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Abstract
Considering the significant progress made on RGB-based deep salient object detection
(SOD) methods, this paper seeks to bridge the gap between those 2D methods and 4D
light field data, instead of implementing specific 4D methods. We observe that the
performance of 2D methods changes dramatically with the input refocusing on
different depths. This paper attempts to make the 2D methods available for light field
SOD by learning to select the best single image from the 4D tensor. Given a 2D
method, a deep model is proposed to explicitly compare pairs of SOD results on one
light field sample. Moreover, a comparator module is designed to integrate the
features from a pair, which provides more discriminative representations to classify.
Experiments over 13 latest 2D methods and 2 datasets demonstrate the proposed
method can bring about 24.0% and 5.3% average improvement of mean absolute error
and F-measure, and outperform state-of-the-art 4D methods by a large margin.

Keywords: Salient object detection, Light field, Learning to compare, Attention
network

1 Introduction
Salient object detection (SOD), also known as saliency detection, refers to simulate visual
attention processes of human vision systems, which helps humans to quickly understand
visual scenes and filter irrelevant information. Given a natural image, SOD aims to localize
and segment themost visually attractive objects and ignore other region. Such technology
has been regarded as a fundamental step for various computer vision problems, such as
tracking [1], image fusion [2], detection [3], and segmentation [4, 5].
Usually, existing SOD methods can be categorized into 2D, 3D, and 4D, which depends

on the types of input, i.e., RGB, RGBD, and light field data, respectively. 2D methods
have attracted a lot of attention from the community and dominated the field. In the past
few years, the evolution of handheld light field cameras makes the acquisition of 4D light
field data much easier, which promotes the development of light field SOD [6–9]. The
commercial light field camera Lytro [10] adopts a microlens array, consisting of thousands
of tiny lenses to measure light from multiple directions. Through rendering and post-
shot refocusing techniques, the Lytro camera can synthesize different types of 2D images,
including focal stacks, depth maps, and all-focus images [7]. In the task of light field SOD,
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Fig. 1 Motivation of the proposed method. a All-focus image and saliency maps by state-of-the-art 2D
method SCRN [11]. b Focal stacks and corresponding saliency results by SCRN. c Ground truth (the first and
third row) and results by state-of-the-art 4D method DUT [7] (the second and forth row). Green boxes denote
the best F-measure of SCRN

the 4D light field representation is converted into one all-focus image (as shown in the
first row of Fig. 1a) and multiple focal stacks at different depths (as shown in the first row
of Fig. 1b).
State-of-the-art 4D methods [7–9] can be regarded as fusion-based methods, which

attempt to combine all light field slices by different strategies. However, the slices of one
light field sample1 are not always beneficial for saliency detection. As shown in Fig. 1b, the
variation of focus depth may make the original salient object blurred and the undesired
background noticeable. Fusing such feature could lead to inferior results. As shown in
the second and forth row of Fig. 1c, fusion-based method DUT [7] detects much false
positive region, which could be attributed to the combination of some undesired focal
stacks.
The target of this paper is to provide a new perspective to solve 4D SOD. We find that

using different input data for 2D methods changes performance dramatically, as shown
in Fig. 1b. Some focal stacks happen to correctly focus on the target object and blur the
background, which makes the segmentation far easier and better than the other stacks
and all-focus image. If we can automatically select proper slice(s) from the light field
sample, can 2D methods outperform state-of-the-art 4D ones? To the best of our knowl-
edge, no prior work has attempted to select the input of 2D methods on the task of light
field SOD.
To this end, we reformulate the task of light field SOD by selecting the best input of

2D methods, which makes this task continuously benefit from the development of 2D
methods. Concretely, this paper proposes to explicitly compare pairs of light field slices.
The input of our model is two images randomly selected from the same light field sam-
ple. For evaluating a certain 2D method, we also concatenate the two images with their
corresponding saliency maps. However, such paired inputs could bring a new challenge
that same two images with different order should correspond to different outputs. A com-
parator module is proposed to ensure the model has the ability of distinguishing which of

1In this paper, a light field sample is defined as the all-focus image plus the corresponding focal stacks. For simplicity, a
slice of light field sample can be either an all-focus image or an image for focal stacks.
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the two inputs is better. The features of two inputs are treated separately as the exemplar
and query of the comparator module. The comparator adopts the attention mechanism
to reweigh the query feature based on the correlation between the query and exemplar,
which allows the whole model to pay more attention to the correlated areas and provide
more discriminative representation. To train such a model, the label is formulated as the
relative performance of the two SOD results, which can be measured by common SOD
metrics, e.g., F-measure [12] and E-measure [13]. Instead of regressing the relative perfor-
mance, we adopt the binary classification loss, which intends tomake the learning process
easier and more effective.
Once trained, the model can operate as a bubble sorting algorithm. The model can

iteratively compare two slices from the same light field sample until the best one is
predicted. However, such testing strategy is highly unstable and easy to fail in the pro-
cess of prediction if an error is injected. This paper considers the prediction from a
global perspective. The score of one slice should be simultaneously determined by the
others in the same sample. Thus, at each time, we compare one slice with the others
and adopt the average score as the prediction of the target slice. In this way, the strategy
brings more information from a global view and offsets any inaccurate predictions by the
model.
To sum up, the main contributions of this work are threefold:

• This paper demonstrates that there exists an alternative way to perform light field
SOD without designing specialized 4D methods, i.e., optimizing and selecting the
best input to existing 2D methods.

• A novel convolutional neural network (CNN)-based model is proposed to compare
any two slices from the same light field sample, the relative performance of which is
regularized by an effective attention-based module and a simple binary classification
loss.

• We verify the proposed model with 13 latest 2D deep SOD methods over 2 light field
datasets. The experimental results demonstrate that the proposed method effectively
boosts the performances and makes most of the involved 2D methods outperform
state-of-the-art 4D methods.

2 Related work
Here, we briefly introduce the related work about salient object detection according to
different types of data.

2.1 RGB-based salient object detection

SOD methods are initially devoted to single color or grayscale image, which can be also
regarded as 2D methods. Early works mainly depend on intrinsic cues, e.g., hand-crafted
local and global features [14, 15] and heuristic priors [12, 16], to extract underlying
salient regions. In recent years, the introduction of CNN leads the SOD into a new era
of rapid development [17]. At the beginning, the CNN is adopted as a feature extractor
to provide multi-context information [18, 19]. With the introduction of fully convo-
lutional network (FCN), the CNN-based SOD is formulated as a task of pixel-wise
estimation. To provide necessary low- and high-level context, most methods attempt to
integrate the features from multi-stages of FCN. For example, Li and Yu [20] proposed
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a multi-scale FCN branch to capture visual contrast amongmulti-scale feature maps. Hou
et al. [21] exploited stage-wise supervision to explicitly learn on multi-scale feature maps.
In [22], the features from deep and shallow layers of FCN are iteratively optimized using
residual refinement blocks. Besides individually learning a segmentation model, some
works [23–27] attempt to utilize boundary information for auxiliary training. Li et al. [23]
proposed a novel method to alternately train a contour detectionmodel and a SODmodel.
In [26], logical interrelations were adopted to constrain the simultaneous training of SOD
and edge detection. A edge guidance network [27] is employed to couple edge features
with saliency features at multi-scales. Usually, attention modules in CNN are exploited to
mimic the visual attention mechanism, which is consistent with the purpose of SOD. A
pixel-wise contextual attention network [28] was introduced to selectively attend to infor-
mative context locations for each pixel. Chen et al. [29] attempted to reverse the attention
results for expanding object regions progressively. The work in [30] proposed an attentive
feedback module to refine the features from encoder and pass them to the corresponding
decoder.

2.2 RGBD-based salient object detection

Depthmaps containing various depth cues such as spatial structure and 3D layout provide
necessary complementary information for 2D SOD [31, 32]. CNN also shows powerful
ability in the field of 3D SOD. Qu et al. [33] fused the depth maps with different low-level
saliency cues as the input of CNN. Chen and Li [34] designed a novel complementarity-
aware fusion module to explicitly integrate cross-modal and cross-level features. In [35],
the depth cue was processed by an independent encoder network to provide extra prior.
Recently, Zhao et al. [32] argued that fusing the CNN features of depth maps in RGB
branch is sub-optimal. Before combining with RGB features, they adopted contrast prior
to enhance the depth cues.

2.3 Light field salient object detection

This task was firstly defined in [6] where objectness was adopted to integrate the saliency
candidates from all-focus images and corresponding focal stacks. Zhang et al. [36]
extracted background priors by weighting focusness contrast and presented effectiveness
of light field data properties. Li et al. [37] built a saliency dictionary by selecting a group of
salient candidates from the focal stacks, where saliency was measured by the reconstruc-
tion error. In [8], multiple cues, e.g., color, depth, andmultiple viewpoints, were generated
from light field features and integrated by a random-search-based weighting strategy.
Compared with 2D/3D methods, CNN-based light field SOD is still on its primary stage.
One of the main reasons is in insufficient labeled data. Recently, Wang et al. [7] intro-
duced a large dataset and adopted CNN models to solve this task. A recurrent attention
network was proposed in [7] to integrate every slice in the focal stacks and lately com-
bined with another stream over all-focus images. Similar to [7], Zhang et al. [9] proposed
a complicated framework to fuse the focal stacks, which aimed at emphasizing the ones
related to the salient object. Piao et al. [38] introduced an asymmetrical two-stream net-
work to distill focusness knowledge to a student network, which is computation-friendly.
Instead of learning the implicit relationship among the focal stacks, we attempt to explic-
itly select the slices of light field sample, which are compatible with the well-developed
CNN-based 2D methods.
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3 Methodology
3.1 Problem definition

We consider solving the task of light field SOD by employing existing CNN-based 2D
methods. Formally, a complete light field sample consists of one all-focus image I0 and
multiple focal stacks {In}Nn=1 focusing at different depths. The problem of this paper
is how to select the best performance from the saliency maps {Mn}Nn=0 by a given 2D
method w.r.t. {In}Nn=0. The performance

{
yn

}N
n=0 of {Mn}Nn=0 can be quantified by standard

evaluation metrics, such as mean absolute error, F-measure [12], E-measure [13], and
S-measure [39].
One straightforward solution is to treat individual images in {In}Nn=0 as independent

input and learn to regress the quantitative performances
{
yn

}N
n=0. When testing, the slice

with themaximumpredicted score can be selected from each test sample. However, learn-
ing such a model may suffer from ambiguous data, where similar quantitative values may
correspond to totally different SOD results. Besides, existing light field SOD datasets are
quite small. The largest dataset DUTLF [7] only provides 1000 training samples with 7354
focal stacks, which is far from enough to train a regression model.
To achieve satisfied performance with limited data, this paper proposes to explicitly

compare pairs of light field slices, which naturally augments the training data. Thus, the
problem is reformulated as predicting the relative performance yi − yj between two dif-
ferent slices Ii and Ij. Such strategy expands the training data by (N + 1) × (N) times. For
example, each sample of DUTLF [7] dataset on average has 8.2 slices, which can provide
more than 55,000 training samples in the above definition. Such amount of data is enough
to support the training of a powerful model.

3.2 The proposedmethod

3.2.1 Overview

The proposed method consists of three key modules: an encoder fe, a comparator fc, and
a predictor fp, as shown in Fig. 2. At each iteration, we randomly select two slices Ii and
Ij from a light field sample {In}Nn=0 as an exemplar and a query, respectively. The goal of
the proposed method is to predict whether the exemplar Ii achieves better performance
than the query Ij for a given 2D method. As described in above subsection, the relative
performance yi − yj is calculated on the saliency maps

{
Mi,Mj

}
by the given 2D method.

Thus, we concatenate the input slice with its corresponding saliency map, which guides
the model to learn better.
The paired inputs

{
[Ii,Mi] ,

[
Ij,Mj

]}
are first passed to the Siamese network-based

encoder fe and embedded into feature representations
{
Fi,Fj

}
. In our definition,

similar inputs
{
[Ii,Mi] ,

[
Ij,Mj

]}
, and

{[
Ij,Mj

]
, [Ii,Mi]

}
correspond to totally different

Fig. 2 Overall architecture of the proposed method
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labels yi − yj and yj − yi. To distinguish such similar pairs, we propose a comparator fc to
reweigh the query feature Fj based on the correlation between the exemplar and query.
The comparator adopts co-attention mechanism [40, 41] to couple

{
Fi,Fj

}
and generates

the correlated features Fij. The comparator enables the whole model to attendmore to the
informative regions and provide more discriminative features to the predictor. The pre-
dictor fp is formulated as a binary classifier and outputs the probability that exemplar Ii is
outperforming query Ij. The whole model is trained by a binary cross entropy loss:

L = −
∑

i

∑

j �=i

[
1

(
yi ≥ yj

) · log σ
(
fp

(
Fij

)) + 1
(
yi < yj

) · log (
1 − σ

(
fp

(
Fij

)))]
, (1)

where σ is the Sigmoid function and Fij = fc
(
fe (Ii,Mi) , fe

(
Ij,Mj

))
. 1(·) = 1 if the

condition (·) is true. Otherwise, 1(·) = 0.
During the testing phase, the trained model can operate as a bubble sorting algorithm.

If σ
(
fp

(
Fij

)) ≥ 0.5, the exemplar Ii is considered to achieve better performance than
query Ij and would be compared with other queries. Otherwise, the query Ij is regarded as
a better one. This process of comparison passes forward until all slices in the sample are
compared. However, such testing strategy is sub-optimal when the trained model cannot
guarantee 100% accuracy. The process of comparison would fail if an error is injected. We
consider the prediction from a global perspective. We simultaneously compare one slice
with the others and adopt the average score as the final prediction of the target slice. The
best input slice is simply determined by the maximum score:

i ← argmax
i=0,··· ,N

1
N

N∑

j=0,j �=i
σ

(
fp

(
Fij

))
. (2)

3.2.2 The encoder

The encoder module is a Siamese CNN. It maps a pair of images into the same fea-
ture space and provides comparable features. Inspired by the works of few-shot learning
[42, 43], we adopt a simple but effective network as shown in Fig. 3a. The encoder con-
sists of four convolutional blocks and two 2 × 2 max pooling layers. Each convolutional
block is a 3 × 3 convolutional layer with 32 channels, followed by a batch normalization
layer and a ReLU nonlinearity activation. The two max pooling layers are deployed after
the first two blocks to reduce the spatial size of the features.

3.2.3 The comparator

Although paired input can expand the training data, they would incur a problem of same
inputs with different order, e.g.,

{
[Ii,Mi] ,

[
Ij,Mj

]}
and

{[
Ij,Mj

]
, [Ii,Mi]

}
. Those inputs

should correspond to the completely opposite results. To enable the model to distinguish

Fig. 3 Network architecture of the proposed encoder and predictor. Each convolutional block consists of a
convolutional layer, a batch normalization layer, and a ReLU nonlinearity layer
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Fig. 4 Architecture of the proposed comparator

such difference, we propose a comparator as shown in Fig. 4 to asymmetrically reweigh
the features

{
Fi ∈ R

H×W×C ,Fj ∈ R
H×W×C}

embedded by the encoder. The comparator
treats

{
Fi,Fj

}
separately, Fi as exemplar and Fj as query. Co-attention mechanism [40, 41]

is employed to calculate the affinity matrix A between Fi and Fj:

A = FTi WFj, (3)

where Fi ∈ R
C×HW and Fj ∈ R

C×HW are reshaped into matrix form.W ∈ R
C×C denotes

the interweight, which can be formulated as a fully connected layer.
Each row in FTi and each column in Fj both define a C-dimension feature at each spa-

tial position of H × W . Thus, each element in A ∈ R
HW×HW represents an affinity

score of features corresponding to pairs of spatial location in Fi and Fj. In this paper, we
only reweigh the query feature to emphasize the order difference of same input images.
Concretely,A is normalized column-wise to generate attention across the exemplar Fi for
each position in the query Fj:

Ā =
[
η

(
A(1)

)
, · · · , η

(
A(c)

)
, · · · , η

(
A(HW )

)]
∈ R

HW×HW , (4)

where η denotes the softmax normalization and A(c) denotes the cth column of A, which
reflects the relevance of each feature in Fi to the cth in Fj.
Next, we compute the attention contexts of the query in light of the exemplar:

Fij = FjĀ ∈ R
C×HW , (5)

where Fj ∈ R
C×HW .

Finally, the output feature Fij ∈ R
2C×H×W of comparator is formulated as the concate-

nation of Fij and Fi. Through above transformation, the order difference is formulated
as reweighing the query based on the correlations between exemplar and query. When
exchanging the order of i and j, the comparator would output totally different features.

3.2.4 The predictor

Given a calculated feature, the predictor can be regraded as a simple CNN-based classifier
to identify the corresponding label. As shown in Fig. 3b, the predictor module consists of
two convolutional blocks, two 2× 2 max-pooling layers, and three fully connected layers.
The convolutional block has the same configuration as the one in the encoder. The first
block adopts a 1×1 convolution to reduce the feature dimension. The first fully connected
layer is followed by a dropout layer with a probability of 0.5 to avoid overfitting. The
dimension of fully connected layers is 1024, 256, and 1, respectively.
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4 Experiments
4.1 Experimental setup

4.1.1 Datasets

We evaluate the proposed model on two light field SOD datasets: LFSD [6] and DUTLF
[7]. LFSD provides 100 light field samples by the Lytro light field camera, including 60
indoor and 40 outdoor scenes. This is the first dataset for solving the light field SOD
problem. This dataset is captured at a resolution of 360 × 360. Then, an all-focus image
is composed by using online open-source tools. DUTLF is the latest and largest dataset
for improving the development of CNN-based light field SOD. It is a more challenging
dataset with a wide range of scenes and multiple salient objects. This dataset is captured
by a Lytro Illum camera at a resolution of 600×400. The DUTLF dataset consists of 1000
training and 465 testing images.

4.1.2 Evaluationmetrics

We adopt five metrics for extensive evaluation, including mean absolute error (M),
F-measure [12] (F ), E-measure [13] (E), S-measure [39] (S), and precision-recall (PR)
curve. These metrics have been widely used to evaluate a SOD method. More detailed
explanations are found in [13, 39].

4.1.3 Implementation details

The proposed model is trained end-to-end from scratch with random initialization. All
training and testing images are resized to 182 × 182. Thus, the input data dimension of
the first fully connected layer in predictor is equal to 32 × 10 × 10. The proposed model
is learned on the training set of DUTLF, where data is augmented by horizontal flipping.
The training label yi in Eq. (1) is calculated by the E-measure [13]. The network is trained
by standard SGD and converges after 30 epochs with batch size of 32. Each entry of the
mini-batch consists of two images randomly selected from the same light field sample.
The learning rate, momentum, and weight decay of the SGD optimizer are set to 5e − 3,
5e−4, and 0.9, respectively. The learning rate is set to 5e−4 after 20 epochs. Our proposed
model is implemented by the publicly available Pytorch library. All the experiments and
analyses are conducted on a Nvidia 1080Ti GPU.

4.2 Comparisons with state-of-the-arts

To verify the effectiveness of our method, we collect 13 latest 2D SODmethods, including
GCPA [44], F3Net [45], SCRN [11], EGNet [27], DUCRF [46], BASNet [24], CPD [26],
AFNet [30], PoolNet [47], DGRL [25], BMP [48], C2SNet [23], and RAS [29]. All these
CNN-based methods are designed for RGB data and provide public pre-trained model.
We also compare with 4 RGBD methods, i.e., DMRA [31], CPFP [32], PCA [34], and
DFRGBD [33]; 3 CNN-based 4D state-of-the-arts, i.e., DUT [7], MoLF [9], and Piao et al.
[38]; and 4 traditional 4D methods, i.e., LFS [49], MCA [8], WSC [37], and DILF [36].

4.2.1 Quantitative comparisons

As shown in Table 1, we present the quantitative scores of M, F , E , and S . Baseline in
Table 1 denotes the results of 2D methods over all-focus images, while +Ours denotes
the results after the selection of our proposed method. Compared with the baseline, our
method brings a large improvement, especially on the dataset DUTLF. Concretely, the
average improvement of M, F , E , and S on DUTLF is 29.5%, 5.5%, 5.0%, and 5.3%,
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Table 1 Quantitative comparisons of mean absolute error (M), F-measure (F ), E-measure (E ), and
S-measure (S) on two light field datasets, i.e., DUTLF [7] and LFSD [6]. Baseline denotes the results of
2D methods over all-focus images, while +Ours denotes the results after the selection of our
proposed method. Red and blue denote the best and second scores, respectively. The up arrow ↑
means larger is better while the down arrow ↓ means smaller is better

Methods Venue Variants
DUTLF LFSD

M ↓ F ↑ E ↑ S ↑ M ↓ F ↑ E ↑ S ↑
2D methods

GCPA [44] AAAI’20 Baseline .076 .859 .874 .861 .098 .821 .835 .810
+ Ours .045 .909 .928 .908 .070 .876 .882 .853

F3Net [45] AAAI’20 Baseline .070 .858 .878 .860 .105 .814 .830 .797
+ Ours .045 .905 .926 .902 .070 .880 .892 .854

SCRN [11] ICCV’19 Baseline .074 .858 .868 .859 .087 .850 .861 .835
+ Ours .048 .903 .917 .902 .066 .897 .900 .871

EGNet [27] ICCV’19 Baseline .084 .841 .864 .837 .088 .842 .862 .827
+ Ours .056 .890 .907 .885 .092 .861 .870 .824

DUCRF [46] ICCV’19 Baseline .109 .799 .825 .799 .114 .822 .818 .791
+ Ours .079 .849 .870 .844 .089 .874 .873 .838

BASNet [24] CVPR’19 Baseline .064 .868 .894 .868 .084 .861 .870 .824
+ Ours .048 .897 .924 .895 .078 .874 .888 .839

CPD [26] CVPR’19 Baseline .067 .872 .885 .864 .089 .855 .860 .826
+ Ours .046 .905 .922 .900 .071 .886 .892 .855

AFNet [30] CVPR’19 Baseline .080 .845 .873 .844 .094 .832 .840 .807
+ Ours .058 .886 .908 .879 .072 .886 .887 .852

PoolNet [47] CVPR’19 Baseline .082 .846 .864 .837 .096 .833 .850 .818
+ Ours .058 .893 .905 .884 .091 .849 .876 .829

DGRL [25] CVPR’18 Baseline .082 .821 .868 .824 .092 .842 .863 .812
+ Ours .060 .867 .906 .864 .074 .871 .891 .845

BMP [48] CVPR’18 Baseline .082 .843 .856 .828 .103 .834 .834 .792
+ Ours .063 .880 .893 .870 .084 .867 .879 .833

C2SNet [23] ECCV’18 Baseline .116 .797 .815 .794 .113 .834 .822 .797
+ Ours .087 .836 .864 .838 .097 .861 .866 .828

RAS [29] ECCV’18 Baseline .127 .732 .795 .723 .151 .749 .760 .696
+ Ours .097 .809 .847 .793 .107 .836 .841 .781

3D methods

DMRA [31] ICCV’19 – .048 .883 .927 .888 .075 .849 .899 .847
CPFP [32] CVPR’19 – .101 .730 .808 .741 .186 .524 .669 .599
PCA [34] CVPR’18 – .100 .760 .858 .801 .112 .794 .846 .800
DFRGBD [33] TIP’17 – .163 .722 .684 .687 .180 .841 .737 .732

4D methods
Piao et al. [38] AAAI’20 – .049 .891 .922 .887 .080 .842 .889 .838
MoLF [9] NeurIPS’19 – .059 .887 .909 .873 .089 .853 .874 .820
DUT [7] ICCV’19 – .070 .868 .905 .852 .093 .863 .877 .826
LFS [49] TPAMI’17 – .259 .439 .545 .517 .168 .779 .625 .655
MCA [8] TOOM’17 – – – – – .150 .815 .841 .749
WSC [37] CVPR’15 – – – – – .156 .706 .794 .706
DILF [36] IJCAI’15 – – – – – .168 .728 .810 .755
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respectively, while the number on LFSD is 18.5%, 5.1%, 5.0%, and 4.6%, respectively. The
consistent improvement on different datasets demonstrates that the proposed method
is a general strategy for various 2D methods and data. Compared with 4D methods, we
observe that CNN-based methods outperform the baselines of all 2D methods. After
the refinement of our method, GCPA, F3Net, SCRN, and CPD achieve superior results
than custom 4D methods on the dataset DUTLF and LFSD. In summary, combining our
method with latest 2D methods provides a new state-of-the-art for the task of light field
SOD.

4.2.2 Qualitative comparisons

In Fig. 5, we visually compare five best performing 2D methods, including GCPA, F3Net,
SCRN, CPD, and BASNet, and 4D methods Piao et al. and MoLF. For the 2D meth-
ods, the first row of each sample is the result on the all-focus image while the second
row is the result by our method. At most cases, the proposed method provides a better
option than the all-focus image. Compared with state-of-the-art 4D methods, the pro-
posed method effectively suppresses the false positive detection and improves the true
positive performance.

4.2.3 Precision-recall curve

In Fig. 6, we compare the PR curves of different methods. For a clearer presentation, we
select the top five 2D methods with the best overall performance. For these 2D methods,

Fig. 5 Qualitative comparisons. For the 2D methods, the first row of each sample is the result on the all-focus
image while the second row is the result by our method
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Fig. 6 Comparisons of PR curves on the datasets of DUTLF [7] and LFSD [6]. For a clearer presentation, we
select the top five 2D methods with the best overall performance. For 2D methods, the solid lines denote the
results by our method while the dash ones denote the results of baseline

the solid lines denote the results by our method while the dash ones denote the results of
baseline. With our method, the 2D methods always exceed the baselines.

4.3 Ablation study

In this subsection, we first analyze the effectiveness of the key components and how it
benefits the 2D methods. Next, we investigate the generalization of our method.

4.3.1 Key components

In Table 2, we summarize the contributions of key components, including training data,
the loss function, comparator, testing strategy, and the architecture of encoder. Compared
with the Baseline, using every possible slice in the column of Avg. always leads to inferior
performance, which proves that some slices in one light field sample could bring negative
effect. Thus, carefully selecting the proper slice input is necessary. Comparing the rows of
Img. Input and Sal. Input, we find that saliency maps are critical, which provide necessary
information about the performance of 2D method and guide the model learning.
To demonstrate that classification is more suitable than regression, we replace the

binary cross entropy loss in Eq. (1) with L1 loss:

L =
∑

i

∑

j �=i

∣∣(yi − yj
) − fp

(
Fij

)∣∣ . (6)

As shown in the Reg. Loss rows of Table 2, learning with the classification loss is always
beneficial to the performance.
Next, we use plain concatenated features

[
Fi,Fj

]
to take the place of the comparator.

The results in the w/o Com. rows of Table 2 indicate that direct concatenation is infe-
rior, especially in the dataset DUTLF. Finally, we evaluate the effect of testing strategy.
We test the trained model as a bubble sorting algorithm. As shown in the rows of Bub.
Test, proposed Eq. 2 considers one slice from a global perspective and provides more sta-
ble and superior prediction. Finally, we analyze the effect of encoder architecture. The
column of R-18 and SER-18 denote replacing the proposed encoder with well-designed
architecture ResNet-18 [50] and SE-ResNet-18 [51], respectively. However, using different
architectures cannot bring further improvement. We attribute the reason to the repre-
sentation embedded by the encoder to be powerful enough. It seems that the limitation
of performance is mainly determined by the comparator and predictor.
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Table 2 Ablation study of the proposed method. Baseline denotes the results of 2D methods over
all-focus images while Avg. denotes the average results of 2D methods over all slices. Img. Input and
Sal. Input denote the model trained only with RGB images and saliency maps, respectively. Reg. Loss
and w/o Com. denote learning the model with the regression loss and without the proposed
comparator, respectively. Bub. Test denotes testing the trained model as a bubble sorting algorithm.
R-18 and SER-18 denote replacing the proposed encoder with well-designed architecture ResNet-18
[50] and SE-ResNet-18 [51], respectively

Dataset Variant
GCPA F3Net SCRN BASNet CPD

M ↓ E ↑ M ↓ E ↑ M ↓ E ↑ M ↓ E ↑ M ↓ E ↑
DUTLF Ours .045 .928 .045 .926 .048 .917 .048 .924 .046 .922

Baseline .076 .874 .070 .878 .074 .868 .064 .894 .067 .885
Avg. .085 .851 .084 .847 .088 .838 .082 .873 .084 .869
Img. Input .054 .903 .056 .892 .061 .881 .058 .900 .055 .897
Sal. Input .046 .926 .049 .920 .500 .913 .053 .918 .050 .914
Reg. Loss .050 .919 .050 .917 .053 .910 .052 .918 .053 .914
w/o Com. .049 .921 .053 .914 .053 .908 .057 .910 .054 .911
Bub. Test .048 .923 .051 .915 .050 .914 .049 .923 .049 .914
R-18 .049 .919 .047 .923 .051 .916 .054 .911 .048 .916
SER-18 .048 .922 .047 .922 .049 .920 .051 .917 .048 .916

LFSD Ours .070 .882 .070 .892 .066 .900 .078 .888 .071 .892
Baseline .098 .835 .105 .830 .087 .861 .084 .870 .089 .860
Avg. .105 .829 .108 .820 .096 .843 .089 .857 .101 .839
Img. Input .072 .882 .072 .878 .073 .885 .080 .878 .079 .882
Sal. Input .070 .881 .073 .884 .067 .895 .087 .872 .074 .888
Reg. Loss .076 .874 .079 .876 .070 .893 .080 .884 .074 .890
w/o Com. .078 .871 .075 .884 .065 .897 .086 .873 .071 .891
Bub. Test .076 .875 .081 .874 .066 .896 .079 .887 .073 .892
R-18 .077 .875 .072 .884 .067 .892 .079 884 .075 .881
SER-18 .076 .875 .073 .886 .066 .896 .079 .885 .073 .887

4.3.2 The ability of generalization

All above results of a certain 2D method are based on the model trained on its own
saliencymaps. Actually, the individualmodel can be deployed on any 2Dmethods without
retraining. To verify the generalization ability of our method, we conduct some analyses
in Fig. 7. At each confusion matrix, the method on each row denoted the training data
resources. Then, the trained model is evaluated on different methods, which are denoted
on each column. Each entry in the confusion matrix denotes the E-measure difference
with the method trained on its own saliency maps. We expand the differences by 1000
times for better visualization. We notice that the model trained by most methods gener-
alizes well with minor performance descending, except DGRL, C2SNet, and RAS. From
the columns of the matrix, most generalized 2D methods obtain unsatisfied performance
on EGNet, PoolNet, DGRL, and RAS. We attribute the main reason to the distribution
difference between the saliency maps of these methods that cannot be generalized well
and other methods.

4.4 Discussions

4.4.1 Relationship with the 4Dmethods

Existing CNN-based 4D methods can be summarized as an implicit selection of focal
stacks. Attention mechanism [7, 9] is adopted to emphasize useful features in the focal
slices, where the salient objects happen to be in focus. Such features will be fused with the
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Fig. 7 Generalization analysis of the proposed method. We evaluate the model trained by the saliency results
of one 2D method (denoted on each row) on other 2D ones (denoted on each column). Each entry in the
confusion matrix denotes the E-measure difference with the method trained on its own saliency maps. We
expand the differences by 1000 times for better visualization

segmentation branch on the all-focus images. Unlike other fusion-based tasks, e.g., video
and action recognition, where sequential information is important, light field SOD only
needs concentrating on the images where the salient object is in focus. Fusing features
from focal stacks could confuse the segmentation. Observing the qualitative results of
MoLF in Fig. 5, we find that the boundary of salient object is not as sharp as the one of
2D methods. The main reason may attribute to the features where the salient object is
blurred. On the contrary, our method explicitly selects the proper inputs and degenerates
light field SOD to a common 2D task. It maintains the strength of existing segmentation
networks and thereby provides superior results.

4.4.2 The upper bound analysis

The capacity of the proposed method is limited by the power of 2D methods. In Fig. 8,
we analyze the upper bound of our method. Baseline denotes the results of 2D methods
over all-focus images, while +Ours denotes the results after the selection of our pro-
posed method. Upper bound denotes the manually selected best results based on the
E-measure. On average, the proposed method achieves 83.9% (M), 97.9% (F ), 98.1% (E),
and 97.9%(S) performance of the upper bound on the dataset DUTLF. The correspond-
ing number on LFSD is 87.0% (M), 98.5% (F ), 98.5% (E), and 98.1% (S), respectively.
The results in Fig. 8 demonstrate that most results are quite close to the upper bound,
especially on the dataset LFSD.

4.4.3 Typical failure cases

In Fig. 9, we present some typical failure cases of the proposed method. Green boxes
denote the slice selected by our method while the red ones denote the best slice by
F-measure. The first example demonstrates one case when the 2D methods fail to detect
the salient object. Although the proposed method can properly select the best slice, the
saliency results are still far away from the ground truth. The second example shows
another challenging situation when the saliency regions have smoothly varying depths, as
shown in the last three columns of the second example. These saliency results are too sim-
ilar to be correctly classified by the proposed method. However, the quantitative scores
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Fig. 8 Upper bound analysis of the proposed method. Baseline denotes the results of 2D methods over
all-focus images, while +Ours denotes the results after the selection of our proposed method. Upper bound
denotes the manually selected best results based on the E-measure. a, b The results on dataset DUTLF and
LFSD, respectively

of these results are very close and affect the overall performance little. For example, the
F-measure of last three slices of SCRN is 0.92447, 0.9288, and 0.9274, respectively.

4.4.4 Processing speed

When testing, we predict the score of each input slice with Eq. (2), which avoids the cal-
culation of bubble sorting. At each time, we build a mini-batch by copying the target slice
as the number of the rest slices in the same light field sample. Feeding forward such a
mini-batch takes about 0.0137 s. The total running time depends on the number of slices
and the processing speed of 2D method. Take 2D method CPD and dataset DUTLF for
instance. Each sample of DUTLF dataset on average has 8.2 slices. The processing speed
of CPD is about 62 fps. Therefore, the total time to deal with one light field sample is

Fig. 9 Typical failure cases of the proposed method. GT denotes ground truth. Green boxes denote the slice
selected by our method while the red ones denote the best slice by F-measure
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equal to 8.2 × (0.0137 + 1/62) = 0.245 s. Correspondingly, the processing speed of Piao et
al. [38] and MoLF [9] is 0.07 and 0.11 s.

5 Conclusions
In this paper, we provide an alternative solution for the task of light field SOD. Without
designing specialized segmentation network for light field data, a model is proposed to
optimize the input of existing 2D methods, which have made significant progress. The
proposedmodel learns to predict the relative performance of any two slices from one light
field sample. An attention-based comparator is proposed to emphasize the distinctiveness
of same two slices but in different order of comparison. Experiments on 13 latest 2Dmeth-
ods demonstrate that the proposed strategy dramatically improves the performance of 2D
methods on 2 light field datasets. Moreover, extra analyses demonstrate that the model
trained on one method results has an impressive generalization ability, which means the
proposed method can continuously benefit from the improvement of 2D methods.
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