limit the embedding ratio. At this point, if they use multiple images with the

same size to embed a large amount of data, the investigator may possess a number of

stego images each containing payload at the same locations. Under such a scenario, in

2008, Ker [19] firstly proposed a payload location algorithm based on weighted stego-

image (WS) residuals for least significant bit (LSB) replacement. After that, many pay-

load location algorithms have been proposed for spatial image steganography under

this condition. Chiew and Pieprzyk [20] modified Ker’s algorithm to locate the pay-

load of binary image replacement steganography under the same condition. Ker and

Lubenko [21] proposed a payload location algorithm for LSB matching, which filters

the horizontal, vertical, and diagonal wavelet subbands of stego images by Wiener fil-

ter, and locates the stego pixel positions according to the absolute sum of the wavelet

residuals in the same positions of multiple images embedded messages into the same

positions. Quach [22, 23] proposed several payload location algorithms for LSB re-

placement and LSB matching, which employ the Viterbi decoding algorithm or Quad-

ratic Pseudo-Binary Optimization (QPBO) algorithm to find the optimal estimate of

the cover image, and compute the residuals between the estimated cover images and

the stego images to locate the payload. Gui et al. [24] proposed a payload location al-

gorithm for LSB matching steganography by fusing the mean of 4 neighborhood

pixels and 8 residuals computed along 8 different directions by the algorithm pro-

posed by Quach [22]. Liu et al. [25] proposed a payload location algorithm for embed-

ding messages into the spatial images subjected to JPEG compression by LSB

replacement or LSB matching, which estimates the cover images by JPEG re-

compressing the stego images and decompressing the re-compressed versions. Yang

et al. [15] proved the properties of the optimal stego subset of the multiple least sig-

nificant bits (MLSB) steganography, then proposed a payload location algorithm and

a stego key recovery algorithm based on the optimal stego subset. Sun et al. [26] pro-

posed a payload location algorithm base on a tailored deep neural network (DNN)

equipped with the improved feature named the “mean square of adjacency pixel

difference.”

The above algorithms can locate the payload of LSB replacement, LSB matching, and

MLSB replacement steganography with high accuracy and even can be used to estimate

groups in group parity steganography or extract the hidden message for some special

cases. However, they cannot work for the steganography algorithms with JPEG image

as cover.

When the messages are embedded into the JPEG images, recently, the authors [27]

proposed a payload location method based on co-frequency sub-image filtering for a

category of pseudo-random scrambled JPEG image steganography. The accuracy of this
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payload location method is influenced by the fidelity of the estimated cover images and

can be improved if a more precise estimator can be designed.

Activated by the optimal cover estimation method proposed by Quach in [22] for

spatial image steganography, this paper proposes a payload location method for JPEG

image steganography based on the optimal estimation of cover co-frequency sub-

image. Instead of directly applying the maximum a posterior (MAP) probability algo-

rithm to the given stego spatial image to estimate the cover spatial image by the

method in [22], the proposed method divides the stego JPEG image into 64 co-

frequency sub-images, then applies the MAP algorithm to estimate the optimal cover

co-frequency sub-images, and combines them to obtain the optimal cover JPEG image.

This makes use of the correlation between the coefficients in the same position of adja-

cent blocks with a size of 8 × 8.

The structure of this paper is as follows: Section 2 briefly introduces the random

JPEG image steganography targeted in this paper. Section 3 proposes the payload loca-

tion method based on the optimal estimation of cover co-frequency sub-image. Section

4 gives a specific payload location algorithm for F5 steganography. Section 5 presents

the experimental results and the discussions. Finally, the paper is summarized in Sec-

tion 6.

2 Related work—Pseudo-random JPEG image steganography
In order to improve the security of JPEG image steganography, the steganographer

often embeds secret messages into the quantized DCT coefficients scrambled pseudo-

randomly. And because there are a lot of quantized DCT coefficients with value of 0 in

JPEG images, if the steganographer embeds messages into these coefficients, the doubt-

ful artificial clue will be found by steganalyzer. Thus, many JPEG image steganography

methods do not embed message bits into these coefficients and do not embed mes-

sage bits into the coefficients whose values would be changed to be 0. These JPEG

image steganography methods can be described as follows.

Input: a cover JPEG image C = c1c2…cN, a secret message bit sequence M =m1m2…

mL and a stego key K.

Output: a stego JPEG image.

Steps:

1. Scramble the quantized DCT coefficients in the cover JPEG image C according to

the stego key K, to generate the scrambled coefficient sequence C′ = Scr(C, K),

where C
0 ¼ c

0
1c

0
2…c

0
N denotes the scrambled coefficient sequence and Scr(C, K) is

the scrambling function.

2. Embed the secret message bit sequence M into the scrambled coefficient sequence

C′.

2.1.Assign the initial index of the secret message bit as 1, viz. i = 1, and assign the

initial index of the scrambled coefficient as 1, viz. j = 1.

2.2.Take the ith message bit mi from the secret message bit sequence M.

2.3.Take the jth coefficient c
0
j from the scrambled coefficient sequence C′.

2.4.If the value of coefficient c
0
j cannot carry a message, for example, the value of

coefficient c
0
j is 0, go to step 2.8.

Wang et al. EURASIP Journal on Image and Video Processing          (2021) 2021:1 Page 3 of 14



2.5.Embed the ith message bit into the jth coefficient c
0
j.

2.6.If the embedding changes the value of coefficient c
0
j to be the value which

cannot carry a message, for example, F5 steganography changes the coefficient

value 1 to be 0, assign the index of the scrambled coefficient as j + 1, viz. j = j +

1. If j >N, return 0, otherwise go to step 2.3.

2.7.Assign the index of the secret message bit as i + 1, viz. i = i + 1. If i > L, go to

step 3.

2.8.Assign the index of the scrambled coefficient as j + 1, viz. j = j + 1. If j >N,

return 0, otherwise go to step 2.2.

3. Inverse scramble the coefficient sequence after embedding according to the stego

key K;

4. Encode the obtained coefficient sequence to a stego JPEG image, and return the

generate stego JPEG image.

3 Methods—Payload location based on optimal estimation of cover co-
frequency sub-image
3.1 Principle

When the secret messages are embedded into the pseudo-randomly scrambled coeffi-

cients as described in Section 2, if the investigator possesses T stego images S1, S2, ⋯,

ST embedded along the same embedding path, then either of the following two cases

may happen to the coefficients S1(i, j), S2(i, j), …, ST(i, j) in the same position (i, j) of T

stego images:

1) If the position (i, j) is a stego position, the steganographer will determine whether

to embed the message bit into the coefficient in this position according to whether

the coefficient is available. Thus, any coefficient of S1(i, j), S2(i, j), …, ST(i, j) is

either an unavailable coefficient or a stego coefficient containing a message bit.

2) If the position (i, j) is a non-stego position, the steganographer will not embed the

message bit into the coefficient in this position regardless of whether the coefficient

is available. Thus, no coefficients of S1(i, j), S2(i, j), …, ST(i, j) contain a message bit.

Let C1, C2, …, CT denote the corresponding cover images of the stego images S1, S2,

…, ST. A residual rt(i, j) of the coefficient in the position (i, j) of the tth stego image is

defined as

rt i; jð Þ ¼ St i; jð Þ −Ct i; jð Þj j ð1Þ

Let rði; jÞ denote the mean of all rt(i, j) over T stego images in the position (i, j).

If the position (i, j) is a non-stego position, rði; jÞ must equal to 0, viz. rði; jÞ ¼ 0. If

the position (i, j) is a stego position, rði; jÞ must be larger than or equal to 0, viz. rði; jÞ
≥0, where the equal sign only holds in the case of that all of the coefficients C1(i, j),

C2(i, j),…, CT(i, j) are not modified. When one possesses enough stego images, the prob-

ability that none of the coefficients C1(i, j), C2(i, j),…, CT(i, j) is modified is small. Thus,

the investigator should be able to distinguish the stego positions from the non-stego

positions according to the means of residuals if he can obtain the cover images.

However, the investigator often cannot know the cover JPEG images. In this case, if

the investigator can estimate the cover images, which are denoted by Ĉ1; Ĉ2;…; ĈT , he
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can compute the mean of the estimated residuals in the same position (i, j) of different

stego images as follows:

~r i; jð Þ ¼
PT

t¼1r̂t i; jð Þ
T

¼
PT

t¼1 St i; jð Þ −cCt i; jð Þ
���

���
T

ð2Þ

If the investigator possesses enough stego images embedded along the same path and

can estimate the covers of them accurately enough, he may also be able to distinguish

the stego positions from the non-stego positions with a success rate higher than a ran-

dom guess based on the averaged estimated residuals as follows:

f i; jð Þ ¼ 1; ~r i; jð Þ≥Thr
0; ~r i; jð Þ < Thr

�
ð3Þ

where f(i, j) = 1 denote that the position (i, j) is determined as a stego position, f(i, j) =

0 denote the position (i, j) is determined as a non-stego position, and Thr is a decision

threshold.

Certainly, the more accurately the cover JPEG images are estimated, the higher the

accuracy of payload location is. Therefore, in the following subsection of this section, a

method is proposed to estimate the optimal cover co-frequency sub-images, then com-

bine them to estimate the cover JPEG image.

3.2 Optimal cover JPEG image estimation

In [22], Quach et al. considered the strong correlation between neighboring pixels of

spatial image and used the maximum a posterior (MAP) probability algorithm to esti-

mate the optimal cover image corresponding to the stego image of LSB replacement

and LSB matching steganography, which was used to locate the hidden information of

LSB replacement and LSB matching steganography. In JPEG compression, the DCT

transformation of pixel values greatly reduces the correlation between adjacent coeffi-

cients. And in order to improve the efficiency of JPEG compression, the DCT trans-

formation is performed on each non-overlapping pixel block with a size of 8 × 8. Since

the coefficients in the same position represent the magnitude of energy in the same fre-

quency and the adjacent blocks in an image still have strong similarity, the coefficients

in the same position of adjacent blocks still have a strong correlation. According to the

property, this section will use the same method in [27] to divide the given JPEG images

into 64 co-frequency sub-images, then use the maximum a posterior probability algo-

rithm to estimate the optimal cover co-frequency sub-images, and combine them to get

the optimal estimation of cover JPEG image.

3.2.1 Markov model of co-frequency sub-image

Let Sdt and Cd
t denote the co-frequency sub-images composed of the dth quantized

DCT coefficients in all 8 × 8 blocks of the tth stego image and its cover image, d = 1, 2,

…, 64. In a statistical sense, the optimal estimation of cover co-frequency sub-images

corresponding to Sdt should be the cover co-frequency sub-image estimation Ĉ
d
t with

the maximum a posterior probability, that is
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Ĉ
d
t ¼ arg max

Cd
t

p Cd
t jSdt

� �

¼ arg max
Cd

t

p Sdt jCd
t

� �
p Cd

t

� � ð4Þ

Then, the optimal cover co-frequency sub-image estimation is transformed into a

problem of maximum a posterior probability estimation.

Similar to [22], the following two assumptions are set:

p Sdt jCd
t

� � ¼
Y

i
p Sdt ið ÞjCd

t ið Þ� � ð5Þ

p Cd
t

� � ¼
Y

i
p Cd

t ið Þ� ��Cd
t i − 1ð Þ;Cd

t i − 2ð Þ;…;Cd
t i − kð ÞÞ ð6Þ

where k is a given positive integer. Eq. (5) indicates that each quantized DCT coeffi-

cient in the stego co-frequency sub-images is only related to the corresponding quan-

tized DCT coefficient in the cover co-frequency sub-images, while Eq. (6) indicates that

the cover co-frequency sub-image Cd
t is modeled with a k-order Markov model.

For a given steganography algorithm, one can calculate the probabilities that the

quantized DCT coefficient value changes to different possible values under a specific

embedding rate α, viz. the transition probability in assumption (5). Besides, the prior

probability in (6) can be computed from a large number of cover images.

After dividing all quantized DCT coefficients into 64 co-frequency sub-images, each

sub-image is scanned by four modes as shown in Fig. 1 to calculate the co-occurrence

matrices of the adjacent elements.

In JPEG image, the distributions of coefficient values in different co-frequency sub-

images show obvious differences. As shown in Fig. 2, the absolute values of coefficients

in the low frequencies (corresponding to the upper left positions) are usually larger and

equal to zero with the lowest probabilities, and most of the absolute values of coeffi-

cients in the high frequencies (corresponding to the lower right positions) equal to

zero. Figure 3 presents the frequencies of zero coefficient in the different sub-images,

where 10,000 images with a size of 512 × 512 in Bossbase 1.01 (http://agents.fel.cvut.cz/

stegodata/) are JPEG compressed with a quality factor of 75. The abscissa is the index

of the position in the 8 × 8 block from left to right and top to bottom. It can be seen

that the relative frequencies of zero coefficient in the sub-images corresponding to the

lower right positions are close to 1.

Fig. 1 Four scanning modes for co-frequency sub-image
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3.2.2 Optimal cover JPEG image estimation based on first-order Markov model

In theory, we should compute the probabilities for all possible covers and search the

cover which satisfies Eq. (4). But there are too many possible coefficient values in the

cover image to search the whole possible space. Fortunately, the co-frequency sub-

image can be modeled by the hidden Markov model, and the Viterbi algorithm is a

common method to solve the problem of the hidden Markov model. It has been used

in cover image estimation of spatial steganography such as LSB replacement and LSB

matching in [22]. Therefore, The Viterbi algorithm will also be adopted to search the

optimal cover co-frequency sub-image. The Viterbi algorithm first computes the scores

of the possible values of the first cover element as follows:

v c1ið Þ ¼ p s1ijc1ið Þp c1ið Þ: ð7Þ

Then, the scores of the possible values of the subsequent cover elements are com-

puted as follows:

v ckið Þ ¼ ck−1;iv ck − 1;i
� �

p ckijck − 1;i
� �

p skijckið Þck − 1;i ð8Þ

where ck, i is possible value of the kth cover element in the ith image.

Take a stego co-frequency sub-image with four quantized DCT coefficients S = (2, 0,

−1, 1) of the typical F5 steganography as example, where the embedding ratio is 0.5.

According to the embedding rule of F5 steganography, the possible values of the four

cover coefficients are c1 ∈ {2, 3}, c2 ∈ {−1, 0, 1}, c3 ∈ {−1, −2}, and c4 ∈ {1, 2}. Figure 4

shows the trellis for Viterbi algorithm, which takes the possible values of four cover co-

efficients as nodes. The Viterbi algorithm first computes the scores of nodes in the first

column of the trellis, where the value of p(c1) can be obtained by statistics of a large

number of cover JPEG images. For ease of understanding, it is assumed that the values

of p(c1) are as shown in the second column of Table 1. When the embedding ratio of

Fig. 2 The quantized DCT coefficient block with size of 8×8

Fig. 3 Frequency of DCT coefficient 0 in each sub-image
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F5 steganography is q, the coefficient value transition probability of F5 steganography is

as follows:

p sijcið Þ ¼

1 −
q
2
; si ¼ ci − 1 and si > 0

1 −
q
2
; si ¼ ci þ 1 and si < 0
q
2
; si ¼ ci and si≠0

1; si ¼ ci ¼ 0
0; others:

8>>>>>>><
>>>>>>>:

ð9Þ

Then the scores of the subsequent nodes are computed in sequence by Eq. (8), and

each node is connected with the previous node which maximizes its score. The values

of p(ck| ck − 1) also can be obtained by statistics of a large number of cover JPEG images.

It is assumed that the values of p(ck| ck − 1) are as shown in the last column of Table 1.

Fig. 4 The trellis for Viterbi algorithm based on the first-order cover probability model

Table 1 Example of the first-order cover probability model

ci p(ci) ci − 1 ci p(ci| ci − 1)

− 3 1/7 − 2 1 1/8

− 2 1/7 − 2 2 7/8

− 1 1/7 − 1 − 1 1/5

0 1/7 − 1 − 2 3/5

1 1/7 − 1 1 1/10

2 1/7 − 1 2 1/10

3 1/7 0 − 1 3/5

0 − 2 2/5

1 − 1 7/10

1 − 2 3/10

2 − 1 1/5

2 0 3/5

2 1 1/5

3 − 1 2/9

3 0 1/9

3 1 2/3
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Finally, take the coefficient values in the path ending at the node with the largest

score in the last column as the optimal estimation of the cover coefficients, as shown

by the gray node in Fig. 4. It can be seen that when the embedding ratio is 0.5, the opti-

mal estimation of the cover coefficient sequence of S = (2, 0, −1, 1) is ĉ ¼ ð3; − 1; − 2; 2Þ

.

After the optimal estimation of each cover co-frequency sub-image is obtained by the

Viterbi algorithm, one can place the coefficients of all estimated cover co-frequency sub-

images at the original positions of them to combine the optimal estimation of the cover

JPEG image. The whole process is shown in Fig. 5, which is described in Algorithm 1.

In theory, each cover co-frequency sub-image may be estimated more precisely by

the first-order Markov model in the corresponding frequency. However, in many fre-

quencies, there are a large number of coefficients with value of 0 which result in that

the statistical significance of non-zero coefficient is not significant. Thus, in follows the

Fig. 5 The optimal cover JPEG image estimation method based on the first-order cover probability model
of sub-image
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first-order Markov model merged over different positions is used to estimate the cover

co-frequency sub-images.

4 Payload location algorithm for F5 steganography without Matrix Encoding
The F5 steganography algorithm improves F4 by using shuffling. In F5 steganography,

the positive odd and negative even represent the bit 1, while the positive even and

negative odd represent the bit 0, and the DCT coefficients with value of 0 and DC coef-

ficients do not carry secret information. The coefficient value transition probability of

F5 steganography is shown by (9). When T stego JPEG images of F5 steganography are

given, we can adopt the existing quantitative steganalysis algorithms to estimate the

embedding ratios and then use the proposed Algorithm 1 in Section 3 to estimate the

corresponding cover JPEG images. For each given stego JPEG image, we can scan it by

4 different modes as shown in Fig. 1, and then 4 estimated cover JPEG images can be

obtained by Algorithm 1.

After that, the residuals between the given stego image and the estimated cover JPEG

images are computed as follows:

rt i; jð Þ 0; mod i; 8ð Þ ¼ 0 and mod j; 8ð Þ ¼ 0
St i; jð Þ − Ĉt i; jð Þ�� ��; others

�
ð10Þ

which is slightly different from the previous residual calculation Eq. (1). For each pos-

ition, 4T residuals can be computed from the given T stego JPEG images and 4T esti-

mated cover JPEG images by (10), and then be averaged. The averaged value will be

used to determine whether this position is a stego position. The detailed steps of the

payload location for F5 steganography are given in Algorithm 2.

5 Results and discussion
5.1 Experimental setup

In total, 10,000 PGM images with a size of 512 × 512 were downloaded from the

BOSSbase1.01 and converted to cover JPEG images with a quality factor of 75. Nine

thousand images were randomly selected from the generated cover JPEG images to

count the first-order Markov model of cover co-frequency sub-image. The remaining

1000 images were used to test the performance of the proposed algorithm. A pseudo-

random path was generated by scrambling the integer sequence 1, 2,…, 512 × 512.

Then along the generated path, the pseudo-random message bits were embedded into

the remaining 1000 images by F5 steganography (without matrix encoding) with ratio q

= 0.5.
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5.2 Markov model selection

From Algorithm 1 and 2, it can be found that the payload location accuracy is highly

affected by the adopted first-order Markov model. In Section 3, we suggest to merge

the Markov models over different frequencies to estimate the cover co-frequency sub-

image more precisely. Thus, we tried to merge proper Markov models.

Firstly, the 64 Markov models m1…m64 counted from sub-images corresponding to 64

positions in 8 × 8 matrix were applied to estimate the cover JPEG images separately, and

the Markov model mi with the highest payload location accuracy was selected. Then, each

of the remaining 63 models was merged to mi to obtain 63 new merged modes mi1…mi63,

and the merged Markov model mij with the highest payload location accuracy was se-

lected. This operation was repeated until all models were merged. The merged model with

the highest payload location accuracy was selected as the final model.

One thousand test stego JPEG images with embedding ratio 0.5 were used to select

the proper merged Markov model. Table 2 presents the location correctness of each

co-frequency sub-images with the single corresponding Markov model, namely, 64 co-

frequency sub-image models are used for the corresponding sub-images respectively.

Table 3 shows the results when the optimal merged Markov model was used.

In Tables 2 and 3, the correctness in the most upper left is not shown because the

DC coefficients are not changed by F5 steganography. Comparing Table 2 with 3, we

can see that for most positions, the location accuracy by using the optimal merged

Markov model is much higher than that by using the individual model. Especially, the

algorithm with the optimal merged Markov model can rightly distinguish the stego po-

sitions in low frequencies with accuracy close to 90%, even close to 95%. For the high-

frequency positions, because there are very few available coefficients, it is still hard to

distinguish the stego positions.

Table 2 Location accuracy for co-frequency sub-images with the individual corresponding first-
order Markov model

DC 0.4926 0.5135 0.4913 0.5057 0.5703 0.5755 0.5667

0.7591 0.5071 0.4952 0.5076 0.5541 0.5571 0.5105 0.5340

0.4964 0.5049 0.4950 0.4995 0.5928 0.5318 0.5115 0.5027

0.5096 0.4880 0.4953 0.6347 0.5433 0.5098 0.5075 0.5032

0.5000 0.5036 0.6045 0.5362 0.5116 0.5015 0.4966 0.4897

0.5078 0.5843 0.5310 0.5212 0.5073 0.5027 0.5005 0.4912

0.5541 0.5286 0.5072 0.4973 0.4931 0.5019 0.5119 0.5101

0.5448 0.5122 0.5041 0.5125 0.4988 0.4990 0.4915 0.4942

Table 3 Location accuracy for co-frequency sub-images with the optimal merged Markov model

DC 0.9441 0.8982 0.8823 0.7873 0.6991 0.6307 0.5618

0.9489 0.9124 0.8983 0.8170 0.7918 0.6260 0.5620 0.5481

0.8903 0.8891 0.8169 0.7872 0.7163 0.6214 0.5269 0.5216

0.8334 0.7972 0.7940 0.7724 0.6476 0.5236 0.5207 0.5090

0.7816 0.7720 0.7429 0.6430 0.5842 0.5055 0.4941 0.4901

0.7466 0.7297 0.6243 0.5935 0.5184 0.5002 0.4995 0.4926

0.6466 0.5925 0.5177 0.5065 0.4886 0.5014 0.5105 0.5082

0.5597 0.5122 0.4988 0.5066 0.4953 0.4956 0.4915 0.4937
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5.3 Performance analysis of location proposed algorithm for F5 steganography

Figure 6 shows the payload location accuracy of MAP-F5 with the optimal merged Mar-

kov model for different numbers of stego images when the embedding ratio is 0.5. It can

be seen that the more the number of stego images, the higher the accuracy. As the num-

ber of images increases, the fluctuation of the residual means becomes smaller, and the re-

sidual means are closer to the change caused by information embedding. Therefore, the

number of stego images is very important for locating the stego positions.

Figure 7 compares the accuracies of the proposed algorithm and the payload location

algorithm based on co-frequency sub-image wavelet filtering (CSW-F5 )[27]. The 1000

stego images are generated with the same embedding path and the embedding ratio of

0.5. In the upper left corner of 8 × 8 block where the number of the 0 coefficient is rela-

tively small, MAP-F5 obtains better results than CSW-F5. In practice, the results of the

two payload location algorithms can be further combined.

Fig. 6 Payload location accuracy of MAP-F5 with the optimal merged Markov model for different numbers
of stego images when the embedding ratio is 0.5

Fig. 7 Comparison of MAP-F5 and CSW-F5
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6 Conclusion
This paper proposes a payload location method based on optimal estimation of cover

co-frequency sub-image. The proposed method divides each given stego JPEG image

into 64 co-frequency sub-images, then estimates the optimal cover JPEG image by ap-

plying the maximum a posterior probability algorithm to the co-frequency sub-images,

and finally determines the stego positions according to the averaged residuals between

given multiple stego images embedded along the same path and the estimated cover

images. The proposed method is applied to the payload location for F5 steganography

without matrix encoding and the experimental results show that the proposed algo-

rithm can locate the stego positions with higher accuracy than prior works.

However, the proposed payload location method cannot work for the modern adap-

tive JPEG image steganography, JUNIWARD, UERD, and GUED. Therefore, in future,

we will try to adapted the proposed cover JPEG image estimation method for the mod-

ern adaptive JPEG steganography. Besides, we will also try to improve the performance

by using unsupervised learning to cluster the image blocks with similar contents [28].
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