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Abstract

Image completion is an approach to fill a damaged region (hole) in an image. In this
study, we adopt a novel method which can repair a target region with structural
constraints in an architectural scene. An objective function that consists of three
terms is proposed to solve the image completion problem. In color term, we
compute a parameterized transformation model using detected plane parameters
and measure the distance between the target patch and transformed source patch.
This model helps to extend the patch search space and find an optimal solution. To
improve the patch matching accuracy, we add a guide term that includes structure
term and consistency term. The structure term encourages sampling patches along
the structural direction, and the consistency term is used to maintain the texture
consistency. Considering the color deviation between patches, we add a gradient
term into a framework that can solve more challenging problems. Compared with
previous methods, the proposed method has good performance in preserving global
structure and reasonably estimating perspective distortions. Moreover, we obtain
acceptable results in natural scenes. The experimental results illustrate that this novel
method is a potential tool for image completion.

Keywords: Image completion, Image inpainting, Structural constraints,
Transformation, Objective function

1 Introduction
Image completion methods aim to repair the defects of digital images with plausibly

synthesized content to make images look more natural. This task is applied to many

image editing applications ranging from object removal to movie clip and image un-

derstanding [1–3]. In general, there are two main types of image completion methods:

diffusion-based methods and exemplar-based methods.

A diffusion-based method completes the target region using partial differential equa-

tions which propagate image information from surrounding areas into an unknown re-

gion. Bertalmio et al. [4] first proposed a method in which the information was

propagated through the edge of a contour line in the occlusion area. Furthermore,

these methods have two types: Euler’s model [5] and total variation model [6]. They

perform well in the images with thin cracks and scratches; however, they are not suit-

able for large damaged regions.
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Exemplar-based methods sample the pixels from a known region of the image

and copy them to a damaged region. Efros and Leung [7] proposed a non-

parametric method for texture synthesis. The texture synthesis process grows a

new image outward from an initial seed, one pixel at a time. The method in Ref.

[8] processed an image in a greedy way to research the best matching patches.

Due to the greedy strategy, this method resulted in an inconsecutive texture. Sun

et al. [9] developed a method that first allowed users to draw lines in a target re-

gion. Then, the target region was completed along the lines. Meanwhile, some ap-

proaches [10, 11] improve Criminisi’s effect and pose the completion task as a

global optimization problem with a well-defined objective function and propose an

algorithm to optimize it. However, the cost of the objective function is usually ex-

orbitant. According to this case, a fast PatchMatch method [12] solves this prob-

lem to a considerable extent by propagating the neighborhood information using

neighbor patches. Furthermore, this method has been adopted by Adobe Photo-

shop. As for simple patch translation, it is difficult to find the most suitable patch

without extending the search space. In fact, many methods [13–17] have addressed

this issue via geometric transformation as well as photometric transformation. Xiao

et al. [18] filled in the target region using a sample image. This method adopted

an image with a similar texture and structure to enrich the search space. Le Meur

et al. [19] used a coarse version of the input image to generate multiple inpainted

images with different parameter settings and then recovered the full resolution of

the final result. Using a Markov Random Field (MRF) model to build the energy

function, many methods [20, 21] optimize the energy function for its efficiency in

realizing global image consistency. He and Sun [22] calculate the statistical offset

to obtain regular structure information. This method demonstrates an excellent re-

sult in images with a large amount of duplicated information; however, it is still a

problem when images have perspective shape deformation. The methods in Refs.

[23, 24] using a convolutional neural network (CNN) to generate the contents ac-

cording to its surroundings. This method provided a great solution for filling in a

large region and keeping the image semantically correct. However, it could not

handle images with perspective distortion.

In this study, we propose a novel method for inpainting damaged regions in structural

scenes. We also extend the method to different natural scenes. It has been discovered that

most of the texture in various scenes have structured features (regular or linear). There-

fore, we detect these parameters and make use of them to find a transformational relation

between source patch and target patch. Moreover, we propose an objective function with

two constraints to guide the texture synthesis. Different from previous methods, these

two constraints can provide effective guidance when searching for the best matching

patches. Finally, we apply a gradient term that is conducive to a gradual adjustment of the

colors of our objective function to maintain the texture details.

The three main contributions of the proposed method can be described as follows.

First, we adopted a parameterized transformation model to guide the image completion

process. Second, we proposed an objective function with two constraints which to-

gether guide texture synthesis. Third, we combine the effect of these constraints and

gradients into a framework that solves more challenging problems.
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2 Method overview
Given an input image I with a damaged region (hole), we aim to fill in the damaged re-

gion using pixels from the known region. In practice, it is a challenge to fill in a dam-

aged region and obtain satisfying results, especially in architecture scenes. In many real

scenes, the shape can change dramatically because of perspective distortions. For each

target patch P in the damaged region, we calculate a transformation matrix Ti that cor-

relate target patch to the best matching patch Q. To estimate the parameters of Ti, we

adopt detected plane parameters [25] to generate the transformation model, instead of

searching for the best matching patches by simply translation (details given in Section

3.1). When searching for the similar source patches, unconstrained process usually

causes poor results. We constrain the patch sampling locations using texture direction

and texture consistency (Section 3.3). Furthermore, we add gradient into our frame-

work to obtain a smooth transition of color.

To obtain plausible texture in the hole region, the problem is translated into an

optimization scheme. We define an objective function consists of color term, guide

term, and gradient term. The color term explains how the source patches should be

transformed. The guide term provides constraint, i.e., how the searching process should

be limited. The gradient term gives an adjustment that leads to a smooth transition of

color. Combining these three terms, we show that the proposed method can effectively

improve the completion results in visual consistency. The flowchart of the proposed is

shown in Fig. 1.

3 Objective function
To achieve a high-quality result, we develop an objective function for image comple-

tion. The objective function is a measured distance function that includes three terms.

Here, we develop a transformation parametrized by θi for each patch P.

We denote the improved energy minimization function as follows:

E ¼
X

i∈Ω
Ecolor si; ti; θið Þ þ Eguide si; tið Þ þ Egradient si; ti; θið Þ; ð1Þ

where ti ¼ ðtxi ; tyi ÞT is the center position of a target patch in Ω and si ¼ ðsxi ; syi ÞT is the

Fig. 1 Flowchart of proposed method
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center position of the corresponding source patch in Ω. Here, Ω and Ω are the labels

of known pixels and unknown pixels, respectively. We define θi as a set of parameters

for generating a transformation matrix Ti. The three terms Ecolor, Egradient, and Eguide
are the color term, gradient term and guide term, which together form the function.

These terms will be explained in detail in the following sections.

3.1 Color term

The color matching term is similar to Ref. [8]:

Ecolor ti; θið Þ ¼ Pðtxi ; tyi Þ −Qðsxi ; syi θiÞ
�� ��2

2; ð2Þ

where Pðtxi ; tyi Þ is the target patch centered at ti, and Qðtxi ; tyi ; θiÞ denote the matched

source patch using the transformation matrix Ti with the parameter θi. Here, the color

term represents the distance between the target patch and the transformed patch. We

use sum of squared distance in the RGB space to calculate the distance. In Refs. [13–

15], many geometric transformations were applied, e.g., rotation, scale, and flip. On the

contrary, we use a homograph matrix to transform the patches into an affine correction

space.

We now illuminate how we generate the transformation matrix Ti based on the par-

ameter θi. In many real scenes, the shape can change dramatically because of a perspec-

tive distortion. It is difficult to fill in a damaged region if only simple patch

transformation is taken into consideration. Xiao et al. [25] solved this problem by de-

tecting planes and making use of them to generate a projective transformation matrix.

In Fig. 2, we show the plane detection and posterior probability map.

Fig. 2 The process of generating the posterior probability map. a–c Detected line segments in three
directions. d–f The density map in three channels. g–i Posterior probability maps
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In our paper, we use the detected planar parameters to parametrize Ti by θi = (fi, ki),

where ki is the index of plane and f i ¼ ð f xi ; f yi ; f si ; f θi ; f αi ; f βi Þ is the six-dimensional af-

fine parameter. We define a transformation matrix as follow:

Ti l
k
∞; ti; f i; θi

� � ¼ Hp lk∞; ti; f i; ki
� �

Hr f θi
� �

Hs f si
� �

Hc f αi ; s
β
i

� �
Ht f xi ; f

y
i

� �
; ð3Þ

where Hp indicates the projective transformation between source patch and target

patch. The matrix Hp has the form:

Hp ¼
1 0 0
0 1 0
lk1 lk2 lk3

2
4

3
5 ð4Þ

here, lk∞ ¼ ðlk1; lk2; lk3Þ is vanishing line which has two degrees. The matrix Hr

Hr ¼ M f θi
� �

0
0 1

� �
¼

cosθ sinθ 0
− sinθ cosθ 0

0 0 1

2
4

3
5; ð5Þ

indicates a rotation transformation by a 2 × 2 rotation transformation Mðsθi Þ. We define

the matrix Hs as follow:

Hs ¼ N f si
� �
0

� �
¼

s 0 0
0 s 0
0 0 1

2
4

3
5; ð6Þ

where Hs indicates the scale transformation by a 2 × 2 scaling transformation NðssiÞ .
The matrix Hc

Hc ¼
1 f αi 0

f βi 1 0
0 0 1

2
4

3
5; ð7Þ

indicates the shear transformation. The matrix Ht

Ht ¼
1 0 f xi
0 1 f yi
0 0 1

2
4

3
5; ð8Þ

indicates the translation transformation by translation parameters f xi and f yi . The trans-

formation model is similar to the decomposition of projective transformation matrix

[26]. This formula effectively shows the transformation relation between source patch

and target patch.

3.2 Guide term

Owing to the difficulty of acquiring excellent inpainting results just using color and

gradient, we apply a guide term to constrain the patch search. Our guide term includes

two constraints:

Eguide si; tið Þ ¼ λEstructure si; tið Þ þ Econsistency si; tið Þ; ð9Þ

where λ is the weight of the structure term. These two constraints can together guide

the completion process.
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3.2.1 Structure term

Many approaches [12, 27, 28] have demonstrated that limiting the search space by la-

beling the texture region could improve the completion result. Hence, we adopt a

method using Gray-level co-occurrence matrix (GLCM) to detect the dominant texture

direction and then automatically generate a structure guidance map that serves as a

position constraint. The detail about this method can refer to Ref. [28]. In this study,

we improve this method by further analyzing the optimal direction angle.

Based on Ref. [28], the greater the GLCM contrast, the smaller the similarity between

two pixels. We also obtain the relation between offset value (d) and the number of dir-

ection angle: the greater the offset value, the more is the directional angles. Zarif et al.

[28] analyzed the texture direction using eight direction angles (d = 2). In this study, we

compute the minimum of contrast to detect the current direction angle (also called

minimum direction angle), as shown in Fig. 3b. We detect more directions to deter-

mine the optimal direction. Note that big value of offset may reduce the sensitivity to

the texture direction. Thus, we set the maximum of offset dmax = 20. The distribution

of minimum direction angle is illustrated in Fig. 3c. We adopt the average value of all

the minimum direction angle to determine the optimal texture direction.

Given an original image, the content along a direction usually has a similar structure

and texture. To develop this property, we use the detected optimal direction to repre-

sent the content changes. Rather than limiting the search space using a non-gradient

color, a gradient color is adopted, as shown in Fig. 3d. Here, the structure guidance

map is regarded as a soft constraint in the completion process. In the structure guid-

ance map, the location of the same color usually has the same texture. The structure

guidance map encourages searching similar patches along the same direction.

The structure term Estrcuture makes use of the guidance map to constrain the position

where the source patches are drawn from (Gpos). The structure term is defined as

follows:

Estrcuture si; tið Þ ¼ L jGpos sxi ; s
y
i

� �
−Gpos txi ; t

y
i

� �j� �
; ð10Þ

where L(∙) is the ϵ-insensitive loss function L(x) = max(0, x − ϵ). We denote Gpos as the

position information of the source patch and target patch in structure guidance map.

Gpos indicates the pixel values at the center of sampling patches. According to GLCM,

locations that have the same color in structure guidance map usually have similar tex-

tures. This means that locations with similar pixel values (Gpos) in structure guidance

map often have similar textures. Thus, the source patch and target patch have different

Fig. 3 Direction analysis. a Input. b Distribution of contrast. c Distribution of minimum direction angle. d
Structure guidance map
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values in Gpos should be penalized by this term. Sampling along the texture direction is

encouraged to minimize the energy function.

3.2.2 Consistency term

Inspired by Ref. [12, 20], we add a consistency term into the completion process to

sample patches in adjacent regions. Given a target patch ti, if we can find a matching

patch si, their neighboring patches tni and sni are very likely to be the most similar

patches. We assume that every patch has neighbors in four directions. We define tn1i ,

tn2i , tn3i , and tn4i as the neighboring patches of ti and sn1i , sn2i , sn3i , and sn4i as the neighbor-

ing patches of si, respectively. If the difference between neighboring patches exceeds a

threshold, we add a consistency constraint to encourage sampling patches from neigh-

boring areas. The consistency term has the form:

Econsistency si; tið Þ ¼
X

j¼1;2;3;4
jCn j

si sxi ; s
y
i

� �
− C

n j
ti txi ; t

y
i

� �j > ε
	 


; ð11Þ

where C
n j
si and C

n j
ti represent the current position of the neighboring patches. C

n j
si indi-

cates the distance between a target patch and its neighboring patch. Similarly, C
n j
ti indi-

cates the distance between a source patch (corresponding to the target patch) and its

neighboring patch. If the argument is false, the indicator function [∙] is 0; otherwise, it

is 1. C
n j
si and C

n j
ti have large difference value should be penalized. If the difference value

j Cn j
si ðsxi ; syi Þ − C

n j
ti ðtxi ; tyi Þ j> ε , the argument is true and ½jCn j

si ðsxi ; syi Þ − C
n j
ti ðtxi ; tyi Þj > ε�

¼ 1. Similarly, if the difference value j Cnj
si ðsxi ; syi Þ −C

nj
ti ðtxi ; tyi Þ j ≤ε, the argument is false

and ½jCn j
si ðsxi ; syi Þ −C

n j
ti ðtxi ; tyi Þj > ε� ¼ 0 . Here, we set ε = 1 to encourage sampling near

the source patch. It helps to maintain the texture consistency.

3.3 Gradient term

To improve the results of completion, finding correct patches is necessary. Barnes et al.

[12] adopted L2 patch distance to compute the similarity between two patches. How-

ever, PatchMatch [12] may discover patches incorrectly when the texture is compli-

cated, as shown in Fig. 4d. The method of Barnes fails to find the correct texture

because it does not consider gradient. Adding a gradient term is helpful for gradually

adjusting the colors. We define the gradient term as follows:

Egradient ¼ ∇Q si; ti; θið Þ − ∇P tið Þk k22; ð12Þ

where ∇Q(si, ti, θi) and ∇P(ti) denote the gradient of the patches centered at si and ti,

respectively. The gradient term is used to adjust the local color of patch. It can lead to

a globally smooth transition of intensity and color [14]—a property that is lacking in

patch-based methods. Here, we also use sum of squared distance in the RGB space to

calculate the distance. This term can play to our strengths and search for the best simi-

lar patch for higher consistency.

4 Optimization
Given a large search space, it is intractable to discover a globally optimal completion.

Wexler et al. [11] proposed an iterative algorithm which includes two steps named

search and voting to optimize an objective function.
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In the search step, we adopt PatchMatch [12] method to accelerate our algorithm.

When searching for the best matching patches, the position of a matching patch is found

first. Then, we search for a transformed matching patch. The nearest neighbor patches

are searched in the source region for every target patch to minimize the function.

Unlike previous methods, we reject unlikely patch transformation in scale when finding the

similar patches, i.e., scale1 ≤ Sscale(Ti, si, ti) ≤ scale2, where Sscale(Ti) indicates the scale estima-

tion. Large range of scale cannot provide effective constrain when finding source patches. Too

small range of scale can lead to narrow patch searching space. We set scale1 = 0.7 and scale2 =

1.3 as the acceptable range in our experiments and obtain valid results. The approximated

scale can be estimated using the first-order Taylor expansion [29].

In the voting step, the overlapping patches containing p have correspondence patches

in the source region. Wexler et al. [11] adopted a weighted voting program to fill a tar-

get region. Similarly, we take the median of all the votes as the pixel to reduce the blur

of pixel colors.

When calculating the patch distance, following HaCohen et al. [30], bias and gain are

added to obtain the best matching patches. In this study, we set bias to [− 50,50] and gain

to [0.5,1.5]. They are used to reject source patches whose gain or bias deviates the range.

This can also help to extend the patch searching space and match wide color difference.

5 Experimental results and discussion
5.1 Implementation details

Our algorithm was implemented with MATLAB and C++. The PatchMatch iteration

was [20, 30]. A large hole region required more iterations. The time of the proposed

Fig. 4 Gradient for image completion. a Damaged image. b Result of PatchMatch. c Our result. d Finding
the most similar patches without gradient. d Finding the most similar patches with gradient
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image completion method can be categorized into two cases. The first case is to gener-

ate several guidance maps, which requires several seconds. The second case, which de-

termines the running time, depends on the image size, hole region, and the texture

complexity. For instance, given a 400 × 600 image with 120 × 140 damaged region, the

inpainting process may require 2–3 min.

5.2 Comparison results

To demonstrate the results of the proposed method, we compare our method with sev-

eral existing image completion algorithms, including Criminisi [8], image melding [14]

and He and Sun [22]. We run these methods on six test images, as shown in Fig. 5.

In the first two rows, the buildings contain more than one plane. We can see that the

proposed method can deal well with structural scenes. The other methods could not

maintain structural consistency if only using patch translation. In the third row, we

show buildings with projective distortions. Criminisi’s method obviously propagated

error information into a damaged region because of the flaw of priority in special cases.

Image melding, while taking into account multiple patch transformations, failed to

complete the original structure. He and Sun filled in the damaged region based on the

Fig. 5 Comparison results. a Input. b Criminisi’s result. c Image melding. d He’s result. e Our result
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offset statistics. However, it could not find the solution in a perspective space. The re-

sults in the fourth and fifth rows show that our method can recover structural

consistency. We transform sampled patch in source region into target region using

transformation model with a scale variation. The last row illustrates that our algorithm

demonstrates outstanding performance in maintaining textural consistency.

5.3 Qualitative evaluation

To find a satisfactory completion for the user is the real purpose of image completion.

One important test is visual inspection and another one is obtaining quantitative results

using peak signal to noise ratio (PSNR). The PSNR comparison of six images in Fig. 5

is shown in Table 1.

We observe that the PSNR value of the proposed algorithm is slightly higher overall

than the value of other algorithms. It is easy to know that the images completed by our

method are better than the other methods in image consistency and coherence for hu-

man eyes. Figure 6 shows the comparisons.

5.4 Other results

Object removal is also one of the application occasions of image completion. In order

to demonstrate the robustness of our method, we compare our method with current

methods in the natural scenes. In these scenes, we cannot acquire a set of plane param-

eters. Our method can also maintain the consistency of textural structure, and the re-

sults satisfy human visual coherence. Figure 7 shows the comparisons with methods

from Criminisi [8], Komodakis [10], He [22], and Le Meur [19]. In Table 2, we give the

quality scores of the inpainted images, as determined by the technique reported in Ref.

[31]. The lower the scores, the better the quality of the image. We can see from the

contrast result that Criminisi’s method introduces texture in a wrong location. Methods

of Komodakis’s and Le Meur’s can hardly guarantee the structure continuity. He’s

method achieves more satisfactory inpainting result, while small flaw still exists. Com-

pared with those methods, our method achieves better texture coherence and structure

continuity.

In Fig. 8, we compare the proposed algorithm with the method using a deep learning

model [23]. The input images are 128 × 128. We show the results in structural scenes

and natural scenes. Compared with deep learning models, our method has better per-

formance in maintaining the structural integrity and the global consistency of texture.

The deep learning model repairs the damaged region using a “generate” way. The qual-

ity of results relies on numerous training data and excellent network structure. On the

contrary, we estimate perspective distortions using a transformation model and

Table 1 Image completion performance measured in PSNR

Examples 1 2 3 4 5 6 Mean

Criminisi 19.96 21.89 20.83 23.58 23.57 18.91 21.32

Image melding 19.67 22.06 20.37 24.08 24.81 18.68 21.61

He 19.94 22.35 2151 23.94 23.94 19.51 21.87

Ours 20.21 22.43 21.80 24.26 25.05 19.95 22.28
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constrain the completion process using the guidance map. The PSNR (dB) value is

shown in Table 3.

Figure 9 shows the comparison of results by the proposed method and Huang’s

method [16]. Form the first row, we can see that our algorithm has better performance

when inpainting large damaged region. The second row shows the comparison of re-

sults in a perspective scene. Due to the lack of search space and scale constraints, the

structure was distortions at the end of the building in Huang’s result. In the third row,

we show the comparison in keeping texture continuity. Huang’s method failed to find

Fig. 6 PSNR comparison

Fig. 7 Comparison of results in different scenes. a Input. b Criminisi’s results. c Komodakis’s results. d He’s
result. e Le Meur’s results. f Our results
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the demarcation between two kinds of texture. The fourth row demonstrates that our

method has a plausible performance in maintaining global texture consistency. We

apply a gradient term and a consistency term into our objective function to maintain

texture details and encourage sampling patch in adjacent areas. Therefore, the pro-

posed method performs better in both continuity and visual effect. The PSNR (dB)

value is shown in Table 4.

Table 2 The quality scores for Fig. 7

Examples 1 2 3 4 Mean

Criminisi 4.4 4.78 5.95 5.85 5.25

Komodakis 4.14 4.75 5.97 5.5 5.09

He 4.05 4.75 5.88 5.6 5.07

Le Meur 4.18 4.74 6.08 5.6 5.15

Our 3.96 4.71 5.89 5.62 5.05

Fig. 8 Comparison of results. a Input. b Results in Ref. [23]. c Our results
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5.5 Effect of patch size

Figure 10 shows the impact of patch size on the completion results. Our algorithm led

to poor performance when using too small patch. Small patch cannot capture enough

texture. Similarly, redundant texture was copied when using a too large patch. We

apply different patch sizes on an example, as shown in Fig. 10.

5.6 Effect of structure guidance

Figures 11 and 12 show the effect of the guidance map and the parameter λ. The guid-

ance map offers significant guidance for the patch searching process. Here, we show

the results of our method with different parameter values and comparisons. Figure 11

shows that the structure guidance map can help preserve structure integrity. In Fig. 12,

we show the result and effect of parameter λ. We can see that the structure line of the

house cannot be repaired reasonably if the value of λ is too small. On the contrary, the

structure texture is discontinuous if the value of λ is too large. In our experiments, λ

was set to 2.5 and the performance is receivable.

Table 3 The comparisons measured in PSNR for Fig. 8

Examples 1 2 3 4 Mean

Ref. [23] 18.83 22.67 23.61 25.27 22.60

Ours 21.73 23.71 23.95 26.94 24.08

Fig. 9 Comparison with Huang’s work. a Input. b Huang’s results. c Our results
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5.7 Effect of gradient term and consistency term

To get some intuition on the importance of the gradient term and consistency term,

we illustrate four cases of information usage in Fig. 13. In Fig. 13b, we show the com-

pletion result without any guidance. The result is blurry and the structure is wrong. In

Fig. 13c, we only use the gradient term in the optimization process. Since the structure

information is insufficient, we obtain broken structures. In Fig. 13d, we only use the

consistency term. While the completed region has structure information, the texture

synthesis has an error in detail. The best result is acquired using both gradient and

consistency, as shown in Fig. 13e.

5.8 Limitations

It is difficult for our method to handle the texture details if the opposite sides of the

hole have textures with very different dominant directions. We fail to complete the

structure lines, as shown in Fig. 14. The results may be improved using more

Table 4 The comparisons measured in PSNR for Fig. 9

Examples 1 2 3 4 Mean

Huang 18.21 18.34 17.45 18.35 18.09

Ours 19.32 18.82 17.53 19.00 18.67

Fig. 10 Effect of patch size. a Input. b 5 × 5 patch size. c 7 × 7 patch size. d 9 × 9 patch size. e 11 × 11
patch size. f 13 × 13 patch size
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Fig. 11 Effect of guidance map. a Input. b Our result (unguided). c Our result (guided)

Fig. 12 Effect of parameter λ. a Input. b Criminisi’s result. c Wexler’s result. d Aurélie’s result. e He’s result. f
Our result (λ = 0). g Our result (λ = 0.5). h Our result (λ = 1.5). i Our result (λ = 2.5). j Our result (λ = 3.5)

Fig. 13 Effect of gradient and consistency. a Input. b Unguided completion. c Gradient guide only. d Consistency
guide only. e Gradient and consistency guides
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sophisticated computer vision methods, which we leave to future work. Running time

is also a limitation. Our approach is just a prototype. The time cost of our approach

can be further improved using more efficient algorithms.

6 Conclusion
We have proposed an improved image completion method using structural constraints.

First, we adopted a parameterized transformation model with detected plane parame-

ters to extend the patch search space. Furthermore, we proposed an objective function

with two constraints to guide the completion process. These two constraints provided

effective guidance when searching for the best matching patches. Finally, we combined

the constraints and gradient into a framework that could solve more challenging prob-

lems. We implemented our method in many images with various scenes and acquired

promising results of visual consistency.
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