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Abstract

This paper presents a framework for complete simulation and verification of Serial Digital Interface (SDI) video using a
verilog test-bench and geared toward FPGAs. This framework permits simulating the entire process: from test video
signal generation to protocol verification in the FPGA which implements the Device Under Test (DUT). The novelty in
the design is the combination of a customized test video signal generator with an implementation clone of DUT
transceiver for in-depth protocol debugging. Identical input test patterns of the video protocol under test are
generated and fed to DUT for verification. Thus, the model not only permits to evaluate the SDI transport layer but
also validates the implementation at ultra low pixel level of the video format. This approach provides two advantages:
cost saving in terms of additional lab test equipment and delivering all-in-one test solution to verify design and
implementation. A practical implementation using a test example of a macroblock processing chain using SDI video
interface shows the viability of the proposed framework for video protocol testing.
Keywords: Verification, FPGA, Video test-bench, Real-time system, Simulation

1 Introduction
Nowadays, there is a high demand for video processing
applications such as media and entertainment, security
and surveillance, and real-time streaming. This neces-
sitates the development of new devices to handle the
increasing demands in resolution and bandwidth. Emerg-
ing programmable System-on-Chip platforms combining
Field Programmable Gate Arrays (FPGAs) with general
purpose processors are suitable for running operating sys-
tems and to also accelerate algorithms at the hardware
level. Hence, such platforms are a promising technology
capable of providing the necessary power/performance
trade-offs for emerging applications such as AI and video
processing/coding amongst others. FPGAs can also sup-
port verification frameworks for other technologies, for
example, it is possible to design an ASIC (Application
Specific Integrated Circuit) device and perform its veri-
fication using an FPGA. However, due to the increasing
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complexity and size of such FPGA-based devices, the veri-
fication techniques become very important to validate the
concreteness of a design and reduce the hardware errors
and the time to market. Hence, the verification process
represents a big challenge for design and verification engi-
neers. This is further emphasized when considering that
in real applications, the design needs to be verified with
the operating conditions in mind which must include the
communication, and synchronization with external inter-
faces and design correctness needs to be evaluated across
various levels.
Current practices of analyzing designs involve incor-

porating a test-bench into the design to drive certain
signal stimuli and compare the outputs of the design
with the expected ones. The verification process is usu-
ally metric-driven, as for example coverage, that allows
to measure the verification progress and determine when
the design is ready. A brief metric description is pre-
sented in Section 2. These verification metrics have been
improved and automatized during the last years by Ray
Salemi and Mentor Graphics team that proposed the
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Universal Verification Methodology (UVM) [1, 2]. This
method developed an automatic test-bench system able
to perform high-level DUT verification using System
Verilog. UVM goes further by providing mechanisms
that allow constraints to be written as part of a test
rather than embedded within dedicated verification com-
ponents. This and other features of UVM facilitate the
creating of reusable verification components. During the
years, these techniques have been supported by Accellera
System Initiative [3] and the advantages of its use are
demonstrated in [4] using automotive examples. Verifi-
cation methods are designed to be general and can be
adapted for every testing scenario.
This work focuses on a framework dedicated to sys-

tems that use SDI interface to communicate and transmit
data, geared toward video applications. Video formats
are evolving fast with increasing resolutions, transmis-
sion rates, and video stream complexity [5]. SDI family
is one of the most extended interfaces for transmission
of uncompressed video between professional equipment
[6]. As a consequence, there is a growing need for devices
that can facilitate testing. However, new capabilities for
video analysis usually represent a big cost in terms of
developing testing devices, which are not always avail-
able since the most recent video standards are under
continuous development. Due to the ever increasing res-
olutions in video standards and complexity, the need of
faster devices has increased the use of FPGAs for video
applications, as described in [7, 8]. This means that a ver-
ification method should be applied to allow testing the
communication protocol and the device processing such
as encoding, decoding, or filtering the signal. Often, the
hardware analyzers and generators lack flexibility to mod-
ify the patterns for assessing the video test sequences,
and they only offer the tests and formats available on the
instrumentation, as is possible to check in [9, 10]. As a
consequence, stream compatibility issues arise due to dif-
ferent video formats, components, or protocols; therefore,
complete video analysis cannot be properly performed.
Themain goal of this work is to investigate techniques to

enhance verification for video processing. It improves the
analysis capabilities of the internal functions of a device,
including the operations involving data exchange with the
external world through its communication protocols. Fur-
thermore, it enables cost saving in terms of additional lab-
oratory test equipment and it aims to deliver an all-in-one
test solution to verify design and implementation.
The main advantages due to using this model are as

follows:

• It allows to insert video stream testing sequences into
the DUT. It has the same behavior as if an external
hardware signal generator is plugged through the
HD-SDI physical interface.

• It allows to compare the input and output stream of
the DUT to verify its processing correctness.
Throughout this comparison, it is possible to analyze
the SDI transport layer, its protocol functionality and
synchronization, and the video data components
reaching pixel resolution.

• It allows to check the DUT internal block delays;
therefore, FPGA resources or external hardware are
not required. Furthermore, it is not dependent on
hardware manufacturers, simulators, and
programming languages.

The verification methodology that is presented in this
work can be applied to a numerous practical cases, espe-
cially where the data need to pass through a physical
interface. In a specific video scenario, this method allows
to test for example an encoder or a video filter in a pro-
fessional production television environment, allowing to
simulate not only the device but also its connections to
the rest the equipment, simulating also the physical con-
nection port and the communication protocol.We explain
how to apply this framework in order to achieve a com-
plete DUT observation, including simulation times, signal
observability, chain delay, reduced FPGA resources occu-
pation, and same signal captures. The solution is also
compared where possible the state of art in order to evi-
dence the improvements and main advantages provided
by this framework especially on the observability of inter-
nal and external signals.
The remainder of this paper is organized as follows: In

Section 2, the problem and main conditions are formu-
lated. In Section 3, the verification framework is detailed.
In Section 4, the validation experiments to show the
model performance are described. In Section 5, results
to show framework functionality are provided. Finally,
conclusions are drawn in Section 7.

2 Background and related work
In this section, video analysis systems are described start-
ing from the standard equipment up to the practical
examples using FPGA test-benches.
The rapid increase resolution in video formats such

as Ultra High Definition Television (UHDTV) is con-
tinuously setting for new requirements for information
transport. Consequently, demand for techniques and test-
ing/measurement equipment has also increased. A typical
deployment for video measurements is shown in Fig. 1.
This setting is composed of three main elements: (a) a
signal generator that introduces a pattern signal test into
the (b) Device Under Test (DUT) and (c) a wave moni-
tor employed to visualize the signal characteristics to be
analyzed. This common video testing setup allows sig-
nal analysis by means of several parameters such as eye
diagram, jitter error, and cable losses. Further details can
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Fig. 1 SDI video equipment connected to the Device Under Test. The right side shows the main testing parameters that can be analyzed using a
Hardware Wave Monitor

be found in [9, 11]. However, these parameters allow to
assess the HD-SDI signal quality of measure only, because
the wave monitor can analyze the physical layer, show the
transport layer, but cannot debug it. This is an impor-
tant drawback for more specific tests such as component
analysis. The proposed framework is intended to per-
mit SDI transport layer debug and data verification for
all DUT components in a detailed manner (up to video
components analysis).
A more specific situation is to consider a development

scenario where the DUT is implemented on an FPGA,
which limits the clock frequency when compared to the
frequency of the design in the real world. Performing a
DUT data processing test with a physical wave monitor is
not possible due to different clock rates between internal
data processing and external data transmission. Addition-
ally, wave monitor should be able to extract video data
components and compare them with signal generator.
To validate hardware processing correctness, an internal

signal analysis is required which can be performed using
FPGA logic embedded analyzers (e.g., Vivado Logic Ana-
lyzer [12], Chipscope [13], or SignalTap [14]). However,
video HD-SDI signal testing is not possible using internal
FPGA logic analyzers because there is no interface that
allows HD-SDI connection with embedded logic analyz-
ers. A valuable alternative to face this problem is given
by performing simulations before FPGA programming,
but the standard test-bench can work only at DUT inter-
nal frequencies (e.g., 74.25 MHz or 148.5 MHz for HD
video systems). FPGA test-bench cannot operate at SDI
frequency (1.485 Ghz, 3 GHz,...) and is not suitable for SDI
signal analysis.
An example of HD-SDI protocol is depicted in Fig. 2.

It is composed of a Start of Active Video (SAV ) which
comprises four words that indicate the beginning of video
components and an End of Active Video (EAV ) which
comprised four words indicating the end of video com-
ponents. Both SAV and EAV headers are identified in

the data stream by the following words: 3FFh, 000h, and
000h. These words carry the timing information and avoid
the use of traditional synchronization signals. The fourth
word XYX contains signal information that permits to
identify the following: (a) the SAV or the EAV header, (b)
the field in case the video is interlaced, and (c) if data rep-
resent the vertical blanking or the video active. A digital
line blanking ancillary data is sent after the EAV header
that contains a two-word line number (LN0 and LN1), fol-
lowed by a two-word CRC (CR0 and CR1). The CRC value
is used to detect errors in the active video that follows
the SAV. The information contained between EAV and
SAV is called Horizontal Blanking. Figure 2 depicts the
above described protocol; the n-1 words on the right part
of the figure are called Active Video. It represents the luma
and chroma pixel information which size depends of the
video format. SDI protocol data rate is up to 12 Gbit/s[15].
Further details can be found in [6, 16].
In video processing systems as the one shown in Fig. 1,

DUT internal transceiver can match different data rates.
Additionally, it also transforms the signal stream from
serial to parallel and vice versa considering transmission
or reception stage.
Performing HD-SDI hardware verification requires a

generator able to introduce into the DUT a signal accord-
ing to the video protocol standard. Moreover, checking
the output sequence in order to guarantee data integrity
in terms of processing and synchronization represents an
important issue that test-benches do not solve without
additional external hardware components.
A brief description about some verification metrics is as

follows:

• Functional coverage represents the measure of how
much functionality of the design has been exercised
by the verification environment.

• Code coverage measures how much code is checked
by the test-bench.
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Fig. 2 HD-SDI components’ stream example

• Constrained random testing provides a random
stimulus as input, to push the DUT into interesting
corner cases giving the means to reach coverage goals.

More details are available in [17]. Some test-benches are
directly synthesized inside the FPGA. It represents an
advantage in terms of test speed and signal data trans-
fer rate between DUT and generator. However, it yields
to waste FPGA resources which are critical for large-scale
project development.
It could be used for video testing purposes; however,

an external video signal transceiver for DUT complete
simulation is required.

Alternatively, an FPGA synthesizable test-bench that
allows fast execution times and chip observability for
debugging is presented in [18]. Nonetheless, in addition to
the need of adapting a video signal transceiver, the entire
project is executed on the DUT physical memory. This
leads to waste of FPGA resources.
Another approach to tackle this problem is proposed in

[19]. The verification method compiles the test-bench on
a computer. It connects internal blocks directly to a PCI-
extended bus to introduce and receive signals to/from
the DUT. However, HD-SDI implementation is not pos-
sible on the PCI-extended bus due to the demands for
high data rates which are not possible under this con-
figuration, because the PCI bus of the Altera Stratix II
EP2S60F1020C4 used is a 33-MHz bus as detailed in
[20], and cannot reach the HD-SDI data transfer rate. It
could be possible using a new FPGA that uses a new PCI
standard as described in [21].
A hybrid verification platform is presented in [22],

where authors combine software simulation and hard-
ware emulation. The experiment synthesizes a 32-bit DLX
PCPU (pipelined CPU) on an Altera FPGA, an assem-
bly program with a bug is run, and the FPGA internal
behavior is recorded. The data is used to reconstruct the
relevant segment of a simulation in ModelSIM [23] for
debugging. This work allows to reduce the simulation
times, and it permits to analyze the internal behavior of
the FPGA and to debug its processing stage. However,
in the SDI case, an external analysis is needed, because

it allows to evaluate the correctness of video component
insertion in the SDI protocol to be interchanged with
other devices. This work does not consider this case.
The most similar work to the framework presented in

this paper is [24], where a Phase Alternating Line (PAL)
signal processing hardware and a test-bench are generated
to accelerate hardware verification. However, interface
debugging is not specified, while in case of video systems,
it has to be considered not only the internal processing,
but also the video data interchange over the interface.
This is important because if the video data is not prop-
erly inserted, a synchronization issue will make the signal
not understandable from the other devices (e.g., a televi-
sion that does not receive a correct signal from a decoder
cannot visualize it). Furthermore, this work cannot be
used for HD-SDI verification because it uses analogical
interfaces (S-Video and VGA) while HD-SDI is a digital
interface; they also work with different data rates that are
not compatible.
In references [18] to [24], some works about test-

benches have been described; a resume and comparison
with our work are presented in Table 1. In references [25]
to [26], to emphasize the contribution of our proposed
approach, some examples about its application will fol-
low. It will be presented how our approach could help in
issues related to the verification of complex video pro-
cessing systems. A brief description about an existing
approach will be followed with an explanation on how
our proposed alternative can provide a more flexible and
economic solution as a verification technique.
In the work [25], a low latency 3D hardware image

rectification engine using FPGA and HD-SDI inter-
face is presented. The authors have created a com-
plex structure for verification and a Printed Circuit
Board (PCB) for interface integration. In this case, the
application of the proposed test-bench represents an
advantage for the verification because it allows to com-
pare the two streams during the simulation includ-
ing HD-SDI interfaces. The simulation can provide
important information before the creation of PCB and
can prevent its redesign in case of FPGA hardware
issues.
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Table 1 Main characteristics of literature test-benches and differences with related work

Work Type Connectivity Data available Remarks

[18] Internal scan chain N/A Simulation time vs # of scan chain Overheads in FPGA resources;
limited observability to internal
signals; the protocol observation is
not allowed; its analysis time is fast

[19] Test-bench connected to
the board

PCI to interchange data
between DUT and PC

Simulation time, FPGA resources Overheads in FPGA resources;
limited observability to internal
signals; the protocol observation
is not allowed; its analysis time
is fast with less probing nodes;
became slow with a high number
of probing nodes

[22] Software simulation and
hardware emulation

UART and JTAG for debug Debugging speed comparison,
FPGA resources

Overheads in FPGA resources;
limited observability to internal
signals; the protocol observation is
not allowed; its simulation time is
fast

[24] Software simulation and
hardware on FPGA IP
verification

S-Video/VGA signal input
and output, USB / RS232
for debug

Unknown-only structure Overheads in FPGA resources;
limited observability to internal
signals; the protocol observation
is not allowed; do not provide
simulation/analysis time

Our work Software simulation SDI family, but thismethod
allows to use every
interface to carry signals

Simulation time, simulated
internal blocks
processing time, FPGA resources

We do not overhead in FPGA
resources; unlimited observability
to internal and external signals; we
allow protocol observation; it is
integrable to any simulation tool;
commercial or open source; the
simulation time is slow

In [27], an architecture for exact computation of 2DDis-
crete Cosine Transform (DCT) 8 × 8 blocks on FPGA
is presented. The verification is performed using Matlab.
TheMatlab workspace inputs data into the FPGA through
the JTAG interface; themeasured output is returned to the
Matlab workspace for verification. In this case, to apply
our test-bench avoids to migrate to Matlab workspace
using FPGA simulation tools (i.e., [23, 28]) to validate the
design. Another advantage is represented from the oppor-
tunity to simulate the design in a real environment where
the signal is inputted through a video interface (not JTAG)
and data is provided using a generator. Moreover, the
complete chain can be verified through direct comparison
between input and output video interfaces.
In the work [26], a real-time video stabilization system

on FPGA is proposed. In this work, the authors use a PAL
interface to interchange video data. A measurement envi-
ronment is generated to evaluate the peak signal-to-noise
ratio (PSNR) between the original video sequence and the
stabilized video sequence. By means of the proposed veri-
fication, test-bench PAL interface can be simulated.More-
over, it permits upgrade toHD formats and the integration
of digital video interfaces such as HD-SDI family. Further-
more, applying our test-bench allows to automatize the
PSNR calculation and comparison between frames from
both input and output for automatic assessment of the
results.

In comparison with the other approaches presented in
this section, our model allows to test the DUT using
the same behavior than if an external hardware signal
generator would be plugged through the HD-SDI phys-
ical interface. In contrast with the other approaches, it
is possible to analyze the SDI video stream reaching
pixel resolution and perform DUT verification analyz-
ing internal block functionality and delays, without over-
head in FPGA resources or external additional hardware.
This framework flexibility is not dependent on hard-
ware manufacturers, simulators, and programming lan-
guages, and allows the complete DUT verification due
to its internal connection structure. This work presents
a novel approach to the verification state of the art as
it it improves the DUT observability. In Fact, it allows
to check DUT internal signals by direct signal rout-
ing to the check block, without passing through an
interface. This is a feature that is possible only during
simulation.

3 Verificationmodel
The framework structure is drawn on the right side of
Fig. 3, and it is composed frommany blocks. Block 1, block
2, ... block N represent the processing chain of a design to
analyze. It could be for example a video filter, an encoder,
and a decoder. FPGA test-benches allow to analyze only
these chain structures, where the test signal is introduced



Conti et al. EURASIP Journal on Image and Video Processing         (2020) 2020:31 Page 6 of 16

Fig. 3 (Left) Standard test-bench model. (Right) Video test-bench framework with double transceiver system for SDI simulation. Blocks 1 to N
represent the video processing chain

at the start of the processing chain and a check block at its
end.
The chain is connected to a transceiver that commu-

nicates the input signal from physical layer, extracts the
components that have to be processed from a protocol,
and then provides them to the processing chain. After the
processing chain has finished its tasks, it provides the data
to the transceiver that will format them and send them to
the physical output layer. The SDI family has a high data
rate; it means that the input/output stage of transceiver
works with high frequencies (more than 1 GHz for HD
signals). A typical FPGA board has an internal clock of
around 200 MHz, as shown in [29], that cannot reach the
SDI clock frequency. The solution tomatch these different
frequency rates is to transform signal from serial to paral-
lel and work with multiple frequency (e.g., external serial
signal at 1.485 GHz, internal parallel signal of 10 bits, and
148.5 MHz for HD-SDI).
In case of SDI video application, the transceiver has two

functions:

• In the input stage, it receives the signal from physical
layer, extracts the video components from SDI
stream, converts the signal from serial to parallel, and
matches the different signal data rates (e.g., from
1.485 GHz to 148.5 MHz for HD-SDI) to make it
suitable for the internal FPGA processing frequency
rate.

• In the output stage, it receives from the processing
chain the video components as parallel signal at
148.5 MHz, encapsulates it in the SDI protocol
converting the signal from parallel to serial, and
provides it to the physical output layer (at 1.485 GHz
for HD-SDI).

This is not possible to debug with standard FPGA tools
(Signal tap by Altera, Chipscope by Xilinx) because they
can only work with internal clock rates. To debug the

complete signal, an analyzer is needed but it only offers
some tests as already described in Section 2. In a simula-
tion, it is possible to analyze the different frequency rates,
but it is missing a test generator able to communicate with
the DUT through the transceiver. At this point, the main
idea of this work is to use a double transceiver structure
shown on the right side of Fig. 3:

• The first transceiver (called FPGA video signal
transceiver on the right side of Fig. 3) represents the
FPGA transceiver and allows to communicate with
the processing chain using the SDI physical interface
and protocol.

• The second transceiver (called simulation video
transceiver on the right side of Fig. 3) allows the
communication between a custom test generator
block with the rest of the structure, and to receive the
processed signal to the signal check block over the
SDI channel.

This double transceiver structure allows to simulate the
entire DUT and connect a custom generator and a custom
check block to test the DUT. It is important to remark that
it is possible to use every custom routine for signal gen-
erating and signal checking that are not available in the
physical analyzer and in normal test-benches. This struc-
ture can debug the internal DUT over the SDI interface
and allows to test not only the functionalities of processing
chain, but also the data integrity of video component and
signal sync over the SDI interface. Moreover, conversely
to standard hardware testing system shown in Fig. 1, the
proposed framework can also access the response of every
internal DUT component and drive its signal directly to
the check block without inserting them in the rest of
the processing chain through the transceivers. It results
in a significant improvement of the testing observability.
An example of a possible measure test is the DUT chain
delayD that can be determined according to the following
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equation:

D =
m∑

k=1

ccbk
clk_freqk

(1)

wherem is the total number of internal DUT blocks, ccbk
is the number of clock cycles required for k block pro-
cessing, clk_freqk is the working clock frequency, and D is
expressed in seconds.
Thanks to this flexible approach, it is possible to change

the kind of test by just changing the code of genera-
tor and check blocks, and running another simulation. It
also permits to automatize the testing routines or run-
ning a simulation with auto-checking routines. In the next
section, the blocks employed for experiment validation are
described.

4 Experimental validationmethodology
4.1 Testing methodology
Video processing techniques such as video compression
and video content analysis have been widely used in var-
ious applications. Most of them use a picture subdivision
in squared areas called macroblocks. In detail, a mac-
roblock is a square group of pixels used as elementary
unit in video processing techniques; it could have a con-
venient dimensions depending on the application (e.g.,
8 × 8, 16 × 16, 32 × 32). A typical application that uses
macroblock subdivision is H.264 coding [30]. It repre-
sent a widely used standard in video applications. For
this reason, many systems can interface with such coding
schemes so it is necessary to guarantee correct and accu-
rate verification process. The testing methodology devel-
oped in the DUT implements a video processing chain
oriented to H.264 coding, focusing on macroblock pro-
cessing. The main idea consists of a system that receives
HD-SDI video stream, extracts the video lines, and orga-
nizes the data into macroblocks as shown in Fig. 4. At
this point, the macroblocks will be ready for coding pro-
cess. The experiment involves macroblock extraction and

line restore, so the data will be sent to the output part
of the chain that reorganizes macroblocks to create the
video line. The proposed method is applied to the process
already described for performing the verification. It uses
a custom macroblock generator and a macroblock check
module that permit to compare the two signals outside the
DUT through the HD-SDI interface, allowing to evaluate
the correctness of DUT internal processing chain.

4.2 Global functional description
Figure 5 summarizes the functionality of the entire veri-
fication frame applied to the system; its description is as
follows:
The pattern generator creates the data that will be intro-

duced into the transceiver that communicates with the
DUT. The DUT transceiver receives the signal as a video
line (in Fig. 4 and the components are depicted on the top
right part as sequence line 0, line 1, and line 15). The video
line is processed pixel per pixel until module Block RAM
Buffer 256 to MB which stores the 16 lines and extracts
macroblocks (as shown on the extreme right side of Fig. 4).
The macroblocks are stored in the module Block RAM
Buffer MB to Line which reconstructs the line and outputs
the components to the rest of the chain. The lines pass
through the transceivers until MB pattern check which
permits to perform the comparison and verification with
the pattern generation.
A great advantage offered by the proposed framework

is the direct connection between each module of the
DUT and the MB pattern check without entering into the
transceiver.

4.3 Macroblock component extraction
Before a complete description of the system, it is impor-
tant to introduce the test method employed to verify the
correct extraction of the macroblock components. Fol-
lowing H.264 standard, to encode the video signal, a frame
should be divided into macroblocks as detailed in refer-
ences [30, 31]. In this experiment, a 16 × 16 matrix of

Fig. 4 Test-bench applied to a real case: the experiment validation model is ported on a Virtex-6 Xilinx FPGA
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Fig. 5 Complete chain functionality block diagram

pixels will be used as a macroblock dimension. For this
reason, to create a macroblock sequence, it is necessary
to process 16 video lines. To identify each component
of the macroblocks, it is useful to have a pattern gener-
ator able to insert the data in a known order sequence.
For this purpose, a custom frame generator is created
to provide an ordered number sequence instead of video
components. The principal benefit of this approach is the
enumeration of each macroblock pixel by pixel. It allows
to identify an eventual error in the process just checking
if the output is respecting the enumeration order pro-
vided as input stream. The macroblock generator output
is shown in Fig. 6 and consists in the generation of an
ordered sequence of number repeated for 16 video lines
(0 to 15) that allows to identify each macroblock with its
number. An example of pattern is the following:

• Line 0 :
0000...1111...2222...3333...n − 1, n − 1, n − 1, n − 1

• Line 1 :
0000...1111...2222...3333...n − 1, n − 1, n − 1, n − 1

• . . . . . . . . . . . . . . . . . . . . . . .
• Line 15 :

0000...1111...2222...3333...n − 1, n − 1, n − 1, n − 1

where n − 1 for 720p resolution (1280 × 720 pixels)
is 1280/16 − 1 = 80 − 1 = 79, 80 corresponds to the
number of macroblocks every 16 line, for a total of 3600
macroblocks per frame. Once this pattern is repeated, the

DUT will be able to extract a macroblock of zeros, a mac-
roblock of ones, ...etc. If this process is performed n times,
the entire frame will be generated (e.g., in 720p will be
repeated n = 720/16 = 45 times). It is possible to add
markers for line pattern labeling. As an example, the line
number can be labeled as follows:

• aa0000...1111...2222...3333...aan−1, n−1, n−1, n−1

The aforementioned process is depicted in Fig. 6. In this
figure, an example of pattern generator output and mac-
roblock composition is shown. The horizontal axis corre-
sponds to the pixel arrangement, whereas the vertical axis
represents the line numbers, for example:

• MB0: line 0 to 15, pixels 0 to 15.
• MB1: line 0 to 15, pixels 16 to 31.
• . . . . . . . . . . . . . . . . . . . . .
• MBn − 1: line 0 to 15, pixels n − 16 to n − 1.

For a 720p format as shown in Fig. 7, the macroblock 79
will have line 0 to 15, pixels 1263 to 1279 position. The
macroblock 3599, the last one in a frame, will have line
703 to 719, pixels 1263 to 1279 position.

4.4 Test-bench and detailed functional description
The DUT macroblock processing chain was developed
and tested on a Xilinx ML605 evaluation board [32]
featuring Virtex-6 XC6VLX240T-1FFG1156 FPGA [33].

Fig. 6 Custom generator for macroblock check. On the left side, the sorted component input line is shown. On the right side, the expected
macroblock output is shown
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Fig. 7Macroblock HD 720p frame subdivision example

Additionally, a Broadcast Connectivity FMC mezzanine
card (CTXIL671) [34] was employed as physical interface
to connect the HD-SDI signal to the ML605 board. As a
proof of independence from the manufacturer, this frame-
work can also be implemented in other FPGA company
products. As an example, it could be developed on Altera
FPGA using SDI MegaCore Functions IP [35]. Moreover,
the software for FPGA programming is the ISE 14.7 design
suite by Xilinx [36]. The computer used to run the simu-
lations is based on an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz with 4GB of DIMM DDR3 RAM.
The DUT structure was developed according to the pro-

posed verification framework depicted on the right part of
Fig. 4. The figure represents how a real project is entirely
simulated in a computer. On the left part of the figure,
theMB pattern test generator shows the generator already
described.
The functionality of the DUT blocks is detailed as fol-

lows:

• The video signal transceiver is composed of two
Xilinx Intellectual Property (IP) blocks: GTX
transceiver and Triple-Rate SDI. The former allows to
receive/transmit the HD-SDI protocol. In reception,
the signal is acquired at 1485 Gbit/s, transformed
from a serial to a parallel bus at 148.5 Mbit/s,
matching the data rate. In the transmission stage, the
transceiver performs the opposite operations. The
latter permits to establish the communication
between GTX transceiver and the rest of the chain. It
decodes the GTX transceiver data coming from
parallel bus into video components (lumas and

chromas) and synchronization information (e.g., SAV,
EAV, number of line). Conversely, in transmission, it
encodes the processed video from chain and permits
to add synchronization information. Further details
on the Xilinx IPs mentioned can be found in [37].

• The next blocks represent the processing chain. The
data they process is the video components in pixels.
The information of each pixel is represented using 10
bits in the HD-SDI stream. After that, it is
normalized to 8 bit because it is more suitable for the
internal FPGA memories and communication busses.

• The next block of 10 to 8 bits reduces the output of
the Triple-Rate SDI RX from 10 bits to 8; this allows
to store luma and chromas into FPGA memories.

• The block Buffer 8 to 256 of the DUT in Fig. 4 is a
buffer that changes the 8-bit video signal component
(Y, Cb, Cr) coming from the previous block into a bus
of 256 bits. This size of bus has been chosen to attain
a faster transportation of video components to the
rest of project blocks.

• The module Block RAM Buffer 256 to MB receives
the 256-bit data and stores it in a memory with
capacity to contain 16 video lines. Afterwards, it reads
and reorganizes data in macroblocks of 16×16 pixels.
As a result, every macroblock is provided at the
output of this block under 8 component of 256 bits.

• The module Block RAM Buffer MB to Line of Fig. 4
performs the opposite operation of the previous
block. It receives the macroblocks, stores them in a
FIFO, arranges video data in lines, and delivers it to
the output.
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Fig. 8 The simulation screenshot represents the macroblock extraction process

• The block Buffer 256 to 8 in Fig. 4 adjusts the signal
from 256 bits to 8 and introduces it into the following
block.

• The block 8 to 10 in Fig. 4 adjusts the signal from 8
bits to 10 and introduces it into the Triple-Rate SDI
TX block ready for output.

• The test generator was previously described in
Section 2.

The DUT is a real component that could be flashed
into the FPGA whereas the test generator is not imple-
mented on physical hardware since it is part of the sim-
ulation. In the next section, the results of simulations
are provided. The simulations were performed using two
different tools: the Xilinx ISim 14.7 [28] and ModelSIM
SE 10.1C. [23] which remark flexibility of the proposed
framework. Finally, two files with the test-bench code
employed in this work are provided and can be down-
loaded from [38].

5 Experimental evaluation and results
In this section, the results of simulations performed
according to the structure described in previous sections
are presented. Full connectivity verification, video com-
ponent, internal DUT observability, and time delays were
verified. These results are shown in Figs. 8, 9, and 10
where three simulation captures summarize part of video
sequences to display themost relevant features of this test.
Threemain sections to assess the framework performance
follow next. Each section represents an experiment, in
particular the A box in Fig. 8 refers to the macroblock
extraction process from lines, and the B box in Fig. 9 rep-
resents the opposite operation where the macroblocks are
reconverted into lines. Finally, the C Box in Fig. 10 is a test
where the pattern generator is replaced by a standard bar
generator. This replacement allows the simulation to vali-
date the entire chain functionality. A complete description
of every section is as follows.

5.1 Macroblock extraction
In the experiment A of Fig. 8, the macroblocks are
extracted from the lines. This experiment, as already
depicted in the functional description in Section 4,
includes the modules Buffer 8 to 256 and Block RAM
Buffer 256 to MB of Fig. 4. The signals y_in8 and c_in8
in the box A1 correspond to the input of the module
Buffer 8 to 256. Furthermore, the signals y_video_256
and c_video_256 in the box A2 represent the module
Block RAM Buffer 256 to MB output. It is very impor-
tant to remark that the input data is provided by the MB
pattern test generator through the transceivers, but the
analysis busses are connected directly to the MB pattern
check block (allowing direct signal check, without pass-
ing through the transceivers); this is possible only in the
simulation thanks to applying the proposed framework.
The video lines arrive into the Block RAM Buffer 256 to
MB until its buffer is full and therefore ready to extract
the macroblocks. Once this buffer is full, it starts to out-
put the macroblocks. This can be observed in the initial
part of Fig 8, box A2 where both signals y_video_256
and c_video_256 are undefined (XXX...). Afterwards, it
starts to output the macroblocks (0000... 0101...). This is
clearly shown in the box A1 where macroblocks are deliv-
ered to output after the frame input is in line 16 (signal
line_number = 10hex). The pixels in this simulation time
are marked 02 according to the test-bench structure of
Section 4.

5.2 Macroblock reverse conversion
In the experiment B of Fig. 9, themacroblocks are received
and reconverted to lines. The conditions are the same
than experiment A of Fig. 8, where the input signal is
provided through the transceivers, but the internal veri-
fication busses are connected directly to the MB pattern
check. This experiment analyzes the subsequent stage to
the experiment A and includes the modules Block RAM
Line Buffer MB to Line and Buffer 256 to 8 shown in Fig. 4.

Fig. 9 The simulation screenshot corresponds to line reconstruction experiment
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Fig. 10 The simulation screenshot shows a complete chain experiment with bar generator

The signals y_video256 and c_video256 in the box B1 of
the Fig 9 represent the input of module Block RAM Line
Buffer MB to Line, while the signals y_out8 and c_out8 in
the box B2, represent the output of the module Buffer 256
to 8. The capture of this simulation is taken in the instant
after the previous module, in the experiment A is out-
putting the macroblocks. This is verified by the timing in
the top part of boxes A and B. The modules of previous
stage start to deliver macroblocks around 566,480 ns of
simulation (box A2 signals y_video_256 and c_video_256);
the data is available at the input of following stage at
571,350 ns, just 5000 ns later, the time needed by elec-
tronics to propagate data. This condition is confirmed by
input signals (y_video256 and c_video256) of the module
Block RAM Line Buffer MB to Line in box B1, where before
571,350 ns signals are undefined (XXX...) and after this
moment are carrying themacroblocks. In box B2 just after
a short delay (33.68 ns), it is possible to verify through the
signals y_out8 and c_out8 that the line components are
distributed. In this case, the delay is minimal because the
main component of block Block RAM Line Buffer MB to
Line is a FIFO, which can output data while the input is
arriving [39].

5.3 Bar generator test
The complete chain is under test in the experiment C
of Fig. 10. The input and output signals pass through
the transceivers, simulating the same connection than the

Table 2 Simulation time execution and chain delay comparison
for several SMPTE standards and video formats in ISIM and
ModelSIM

SMPTE and video Minutes per frame D: chain

standard/format ISim ModelSIM delay (μs)

HD-SDI 720 80 20 360.86

HD-SDI 1080 100 25 838.86

3G-SDI 1080 205 51 838.86

3G-SDI 2K 221 56 871.26

6G-SDI 4K 815 210 3480.86

measurement system shown in Fig. 1 including trans-
port layer debugging. The blockMB pattern test generator
has been replaced by a standard HD bar generator. This
replacement allows to test the DUT in simulation in the
same manner than using a real equipment. This experi-
ment consists of the following steps:

1 Generate the HD-SDI signal bars
2 Receive this signal in the DUT transceiver
3 Extract macroblocks with the modules of experiment

A of Fig. 8,
4 Recompose the line through the modules of

experiment B of Fig. 9,
5 Output lines with transceiver and receive the signal

in the module MB pattern check.

If this process is performed without errors by every
component of the chain, in MB pattern check, the same
signal created from the bar generator will arrive, with
a delay accumulated during the chain processing. This
experiment simulation is depicted in the box C of Fig. 10
and detailed as follows. Box C1 indicates if DUT and test
generator are connected and that communication is estab-
lished. It encloses two HD-SDI serial differential channels
that correspond to the signal stream flow at 1485 Gbit/s
between them. These signals represent the TX/RX HD-
SDI transport layer connections illustrated in Fig. 3. No
significant differences can be appreciated because of high
data rate and channel codification.
Box C2 is composed of four data busses containing

luma and chroma components. y_tx_check and c_tx_check
are sent from signal generator to DUT. y_rx_check and
c_rx_check represent the components that come out after

Table 3 Module time calculation vs time measure in simulation
at 1080p

Module Calculated Measured

Buffer 8 to 256 430 ns 430 ns

Block Ram Line Buffer 256 to MB 417.8 μs 420.69 μs

Block Ram Line Buffer MB to Line 420.2 μs 423.09 μs

Buffer 8 to 256 430 ns 430 ns
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Table 4 FPGA resource occupation comparison. DUT with TB: FPGA occupation resources with test-bench included. DUT only: FPGA
occupation resources DUT only

Device utilization summary (estimated values)

Logic utilization Used Available Utilization

DUT with TB DUT only DUT with TB DUT only DUT with TB DUT only

Number of slice registers 20,913 16,316 301,440 301,440 6% 5%

Number of slice LUTs 18,165 13,455 150,720 150,720 12% 8%

Number of fully used LUT-FF pairs 11,096 7592 27,982 22,179 39% 34%

Number of bonded used IOBs 155 102 600 600 25% 17%

Number of block RAM/FIFO 156 147 416 416 37% 35%

Number of BUFG/BUFGCTRLs 10 12 32 32 31% 37%

processing stage and are routed to the check block. In this
case, comparison between components yields to verify if
there is any error in DUT processing modules. Addition-
ally, synchronization data is inserted into these busses and
can be also analyzed.
Box C3 contains a bus depicting the number line

of each video frame. tx_line_num_check was routed
from HD test generator to signal check block, whereas
rx_line_num_check was routed from DUT to signal check
block.
Marker C4 highlights the time delay. Simulation pro-

cess permits to measure the delay evolution in the chain.
Model granularity is guaranteed as delay can be observed
for every single block. As a result, it is possible to evalu-
ate the processing time for every DUT component, from
pattern insertion to processed signal.

5.4 Timemeasurement and comparison
Table 2 describes a comparison of simulation time as a
function of SMPTE SDI standard rates and video formats.
The model was implemented in both mentioned tools
(ISim vs ModelSIM). Tests consist of evaluating the time
spent by the DUT to process a frame of different video
resolutions.
The assessment metric for this test was minutes per

frame processed. It can be seen that ModelSIM is around
four times faster than ISim, probably because ISim does
not scale well for larger designs [17]. Time employed for
frame processing is longer due to the high data rate of
interfaces (≈ Gbit/s) and large number of simultaneous
signals (HD-SDI links increase in 3G and 6G format). It
is important to remark that simulations were carried out
using a i7-2600 CPU @ 3.40 GHz with 4 GB of RAM,
which is not a powerful architecture for high-performance
test purposes.
The third column of Table 2 shows the chain delay of

DUT block processing. Simulation results are close to D
times calculated using Eq. 1.
Table 3 represents an example of time calculation and

measurement per component obtained for a 1080p signal

simulation test. It allows to verify if every module respects
its expected execution times. Additionally, there is a little
difference between the calculated and measured time of
modules Block Ram Line Buffer 256 to MB and Block Ram
Line Buffer MB to Line. It depends on the internal com-
ponent Block Ram which requires some extra clock cycles
due to circuit propagation latency [39].

5.5 FPGA resource comparison
Table 4 represents a Xilinx ISE synthesis reports that sum-
marize the FPGA resource utilization. On the one hand,
the columns DUT with TB show the FPGA resource uti-
lization in case the complete test-bench is synthesized,
including signal generator, check block, and DUT. On
the other hand, the columns DUT only show the FPGA
resource utilization when only the DUT is synthesized. It
only involves the transceiver and the chain to create mac-
roblocks and restore them into lines (right part of Fig. 4).
In the Logic Utilization column, the logic components
are specified, while in the Used columns, the amount of
used logic elements is detailed. The Available columns
show the number of logic elements available in the FPGA.
Finally, the Utilization columns detail the percentage of
logic elements used by the design. Comparing theUtiliza-
tion columns of both images, it is possible to verify that
the design including the test-bench needs more FPGA
resources than the design with DUT only. An exception
is represented by BUFG/BUFGCTRLs, since these are the
input/output buffers, and the DUT only design requires
more buffers to communicate with the output. From this
example, it can be observed that the proposed framework
is less restrictive in terms of FPGA resources, which can
be useful for projects where FPGA resource utilization is
critical.

5.6 Real case test-bench evaluation
In this section, the test-bench is applied to a real case to
detect and solve an issue in a video processing application.
As described in the previous sections (4), this method
has been developed for assessing macroblock processing,
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for applications that utilize H.264 encoding. DCT-based
coding algorithms such as H.264 divide the video frames
into macroblocks. Within the encoder implementation,
the input process needs to provide the macroblocks. This
process reads the lines from the input frames and arranges
the video components into the mentioned squared pixel
structures. For debugging purposes, the same lines should
be reconstructed from the H.264 encoder and then
provided back. Two processing modules are needed to
perform the H.264 encoding: the input chain (creating
macroblocks from lines) and the output chain (extracting
the video lines from the encoded macroblocks). The
real test consists of implementing and testing the input
and the output chain depicted in the DUT of Fig. 4,
on Xilinx ML605 evaluation board [32] with a Virtex-6
XC6VLX240T-1FFG1156 FPGA [33]. The interface
used is a Broadcast Connectivity FMC mezzanine card
(CTXIL671) [34] that allows connecting the FPGA with
SDI equipment. This configuration enables us to test the
proposed experiment with the real hardware and compare
its analysis capabilities with our test-bench. In fact, the
FPGA is connected with real equipment such as a signal
generator and a monitor. Figure 11 depicts the equipment
connections to perform the test. The signal generator

used is the BrightEye 57 from Ensemble design [40]
that inputs the signal into the FPGA through a HD-SDI
interface. The FPGA contains all the implemented mod-
ules including the input and output chains and provides
output signal to the HD-SDI distributor. At this point, the
signal is visualized on a BlackMagic SmartView monitor
[41] and at the same time to a Omnitek HD-SDI video
analyzer [42]. This permits to visually inspect the video
on the screen and at the same time to analyze it using the
Omnitek debug tool. The test signal chosen is a “Patho-
logical pattern signal,” a special sequence that is capable to
stress the SDI format especially used for equipment test.
In fact, a conventional video signal could generate errors
but may be transparent or very difficult to identify, while
with the pathological signal, if there are some implemen-
tation bugs (both at hardware or software level) in the
device, they will be noticeable and can be easily detected.
More information about the pathological pattern signal is
available in [43]. The test is carried out using a 1O80p25
resolution format. Once the test signal is introduced
to the FPGA, the system starts generating some video
artifacts, as is possible to see on the left part of Fig. 13,
and a debugging stage is executed. The Omnitek analyzer
provides the following information as shown in Fig. 12:

Fig. 11 Output from the Omnitek video analyzer
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Fig. 12 System connection to test the macroblock FPGA input/output chain

• Do not recognize 1080p format
• RGB color space error
• Synchronization TRS error
• Line check error

Unfortunately, the information is not sufficient to solve
the issue. Furthermore, it does not specify where the

errors occur. It remains unknown whether the error pro-
ceeds from the input stage or the output stage, or the pro-
cess is failing to extract or recompose the macroblocks.
Furthermore, it is not possible to perform a deep debug-
ging with the Omnitek or other standard analyzers. At this
point, the simulation presented in this work could provide
a better internal observability. A pathological signal gen-

Fig. 13 The test-bench is applied to solve a real case: a vertical synchronization issue
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erator is introduced in the simulation and is possible to
route all desired signals to the signal check block. After
debugging, the issue is discovered in the output chain
before the GTX transceiver. The vertical synchronization
issue was generated by a wrong video component count-
ing before the GTX transceiver. In fact, the wrong SAV
code was generated and this resulted in blanking video
components being mixed with active video components.
As the issue propagates, a video artifact was generated as
is also displayed in the monitor. Figure 13 is composed of
the photos of the monitor output and by a small captures
of the simulations. On the left side, the monitor shows the
graphical artifact and its respective simulation. The analy-
sis contains the output video components and the output
line number. The code 2ac shown on the video compo-
nents represents the SAV of the line 41 while the line 42
is going to be outputted by the GTX transceiver. On the
right side of Fig. 13, the issue has been solved and the
system sends to the output the right number of video com-
ponents and the right synchronization code 200. More
information about vertical HD-SDI synchronization codes
is available in [16]. This experiment clearly shows that the
proposed test-bench can provide finer testing over exist-
ing approached thus enabling easier debugging for H.264
applications.

6 Discussion
To the best of our knowledge, our work, compared to
previous works, facilitates the verification of the design
implementation and enables cost saving in terms of
additional testing equipment. The effectiveness of our
work has been demonstrated in Section 5.6 where our
the test-bench has been compared with a professional
video analyzer by Omnitek. Through experimentation,
it was observed that existing approaches lack internal
debug capabilities that our solution can provide in order
to debug video applications. In comparison with other
works [18, 19, 24], we also provide additional capa-
bilities. We introduce test signals within the double
transceiver architecture (to encode/decode video stream)
making our solution capable of analyzing a complete
solution.
Furthermore, other works employ different interfaces

(PCI [19], RS232, USB, S-Video[24]) to input/debug data,
which means that a previous signal transformation stage
should be introduced to enable HD-SDI format analysis.
As a result, it is not possible to analyze complete HD-SDI
stream because information such as synchronization and
number of line is lost. Moreover, in [24], an observation
window is analyzed, whereas this work allows to debug
the complete data flow (all the video frames desired). Ref-
erenced works do not allow direct comparison of input
and output video data stream, neither are compatible with
HD video formats. In addition, they do not provide results

about simulation time nor data of interest comparable
with our presented work.
Observability improvement of the proposed method is

demonstrated since this information is internal and there
is no accessibility from outside the DUT. Model flexibility
allows to modify the bus observed at the check block by
routing the signal/bus desired.

7 Conclusion
In this paper, a novel test-bench framework for SDI video
systems has been presented. It permits to perform com-
plete DUT verification in the same manner as a physical
flexible hardware in cases where the latter is not available.
It is especially suitable for deployment in verification envi-
ronments that exhibit limited resources for DUT occupa-
tion and require flexibility in terms of signal generators
and check blocks. In addition, the proposed framework
is also applicable in cases where the DUT is only acces-
sible through a protocol and/or a transceiver. As shown
through the experimental evaluation on an FPGA, the ver-
ification methodology is applicable to real and practical
use-cases and can be used to improve the simulation and
verification process for engineers and hardware designers.
Finally, this work has demonstrated that the inclusion of
transceivers in SDI testing applications is indeed possible
contrary to claims provided by manufacturers in design
guides [44, 45]. As future work, it is interesting to test
this framework with other interfaces and protocols (for
example, HDMI in video systems or others such as Ether-
net and USB). Another interesting point is the integration
with UVM [1, 2] methodology to improve the automatic
testing routines.
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