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Abstract

Communications industry has remarkably changed with the development of fifth-generation cellular networks.
Image, as an indispensable component of communication, has attracted wide attention. Thus, finding a suitable
approach to assess image quality is important. Therefore, we propose a deep learning model for image quality
assessment (IQA) based on explicit-implicit dual stream network. We use frequency domain features of kurtosis based
on wavelet transform to represent explicit features and spatial features extracted by convolutional neural network
(CNN) to represent implicit features. Thus, we constructed an explicit-implicit (EI) parallel deep learning model,
namely, EI-IQA model. The EI-IQA model is based on the VGGNet that extracts the spatial domain features. On this
basis, the number of network layers of VGGNet is reduced by adding the parallel wavelet kurtosis value frequency
domain features. Thus, the training parameters and the sample requirements decline. We verified, by cross-validation
of different databases, that the wavelet kurtosis feature fusion method based on deep learning has a more complete
feature extraction effect and a better generalisation ability. Thus, the method can simulate the human visual
perception system better, and subjective feelings become closer to the human eye. The source code about the
proposed EI-IQA model is available on github https://github.com/jacob6/EI-IQA.

Keywords: CNN, Feature fusion, IQA, Wavelet feature extraction, EI dual stream network

1 Introduction
The emergence of 5G [1] period has brought great inno-
vation to communications industry, and the demand for
information transmission has increased under the bom-
bardment of high-speed information streams. Evidently,
different regions have different abilities to receive infor-
mation due to their geographic location and other factors.
Image is the main carrier of visual information [2] because
it can intuitively reflect information, which is particularly
important in the information transmission process. Dur-
ing image acquisition and transmission, different degrees
of distortion [3] are caused by various factors, such as
processing system and environmental noise. Then, distor-
tions affect people’s visual effects. Image quality directly
affects the subjective perception of the human eye and the
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acquisition of image information. Therefore, the research
on IQA has arouse widespread concern.
In accordance with whether the human eye is required

for classification, IQA methods can be roughly divided
into two types, namely, (1) subjective assessment and
(2) objective assessment [4]. The subjective assessment
method uses human visual assessment [5] as a standard
to assess images based on human intuitive visual experi-
ence. In the subjective assessment method, the distorted
image [6] and the original image are assessed. Although
the subjective assessment method works well, it entails
heavy workload; thus, it does not satisfy the require-
ments of practical application [7, 8]. By contrast, the
objective assessment is simpler than subjective assess-
ment; it has strong controllability. It uses the mathemat-
ical model to directly score the image without the need
for an assessor, thereby saving time and resources. Thus,
the subjective assessment has better application prospect
and has become the main method in the IQA field [9].
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Objective assessment methods can be further divided into
full-reference, semi-reference and non-reference IQA [10]
(or blind IQA). Their main differences lie in the pres-
ence or absence of the reference image. Non-reference
IQA (NR-IQA)method has a broader application prospect
because the original image is often unavailable in practical
applications.
NR-IQA can be divided into two categories in accor-

dance with the different methods of extracting features.
One type is an explicit NR-IQA method [11].The image
feature which will be tested is initially extracted. Then, the
extracted features will be input into the shallow regression
network to obtain the final quality score. Represented by
shallow machine learning, the BIQI [12] algorithm pro-
posed by Moorthy et al. extracts statistical features in
the wavelet domain of distorted images based on a two-
level framework and uses support vector machines to
classify image distortions. It calculates the probability of
the existing distortion type and the quality correspond-
ing to each distortion. The final quality is the weighted
sum of the distortion probability and the correspond-
ing quality. On the basis of the BIQI model, Moorthy et
al. proposed an image authenticity and integrity assess-
ment model, DIIVINE [13] algorithm based on distortion
type identification. This algorithm uses a controllable
pyramid [14] to perform wavelet decomposition in the
direction and scale, extracts the statistical characteristics
of the wavelet coefficients after separating normalisation
[15], and then uses support vector machines to build a
feature model. Saad et al. proposed the BLIINDS [16]
algorithm and the BLIINDS-II [17] improved algorithm.
The image was divided into blocks, and then for each
block, the statistical characteristics of the discrete cosine
transform (DCT) [18] coefficients were extracted in the
DCT domain of the image to establish a support vector
regression model. The model is based on the statistics of
the local discrete cosine transform coefficients to achieve
performance that satisfies the requirements of real-time
systems. The improved BLIINDS-II algorithm uses a sim-
ple expression, a low-dimensional feature space and a
simple Bayesian prediction framework, in the sparse DCT
domain. Mittal et al. proposed the BRISQUE [19] algo-
rithm, which established a regression model by extracting
statistical features of the image’s spatial normalisation [20]
coefficients. After calculating the mean subtracted con-
trast normalised (MSCN) [21], it was modelled by a sym-
metric generalised Gaussian distribution model (GGD)
[12] and an asymmetric GGD (AGGD [22]) model to
obtain statistical features. Then, it used the nearest neigh-
bour algorithm for downsampling, extracted features on
another scale, and finally obtained 36 features in the train-
ing image. On the basis of the BRISQUE method, Mittal
et al. proposed a “completely blind” image quality anal-
yser NIQE [23]. After calculating the MSCN of the image

to be tested, the block is partitioned in a non-interval
manner, and then the feature vector is extracted by the
same method of the BRISQUE algorithm for the block.
Finally, the multivariate Gaussian (MVG) model was fit-
ted to the extracted feature vector to obtain the final
quality assessment score. Zhang et al. proposed NIQE’s
upgraded algorithm IL-NIQE [24] based on NIQE, which
measures the image quality by calculating the distance
between the distorted image and the undistorted image
by the multivariate Gaussian distribution model, and per-
forms principal component analysis(PCA) dimensionality
reduction on the extracted feature vectors. Then, the
MVG calculation was performed on the feature obtained
from each image block to finally obtain the feature quality.
Zhang et al. proposed the DESIQUE [25] algorithm, which
extracts features from the spatial and frequency domains,
then downsamples the image, and finally obtains a qual-
ity score through a shallow regression network. Liu et al.
proposed the SSEQ [26] algorithm to block the input pic-
tures and calculate the local entropy average, local entropy
skewness, local spectral domain entropy mean, and local
spectral domain entropy skewness of each region. Then,
12 image features were obtained by performing two down-
sampling. Finally, a quality score through a shallow regres-
sion network was obtained. Explicit NR-IQA algorithm
performance comparison is shown in Table 1.
The early extraction of explicit features cannot establish

an end-to-end model [27] due to the limited computa-
tional power. Therefore, it uses hierarchical extraction
method to obtain feature set initially, and then performs
corresponding operations on the feature set to achieve the
image score. With the advancement of computing power
and the emergence of deep networks, the implicit NR-
IQA is introduced. Implicit NR-IQA [11] inputs the image
into the algorithm, establishes an end-to-end model, and
directly obtains the final image quality score. Represented
by deep networks, the DeepIQA [28] model proposed by
Gao Xinbo et al. performs qualitative assessment through
machine learning and outputs numerical scores. The
image is represented by the statistical characteristics of
natural scenes [2]. The deep model is trained, the classifi-
cation framework is established, the extracted features are
graded to correspond to different subjective feelings, and
then the qualitative labels are converted into image quality
assessment scores by pooling. The CNNIQA [29] algo-
rithm proposed by Kang et al. is based on the BIQAmodel
of the CNN [30]. It takes the image patch as the input
and uses back propagation and other methods for train-
ing. CNN works in the spatial domain, and the feature
extraction and regression are integrated into the CNN,
thereby deepening the network depth to improve learn-
ing ability. Kang et al. proposed a follow-up algorithm
CNNIQA++ [31] to increase the number of convolu-
tional layers on the basis of CNNIQA. It modified the full
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Table 1 Explicit NR-IQA algorithm performance comparison

Algorithm Parameters
No. of Indies on LIVE Training

Year
used parameters SROCC PLCC method

BIQI GGD
(
α, θ2

)
18 0.8271 0.8417 SVM 2010

DIIVINE GGD
(
α, θ2

)
88 0.9160 0.9170 SVM 2011

BLIINDS-II DCT 16 0.9124 0.9164 Model 2012

BRISQUE GGD
(
α, θ2

)
, AGGD

(
η, ν , θ2l , θ

2
r

)
36 0.9395 0.9424 SVM 2012

DESIQUE GGD
(
αi , θ2i

)
60 0.9437 0.9465 SVM 2013

NIQE GGD
(
α, θ2

)
, AGGD

(
η, ν , θ2l , θ

2
r

)
36 0.9153 0.9147 Model 2013

SSEQ entropy 12 0.9348 0.9383 SVM 2014

IL-NIQE GGD
(
α, θ2

)
, AGGD

(
η, ν , θ2l , θ

2
r

)
468 0.9025 0.9085 Model 2015

connected layers, reduced the receiving domain of the
filter, estimated image quality and identified distortion.
Thus, compared with CNNIQA training parameters, the
reduction was nearly 90% because the size of the training
set is too small to limit its depth. DeepBIQ [32] proposed
by Bianco et al. is a pretrained CNN based on classifica-
tion tasks and transfer learning to implement the BIQA
model. The overall image quality is estimated by accu-
mulating and averaging the prediction scores of image
subregions. RankIQA [33] proposed by Liu et al. attempts
to rank the quality of the three networks from shallow
to deep, and then migrates the trained network to the
traditional CNN network to estimate the absolute image
quality from a single image. The deepIQA [34] proposed
by Boss et al., based on end-to-end training, contains 10
convolutional layers, five pooling layers, and two full con-
nected layers. BIECON [35] proposed by Kim et al., a
blind image evaluator based on convolutional networks,
generates local quality and then aggregates regression to
obtain a subjective score, where the image quality score
of the local quality training is obtained by the full refer-
ence method. Kim et al. proposed DIQA [36] to assess
images in deep networks. The training process includes
two parts, as follows: regression to objective error maps
and subjective scoring. Two manual features are used to
capture specific distortion statistics, which are caused by
normalisation and feature mapping. Ma et al. proposed
the dipIQ [37] method to generate quality-recognisable
images to solve the problem of insufficient training data.
They used RankNet [38] to learn OF-BIQA models from
dip. The automatic dip generation model was selected
fromMS-SSIM [39], VIF [40] and GMSD [41]. In addition,
nonlinear logic function [42] was used to map the pre-
dictions of the three different models to the DMOS [42]
of the laboratory for image and video engineering (LIVE)
library. Ma et al. proposed an end-to-end optimised mul-
titask deep neural network MEON [43], initially training a
distortion type recognition subnetwork, and then training
quality prediction subnetwork from the pretrained early

layer and the output of the first subnetwork. Gao et al.
proposed blind image quality prediction BLINDER [44]
through multilevel depth representation. They extracted
multilevel representation from the DNN model VGGnet
[45], and then calculated features on each layer. Subse-
quently, they estimated the quality score of the feature
vector, and finally the average prediction score to estimate
the overall quality. Kim et al. proposed a virtual reality
IQA method based on deep learning (DeepVR-IQA) [46]
and proposed a deep network consisting of a virtual real-
ity quality score predictor and a human perception guide.
The proposed VR quality score predictor encodes patches
through images. The position and visual characteristics of
the image are used for learning. The proposed human per-
ception guide refers to the subjective score of the human
eye through adversarial learning, and their combination
can predict the quality score. The performance of the
implicit NR-IQA algorithm is shown in Table 2.
Apparently, implicit NR-IQA has good continuity and

ensures that the information is extracted adequately.
However, a great deal of information redundancy resulted
from a lack of evident physical significance, thereby

Table 2 Implicit NR-IQA algorithm performance comparison

Algorithm Depth
Indies on LIVE

Training method Year
SROCC PLCC

CNNIQA 5 0.956 0.953 CNN 2014

DeepBIQ 3 0.889 0.908 CNN 2017

RankIQA 16 0.981 0.982 CNN 2017

dipIQ 5 0.960 0.969 RankNet 2017

BIECON 6 0.961 0.962 CNN 2017

deepIQA 12 0.972 0.960 VGGnet 2018

MEON 13 0.974 0.972 CNN 2018

BLINDER 37 0.966 0.959 VGGnet 2018

DIQA 7 0.970 0.971 CNN 2019

DeepVR-IQA 7 0.882 0.888 ResNet-50 2020
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increasingmodel parameters and the difficulty of machine
learning. The explicit NR-IQA has good physical mean-
ing and interpretability. Its advantage lies in its inter-
pretability, which is convenient for insight into the rela-
tionship between features, and selective combination can
obtain better stackability. Hence, people use the feature
set of explicit feature extraction to enhance other machine
learning algorithms as the basis of training. However, the
final extracted feature information is incomplete. Figure 1
shows a comparison of explicit and implicit network
structures.
For this reason, the proposed EI-IQA combines explicit

features and implicit features and puts forward an exper-
imental scheme. We combine the explicit and implicit
features to describe the image characteristics, and then
develop an effective deep learning model. After training
and model parameters adjustment, we can finally obtain
a reliable image quality score and distortion type. Com-
pared with the traditional IQA algorithm, the proposed
EI-IQA combines the advantages of explicit features and
implicit features, extracts mixed features, and combines
the CNN model to establish an end-to-end model. It uses
deep neural networks to extract spatial features repre-
senting implicit features, and then uses wavelet trans-
form to extract frequency domain features representing
explicit features. Frequency domain features supplement
the spatial features, reducing the number of deep neu-
ral network layers, improving generalisation capabilities,
reducing the training difficulty, and avoiding the loss
of information during feature extraction. The combina-
tion of frequency domain information and spatial domain
information reduces information redundancy. Extracting
mixed features reduces the algorithm’s need for large sam-
ples and reduces the need for IQA deep networks for
training samples. The experimental results show that our
scheme effectively improves the algorithm’s performance.
In summary, our contributions are summarised as

follows:

• The proposed EI-IQA comprehensively proposes
combining two features to complement each other.
The implicit feature makes up for the shortcoming of
insufficient explicit feature; the explicit feature makes
up for the shortcoming of the physical meaning of the
implicit feature extracted by the deep network. At the
same time, the number of network layers, network
parameters and complexity are reduced.

• We design a deep network that combines the
advantages of explicit features and implicit features,
effectively reducing the dependence of the deep
network on large training samples.

• Our results prove that only when the number of
network layers reaches a certain depth, the implicit
features extracted by the deep network are sufficient,
that is, when the number of layers of the deep
network is insufficient, the extracted features are
redundant and insufficient.

The remaining chapters of this paper are arranged as fol-
lows. Section 2 details the proposed EI-IQA method and
parameters training process. Section 3 provides the exper-
imental results and analysis. Finally, Section 4 concludes
with a summary of our work and describes the future
outlook.

2 The proposed EI-IQA framework
2.1 System solutions
With the complication of research in the field of images,
feature extraction has become an important part of many
algorithm design processes. In many cases, the shallow
features extracted by traditional methods cannot satisfy
the requirements of the algorithm. To ensure the sufficient
extraction of information, most researchers use deep net-
works to automatically learn features from big data. How-
ever, a great deal of information redundancy resulted from
a lack of evident physical significance, thereby increasing
model parameters and the difficulty of machine learning.

Fig. 1 Comparison of explicit and implicit network structures
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The deep neural network is used to extract the implicit
features represented by the spatial features of the image,
and then input into the regression network to obtain the
quality score and distortion type. To solve the problem on
feature redundancy resulting in a large number of model
parameters, we propose a new scheme that combines
the explicit features represented by manually extracted
wavelet features and the implicit features represented by
the spatial features extracted by the deep learning net-
work. The proposed scheme is shown in Fig. 2.
For the input image, the spatial features of the image

are extracted through the VGG13 deep network model,
as well as the frequency domain features of the image
in the wavelet domain using wavelet transform. Image
spatial domain features are used to represent implicit
features, and frequency domain features are used to rep-
resent explicit features. Explicit features are combined
with implicit features, and mixed features are obtained
through feature fusion. Then, the mixed feature is input to
perform multitask learning in the established regression
network to obtain the final image quality score and dis-
tortion type. That is, adding the extraction of frequency
domain information on the basis of deep network, using
the implicit features extracted by the deep network model
VGGNet and the explicit features extracted by wavelet
transform, we propose our deep image quality assessment
[47] method based on EI-IQA. We use a combination of
explicit and implicit features to describe image features
and deep networkmodels to achieve effective learning and
to finally obtain the quality score and distortion type.
Compared with the previous solution, we add frequency

domain information extraction, which has more accurate
and comprehensive features. The combination of explicit
and implicit features reduces information redundancy.

Explicit features are related to implicit features. The depth
of the deep neural network is reduced to extract implicit
features, thereby reducing parameter of training and the
difficulty of machine learning. Thus, our algorithm has
a better generalisation effect. In addition, because we
are extracting a mixture of explicit and implicit features,
which greatly reduces our demand for samples, our algo-
rithm can obtain satisfactory results even for small sample
libraries.

2.2 Feature extraction
The frequency domain features extracted by wavelet
transform represent explicit features, and the spatial
domain features extracted by deep network represent
implicit features. To solve the shortcomings of insufficient
explicit features and unclear physical meaning of implicit
features, we propose a parallel deep learning model EI-
IQA based on EI-IQA. The implicit features extracted
by VGGNet and the explicit features represented by the
wavelet kurtosis [48] frequency domain features are used
as the underlying feature vector X. The explicit and
implicit features are extracted in parallel. The combina-
tion of explicit features and implicit features is used as
input of the regression network.
Different from the traditional deep network, the pro-

posed EI-IQA model combines the explicit features rep-
resented by frequency domain features and the implicit
features represented by spatial domain features to form a
mixed feature. It solves the shortcomings of insufficient
explicit features and unclear physical meaning of implicit
features. These features have complementary advantages
and disadvantages. In addition, the EI-IQA model can
achieve an experimental effect similar to the original deep
model by reducing the number of deep neural networks

Fig. 2 Framework of the proposed EI-IQA method
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in the model, reducing parameter training and adding
frequency domain information.

2.2.1 Explicit feature extraction based on kurtosis value in
wavelet domain

According to the existing research, compared with the
original image, the distribution of the distorted image is
flat, the peak value is low and the tail is long. Its kurtosis
value has frequency scale invariance, which can be used as
a metric and a feature to distinguish images with different
degrees of distortion.
In the explicit feature extraction represented by the kur-

tosis value in the wavelet domain, discrete wavelet trans-
form(DWT) [49] is performed on the image, and then 38
Daubechies filters from low frequency to high frequency
scale are used. Thus, wavelet sub-band coefficients of t
group (t = 38) are obtained in low frequency, horizontal,
vertical and diagonal directions, which are Lt , Ht , Vt and
Dt(t ∈ 1, 2, 3, · · · , 38), respectively. They are merged into
38 new matrices Jt(t ∈ 1, 2, 3, · · · , 38).

Jt = [Lt ,Ht ,Vt ,Dt] (1)

The kurtosis value of the matrix Jt is recorded as K(Jt),
as follows:

K(Jt) = k4(Jt)
k2(Jt)2

= μ4(Jt)
σ (Jt)4

− 3 (2)

where ki(Jt) represents the ith cumulative function of the
matrix Jt , and μi(Jt) represents the ith central moment of
the matrix Jt .

The 38 kurtosis values of an image are combined into a
38-dimensional feature vector, denoted as E, as follows:

E = [
K(J1),K(J2), · · · ,K(J38)

]
(3)

The wavelet frequency domain feature extraction pro-
cess is shown in Fig. 3.

2.2.2 Implicit feature extraction based on deep CNN
The deep neural network can avoid the loss of feature
information, directly input the original image into the net-
work model for training and combine feature learning
with training. The proposed EI-IQA uses the classic deep
neural network model VGG to segment the input image
according to 32×32 to extract features. After the convolu-
tional layer of n(n = 13) layers, the final implicit features
represented by the spatial features are obtained. In the
equation, n is the number of convolutional layers in the
deep neural network model VGG.

2.3 Model training
In the model training process, the image in the database
is initially normalised, and then divided into 32 × 32 size.
Then, the multitask CNN is used to predict the image
block. Finally, the prediction value combined with the
original image is used to obtain the final results. Assuming
that the original image is uniformly distorted, the result-
ing quality score is the average of the quality scores of all
image blocks, and the type of distortion of the final image
is determined by voting for most image blocks.

Fig. 3 Schematic of explicit feature extraction structure
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2.3.1 Image normalisation
The essence of neural network learning is the distribution
of learning data. The difference between the distribution
of training data and test data greatly reduces the generali-
sation ability of the model. Moreover, the neural network
learning process is complicated. Once a slight change
occurs in a certain middle layer of the network, it is grad-
ually enlarged in the subsequent process. This network
layer needs to be learned to adapt to the new data distribu-
tion in each iteration process, greatly reducing the speed
of the neural network training. Therefore, the normalised
data preprocessing is an indispensable part of the model
training process.
The image is cut into 32 × 32 noncoincident image

blocks, and then the local normalisation operation is per-
formed as follows:

Î
(
i, j

) = I
(
i, j

) − μ
(
i, j

)

σ
(
i, j

) + C
(4)

where I
(
i, j

)
represents a locally normalised brightness

imagematrix,i ∈ 1, 2, · · · ,M, j ∈ 1, 2, · · · ,N , andM andN
represent the height and width of the image, respectively.
C is a constant that prevents the denominator from reach-
ing zero. The calculation formulas for μ

(
i, j

)
and σ

(
i, j

)

are as follows:

μ
(
i, j

) =
k=K∑

k=−K

l=L∑

l=−L
wk,lIk,l

(
i, j

)
(5)

σ
(
i, j

) =
√√
√
√

k=K∑

k=−K

l=L∑

l=−L
wk,l

(
Ik,l

(
i, j

) − μ
(
i, j

))2 (6)

where wk,l (k ∈ −K , · · · ,K , l ∈ −L, · · · , L) represents a
2D circular symmetric Gaussian weighting [50] function,
sampled to three standard deviations, and then readjusted
to unit volume, that is, K = L = 3.

2.3.2 Loss function
Stochastic gradient descent and back propagation are used
in the model to approximately minimise the loss during
training. Gradient weighting is used, and network param-
eters are updated. wi is the ith network parameter, and pi
represents the learning efficiency of the ith network. Di

m
represents the gradient of taskm corresponding to wi,and
αm represents the relative weight of task m. The update
rules during the iteration process are as follows:

wi ← wi − pi
m=2∑

m=1
αmDi

m (7)

The loss function describes the average absolute error
between the predicted value and the target value. The
LOSS function can be described as follows:

l(x, y) = L = {l1, · · · , lN }T (8)

where N is the number of input samples, lN is the average
absolute error between the predicted value and the target
value when the input sample number isN, and the specific
expression is as follows:

LN = 1
N

N∑

i
‖ X(i)

1 − X(i)
2 ‖ (9)

where X(i)
1 and X(i)

2 are two input vectors, and N is the
number of input samples.

2.4 Methods
Apparently, explicit NR-IQA represented by shallow
machine network extracts features incompletely, but its
physical significance is evident. On the contrary, implicit
NR-IQA represented by the deep network extracts fea-
tures adequately, but its unobvious significance causes
information redundancy. Therefore, we combine both of
them to extract features and propose the EI-IQA method.
The proposed EI-IQA has solved the shortcomings of
insufficient explicit features and unclear physical mean-
ing of implicit features. The frequency domain features
extracted by wavelet transform represent explicit features,
and the spatial domain features extracted by deep net-
work represent implicit features. Extract the explicit and
implicit features are in parallel and input the combination
of explicit feature and implicit feature to the regression
network. Then, we directly obtain the final image quality
score.

3 Results and discussion
To verify the performance of the algorithm, we con-
duct experiments on the LIVE [51], categorical subjective
image quality (CSIQ [52]), and TID2013 [53] databases.
The basic comparison of the three databases is shown
in Table 3. These databases provide a data source for
image quality assessment and play an important role. To
ensure the consistency of training and testing, when con-
ducting cross-database tests, we only select the same five
distortion categories (JP2K, JPEG, Fast-fading, Gaussian
noise and Gaussian blur) to carry out the test. Spearman’s
rank correlation coefficient (SROCC), Pearson correla-
tion coefficient (PLCC), and distortion type classification
Acc indicators are used to assess the performance of the
algorithm given that the output of the model involves dis-
tortion types and quality scores. To enhance the model
comparison effect, in the selection of feature extraction
[54] models, SROCC, Kendall rank correlation coefficient
(KROCC), root mean square error(RMSE), MSE, exit rate
OR, PLCC, and distortion Acc index of type classifica-
tion are used to assess the performance of the feature
extraction model.
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Table 3 Comparison of basic database conditions

Database name Issuing time Number of images Resolution Types of distortion No. of distorted images Quality Index

LIVE 2006 29 438 × 634 ∼ 512 × 768 5 779 DMOS

CSIQ 2010 30 512 × 512 6 886 DMOS

TID2013 2013 25 384 × 512 24 3000 MOS

During the experiment, the implicit feature extraction
method was first verified. The VGGNet and ResNet mod-
els were used to extract the implicit features, and two
models with different implicit features were established,
namely, EI-VIQA and EI-RIQA. The comparative train-
ing results finally proved that VGGNet can more effec-
tively extract the implicit features when the same explicit
features are extracted. Then, to determine the optimal
depth of VGGNet in the EI-VIQA model, we conduct EI-
VIQA ablation experiment. Finally, EI-VIQA is used as the
implicit feature extraction model of the EI-IQA model.
At the same time, the ablation supplement experiment is
performed on EI-RIQA, which further proved the accu-
racy of the experimental idea. The experimental results
similar to the original deep network can be achieved by
adding explicit features to supplement implicit features
to reduce the network depth. Thus, the structure of the
EI-IQA model has been established.
Then, the assessment index of this experimental algo-

rithm is compared with the classic algorithm. The empha-
sis of different assessment indexes is slightly different.
The comparison shows that a considerable part of the
assessment indexes has higher scores of the proposed EI-
IQA, proving the superiority of this algorithm. Finally, the
established EI-IQAmodel is used for cross-database train-
ing, which is carried out for different distortion types.
Among them, JP2K, JPEG, noise, blur, and other distor-
tion types have been better assessed inmultiple databases.
The results prove that the model has good generalisation
performance.

3.1 Model selection of the feature extraction
To extract better implicit features, during the experi-
ment, VGGNet and ResNet models were selected, and
the implicit features extracted by VGGNet and ResNet
models under the LIVE library were combined with the
same explicit features as feature inputs. The implicit fea-
ture extraction models EI-VIQA and EI-RIQA are estab-
lished and compared to obtain a better implicit feature
extraction model. The result showed that the implicit fea-
tures extracted by EI-VIQA achieve better results. Table 4
shows the comparison of the implicit features extracted
by the VGGNet and ResNet models under the LIVE
library.
In Table 4, the comparison between the implicit feature

input extracted by VGGNet and the implicit feature input
extracted by the ResNet model evidently shows that the

implicit feature extraction of VGGNet has the advantage
of small depth and excellent index.

3.2 Quantitative test results
The same library training of the LIVE library is performed
on the EI-IQA model determined by the experimental
plan. EI-IQA and 18 classic algorithms, including shal-
low network and deep network, involved in Section 1
are trained together under the LIVE library. To prove
the generalisation performance of the EI-IQA algorithm,
the algorithm trained under the LIVE library was cross-
library trained under the CSIQ and TID2013 databases.
The method was also compared with the 18 classic
algorithms involved in Section 1. Table 5 shows the
IQA performance index comparison table tested on the
LIVE database [55]. Table 6 shows the cross-database
comparative results of the algorithm across TID2013.
Table 7 shows the cross-database comparative results of
the algorithm across CSIQ. Figure 4 shows the algorithm
in CSIQ [52] and TID2013 [53] cross-library training
results.
Tables 5, 6, and 7 show that the proposed EI-IQA still

has considerable advantages over the classic algorithm
under the CSIQ and TID2013 libraries. It is superior to
some algorithm indicators, has good generalisation per-
formance, and satisfies the expected requirements. In
Fig. 4, the assessment index results of the EI-IQA algo-
rithm in different databases are compared. The histogram
clearly shows that the assessment indexes of the EI-IQA
algorithm under different databases are not significantly
different. The EI-IQA algorithm has been further proven
to have effective generalisation performance and greatly
enhanced reliability.

Table 4 Comparison between VGGNet and ResNet extracted
features

VGG16 VGG13 ResNet50 ResNet34

Acc 98.12% 98.75% 87.50% 92.50%

SROCC 0.9643 0.9585 0.9375 0.9501

KROCC 0.8472 0.8403 0.7939 0.8187

PLCC 0.9633 0.9555 0.9343 0.9473

RMSE 7.2622 8.0145 9.3961 9.4640

MAE 5.2481 5.5931 6.9643 7.3811

OR 41.88% 44.38% 56.25% 63.12%
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Table 5 Test results on LIVE database

IQA algorithm ACC SROCC PLCC

BIQI - 0.827 0.842

DIIVINE 0.838 0.916 0.917

BLIINDS-II - 0.912 0.916

BRISQUE 0.886 0.940 0.942

DESIQUE - 0.944 0.947

NIQE - 0.915 0.915

SSEQ - 0.935 0.938

IL-NIQE - 0.903 0.909

CNNIQA - 0.956 0.953

DeepBIQ - 0.889 0.908

RankIQA - 0.981 0.982

dipIQA - 0.960 0.969

BIECON - 0.961 0.962

deepIQA - 0.972 0.960

MEON - 0.974 0.972

BLINDER - 0.966 0.959

DIQA - 0.970 0.971

DeepVR-IQA - 0.882 0.888

EI-IQA 0.944 0.957 0.955

Table 6 Test results on TID2013 database

IQA algorithm ACC SROCC PLCC

BIQI - 0.809 0.809

DIIVINE 0.838 0.795 0.794

BLIINDS-II - 0.980 0.935

BRISQUE 0.886 0.883 0.901

DESIQUE - 0.894 0.886

NIQE - 0.900 0.819

SSEQ - 0.904 0.922

IL-NIQE - 0.881 0.890

CNNIQA - 0.920 0.903

DeepBIQ - 0.868 0.938

RankIQA - 0.780 0.770

dipIQA - 0.877 0.894

BIECON - 0.721 0.765

deepIQA - 0.885 0.913

MEON - 0.912 0.912

BLINDER - 0.894 0.864

DIQA - 0.825 0.850

DeepVR-IQA - 0.878 0.880

EI-IQA 0.917 0.900 0.911

Table 7 Test results on CSIQ database

IQA algorithm ACC SROCC PLCC

BIQI - 0.809 0.809

DIIVINE 0.838 0.835 0.855

BLIINDS-II - 0.935 0.935

BRISQUE 0.886 0.909 0.937

DESIQUE - 0.910 0.935

NIQE - 0.883 0.900

SSEQ - 0.922 0.914

IL-NIQE - 0.887 0.914

CNNIQA - 0.869 0.866

DeepBIQ - 0.890 0.908

RankIQA - 0.960 0.966

dipIQA - 0.930 0.949

BIECON - 0.825 0.838

deepIQA - 0.871 0.891

MEON - 0.932 0.944

BLINDER - 0.894 0.765

DIQA - 0.884 0.915

DeepVR-IQA - 0.883 0.884

EI-IQA 0.917 0.903 0.911

3.3 Model testing for specific distortion types
To test the generalisation ability of the assessment model
for different samples, we use the entire LIVE database as
the training set and select the same type of distortion as
the training sample in the CSIQ, and TID2013 databases
(JPEG2000, JPEG compression, fast-fading, white noise
and Gaussian blur) are used as the test set to obtain the
performance index of the algorithm. The SROCC assess-
ment index is used to quantify the adaptability of the
algorithm to different types of distortion; it is compared

SROCC KROCC PLCC RMSE MAE OR
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Fig. 4 Proposed EI-IQA cross-database result histogram
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Table 8 Test results of specific distortion types under the LIVE
database

Algorithm JP2K JPEG Noise Blur FF All

PSNR 0.868 0.885 0.943 0.761 0.891 0.866

SSIM 0.938 0.947 0.964 0.907 0.956 0.913

VIF 0.952 0.910 0.984 0.972 0.963 0.952

BIQI 0.802 0.874 0.958 0.821 0.730 0.824

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916

BLIINDS-II 0.951 0.941 0.978 0.944 0.927 0.920

BRISQUE 0.947 0.925 0.989 0.951 0.903 0.947

SSEQ 0.946 0.951 0.978 0.948 0.904 0.935

EI-IQA 0.974 0.986 0.992 0.985 0.874 0.958

with the classic IQA algorithm. The adaptability of the
proposed EI-IQA to different types of distortion is dif-
ferent. The comparative results under the LIVE library
are shown in Table 8 and that under the CSIQ library
are shown in Table 9. The comparative results under the
TID2013 library are shown in Table 10.
These tables show that the proposed EI-IQA is more

sensitive to distortion types, such as JP2K, JPEG, noise,
and blur and slightly less sensitive to fast-fading distor-
tion.

3.4 Ablation experiment
The depth of the deep network is reduced by adding
explicit features, changing the number of network layers
of VGGNet and combining the frequency domain features
extracted by wavelet transform. The number of network
layers of VGGNet is reduced by adding explicit features
to supplement implicit features. The experimental results
are similar to the original deep network. In addition,
cross-library testing of the model, compared with other
experiments, obtained good results. Table 11 shows the
performance index of the algorithm tested on the LIVE
library, and Fig. 5 shows a histogram of the algorithm

Table 9 Test results of specific distortion types under the CSIQ
database

Algorithm JP2K JPEG Noise Blur FF All

PSNR 0.941 0.901 0.943 0.936 0.915 0.928

SSIM 0.962 0.956 0.912 0.965 0.937 0.935

VIF 0.967 0.970 0.957 0.975 0.963 0.972

BIQI 0.975 0.962 0.954 0.968 0.936 0.927

DIIVINE 0.831 0.800 0.866 0.872 0.891 0.864

BLIINDS-II 0.895 0.900 0.801 0.892 0.868 0.892

BRISQUE 0.867 0.909 0.925 0.903 0.859 0.916

SSEQ 0.977 0.975 0.983 0.961 0.904 0.955

EI-IQA 0.954 0.938 0.969 0.911 0.957 0.936

Table 10 Test results of specific distortion types under the
TID2013 database

Algorithm JP2K JPEG Noise Blur FF All

PSNR 0.898 0.929 0.942 0.965 0.865 0.924

0.950 0.935 0.896 0.969 0.945 0.924

VIF 0.970 0.931 0.913 0.958 0.953 0.946

BIQI 0.974 0.925 0.833 0.847 0.810 0.889

DIIVINE 0.853 0.629 0.855 0.834 0.898 0.880

BLIINDS-II 0.911 0.838 0.715 0.826 0.899 0.893

BRISQUE 0.904 0.910 0.823 0.874 0.848 0.896

SSEQ 0.846 0.866 0.801 0.835 0.853 0.846

EI-IQA 0.925 0.934 0.934 0.895 0.874 0.936

performance indicator tested on the LIVE library. The
SROCC, PLCC, and Acc type of the classification of the
proposed EI-IQA are the best among similar algorithms.
In Table 11, the depth of the VGG network is reduced,

and then combined with the explicit features of different
degrees. No evident fluctuation in the assessment index
results was found. This experiment aims to reduce the
depth of the deep network by adding explicit features. In
Fig. 5, part of the results of Table 11 are visualised, indi-
cating that the depth of the VGG network is reduced. In
addition, combined with the explicit features, the results
of the assessment indicators do not change significantly.
To further prove the experimental idea, the implicit

feature extraction model is replaced. The ResNet model
is used to extract implicit features. The implicit fea-
tures extracted by the ResNet model are supplemented
by adding frequency domain features, which can achieve
similar final indicators whilst reducing the depth of the
ResNet model. This finding further proves the experi-
mental idea, that is, adding frequency-domain features
to supplement implicit features reduces the depth of the
model and the difficulty of parameter training. Table 12
shows the performance index of the ResNet model under
the LIVE library, and Fig. 6 shows the histogram of the
performance index of the ResNet model under the LIVE
library.

Table 11 Comparison of VGGNet degrading results

VGG16 VGG13 VGG11 VGG9

Acc 98.12% 98.75% 92.50% 94.38%

SROCC 0.9643 0.9585 0.9596 0.9566

KROCC 0.8472 0.8403 0.8414 0.8341

PLCC 0.9633 0.9555 0.9558 0.9554

RMSE 7.2622 8.0145 7.9754 8.0061

MAE 5.2481 5.5931 5.5643 5.5833

OR 41.88% 44.38% 46.25% 47.50%



Yang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:48 Page 11 of 13

VGG16 VGG13 VGG11 VGG9

EI-VIQA

0

0.2

0.4

0.6

0.8

1

D
at

a 
In

de
x

Acc
SROCC
PLCC

Fig. 5 Comparison histogram of VGGNet degrading results in LIVE

In Table 12, the depth of the ResNet network is reduced,
and then different levels of explicit features are combined.
No evident fluctuation is found in the assessment index
results. As a supplementary experiment, to further prove
the idea of the proposed EI-IQA, explicit features are
added to reduce the depth of the deep network. In Fig. 6,
part of the results of Table 6 are visualised. The image
shows that the depth of the ResNet network is reduced,
and then combined with the explicit features, the results
of the assessment indicators do not fluctuate significantly.
Since then, the structure of the EI-IQA algorithm has

been established, that is, VGGNet is used to extract
implicit features, and wavelet transform is used to
extract wavelet domain and frequency domain features
to represent explicit features. Explicit features supple-
ment implicit features, thereby appropriately reducing
the depth of VGGNet model. The experimental results
achieved are close to the original network depth. The
extracted explicit features and the implicit features are
subjected to feature fusion to extract mixed features, and
then the mixed features are input into the regression net-
work [42] established for multitask learning to obtain the
final quality score and distortion category.

Table 12 Comparison of ResNet degradation results

ResNet101 ResNet50 ResNet34 ResNet18

Acc 91.88% 87.50% 92.50% 86.88%

SROCC 0.9484 0.9375 0.9501 0.9495

KROCC 0.8167 0.7939 0.8187 0.8124

PLCC 0.9479 0.9343 0.9473 0.9418

RMSE 8.3671 9.3961 9.4640 10.2181

MAE 5.9152 6.9643 7.3811 7.9816

OR 48.75% 56.25% 63.12% 65.62%
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Fig. 6 Comparison histogram of ResNet degrading results in LIVE

3.5 Discussion
Most of the IQA methods have a large demand for sam-
ples. Compared with classical, the proposed EI-IQA com-
bines explicit and implicit features. The explicit features
complement the implicit features, reducing the network
depth and solving the problem of large sample demand for
traditional algorithms. The proposed EI-IQA constructs
two different approaches to extract implicit features and
chooses the VGGNet as the better one. In future work,
we hope to further optimise the extraction of implicit fea-
tures and combine with explicit features to obtain better
mixed features. The generalisation ability of the model is
improved by the model structure; it attempts to be closer
to the subjective feeling of human eyes.

4 Conclusion
We build an EI-IQA method to extract features. From
two different approaches, combining explicit and implicit
features to describe image features makes up for the short-
comings of insufficient explicit features and unclear phys-
ical meaning of implicit features. The proposed EI-IQA
model avoids the loss of feature information. The original
image is directly fed into the model for training, and the
generalisation ability of the model is effectively improved.
Explicit features complement implicit features, consider-
ing mixed features as input. Thus, the dependence of deep
networks on large training samples is effectively reduced.
We also construct two different approaches to extract

implicit features. VGGNet and ResNet are used to
extract implicit features. Our results suggest that VGGNet
extracts features better. Then, we test the proposed EI-
IQA over three different databases. Compared with some
classical, the proposed EI-IQA obtains better scores in
some components. We believe that the proposed EI-IQA
has more effective generalisation performance and the
reliability is greatly enhanced.
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