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Abstract

Real-time multichannel video analysis is significant for intelligent transportation.
Considering that deep learning and correlation filter (CF) tracking are time-
consuming, a vehicle tracking method for traffic scenes is presented based on a
detection-based tracking (DBT) framework. To design the model of vehicle detection,
the You Only Look Once (YOLO) model is used, and then, two constraints including
object attribute information and intersection over union (IOU), are combined to
modify the vehicle detection box. This approach improves vehicle detection
precision. In the design of tracking model, a lightweight feature extraction network
model for vehicle tracking is constructed. An inception module is used in this model
to reduce the computational load and increase the adaptivity of the network scale.
And a squeeze-and-excitation channel attention mechanism is adopted to enhance
feature learning. Regarding the object tracking strategy, the method of combining a
spatial constraint and filter template matching is adopted. The observation value and
prediction value are matched and corrected to achieve stable tracking of the target.
Based on the interference of occlusion in target tracking, the spatial position, moving
direction, and historical feature correlation of the target are comprehensively
employed to achieve continuous tracking of the target.

Keywords: Vehicle detection, Correlation filter tracking, Lightweight convolutional
learning network

1 Introduction
As a research hotspot in computer vision, vehicle tracking plays an important role in

intelligent transportation and intelligent traffic event detection. There are currently

two main object tracking frameworks: detection-based tracking (DBT) and detection-

free tracking (DFT) [1]. DFT needs to manually initialize the tracking target, so it is

only applicable to tracking a specified target and cannot automatically detect and track

a new target that appears in the monitoring process. DBT integrates detection and

tracking and can automatically detect the emergence of new targets or the disappear-

ance of existing targets. Thus, DBT is capable of meet the actual requirements of the

random disappearance of targets or the dynamic change of targets in the monitoring

scene.
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In most intelligent transportation applications, fixed cameras are used to monitor

scenes that dynamically change in specific areas, so this study is conducted based on

the DBT framework. DBT framework-based object tracking can be further categorized

into background modeling-based [2–10] and foreground modeling-based [11, 12] object

detection. The core of background modeling-based object detection algorithms lies in

background initialization, i.e., how to obtain a background image frame without any

moving objects. The foreground modeling-based method is complemented by establish-

ing an appearance model for the objects or background, and then trains a classifier to

establish a classifier model.

In real-world traffic monitoring, detection and tracking of vehicles in monitoring

scenes are required in all-weather conditions at all times. Therefore, background

modeling-based object detection will face challenges from a dynamically changing

background, including illumination variation, disturbance from nonvehicle moving ob-

jects, diurnal variation, camera shaking, and so on. Thus, a foreground modeling-based

vehicle detection model is used to detect and track vehicles in this study.

In terms of the number of tracking objects, vehicle tracking in traffic scenes can be

divided into single vehicle tracking and multivehicle tracking. Many methods were de-

veloped to track a single vehicle, such as part-based particle filter method [13], a fusion

method of multiple single-target trackers [2]. In paper [3], a group of mask templates

generated by interframe differences were introduced, and the accelerated near-end gra-

dient (APG) algorithm was adopted for template adaptive adjustment to improve the

tracking accuracy and efficiency.

For multivehicle tracking in a traffic scene, many works were carried out by the DBT

framework. In paper [4], target detection is realized via the VGG16 network, and then

a sparse optical stream-based method is adopted for tracking. This method involves op-

tical flow calculation; thus, its real-time performance is difficult in practice. Based on

video of an unmanned aerial vehicle (UAV), the researchers adopted the fast region-

based convolutional neural network (fast RCNN) to detect the vehicle, and then uses

the Kalman filter to track the vehicle [5]. This method is more efficient but is not ap-

plicable to the situation of vehicle interleaving or disappearing. Focusing on the ex-

pressway scene, paper [6] adopted the Single Shot MultiBox Detector (SSD) based on

deep learning to detect vehicles. The correlation of track timing information was com-

bined with the kernelized correlation filter (KCF) to achieve vehicle tracking. This

method cannot achieve the continuous and effective tracking of multiple vehicles for

more complex urban scenes. Paper [7] used the fast-RCNN for vehicle detection and

then followed by an additional branch based on a faster RCNN structure for vehicle

tracking. The experimental results showed that the performance was satisfactory for sit-

uations with sparse vehicle distribution in a scene, but its effect needs to be verified for

the more complex urban scenes.

The keys to automatic vehicle tracking based on the DBT framework is the object de-

tector, the object tracker design and the strategy of integrating the detector and the

tracker. Focusing primarily on the need of multichannel video monitoring in intelligent

transportation, this study investigates a vehicle tracking method that satisfies the real-

time multichannel video analysis requirements and improves vehicle tracking precision.

Considering the complexity and application feasibility of the algorithm, in the object

detection step, the detection result provided by You Only Look Once (YOLO) were
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post-processed and then used as the input for the tracker. For the tracker, a lightweight

convolutional neural network (CNN) was designed to extract image features and in-

corporate them into a correlation filter (CF) tracking framework. Finally, a tracker-

detector integration strategy was designed to automatically track multiple vehicles in

traffic scenes.

2 Related work
2.1 YOLO postprocessing-based vehicle detection

Based on the modeling technique, foreground modeling-based object detection algo-

rithms can be further categorized into two types, namely, algorithms based on statis-

tical learning and algorithms based on deep learning [14–19]. Statistical learning-based

algorithms are carried out by training an object classifier based on hand-crafted fea-

tures and use a multiscale sliding window to search within the object region. These al-

gorithms are relatively highly resistant to environmental interference and unaffected by

objects’ shadows. However, these algorithms have relatively low processing speeds.

Additionally, manually designed feature extraction operators are unable to address di-

verse objects. Conventional machine learning algorithms can only learn a small number

of samples and have poor generalization ability.

With the emergence of large-scale datasets and the upgrade of computer software

and hardware, deep learning methods are developed rapidly, and utilized in many appli-

cations. To study an explicit visual-semantic dictionary model for cross-modality un-

derstanding, a multi-task learning model was constructed, which models the co-

occurrence and discriminative patterns within and between categories [20–22]. Actu-

ally, there are many researches have been studied for object detection based on deep

learning recently. Comparing with the conventional methods, the precision of object

detection based on deep learning networks has been rapidly improved. Among all the

existed deep learning networks, regression models, which are represented by YOLO

[19, 23], are advantageous in both detection precision and speed.

Considering its exceptional object detection capacity, the YOLO network model is

used in this study to construct a vehicle detector that is suitable for monitoring scenes

in intelligent transportation. First, the current YOLO network is transformed from gen-

eric object detection to vehicular object detection. Additionally, vehicles are classified

into eight types based on the classification standard issued by transport agencies,

namely, small, medium, and large coaches; small, medium, large, and superlarge trucks,

container vehicles, and motorcycles. The YOLO network model is retrained on object

classification based on traffic scene datasets.

Additionally, to learn universal and distinct features, the current YOLO model train-

ing algorithm trains the feature extraction network based on a combination of detec-

tion and classification datasets. The basic principle is described as follows. The

detection dataset is used to learn the accurate locations of the objects, whereas the clas-

sification dataset is used to increase the number of classes to improve the robustness of

the detection algorithm. Following this training model, the detector is prone to detect-

ing one object in the semantic sense as multiple objects in real-world traffic monitoring

scenes.

There are two main situations:
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(1) Detection box nesting: part of an object is detected as an independent object.

(2) Detection box overlapping: one object is detected as multiple different objects, and

the detected objects overlap one another.

To address these problems, the following strategy was proposed in this study to

screen and combine the detection.

(1) First, for situations where a smaller rectangular box is nested inside a larger

rectangular box, the smaller rectangular box is removed.

(2) Then, the nonmaximum suppression algorithm is employed to suppress

rectangular object boxes with relatively low object confidences, and the rectangular

object boxes with relatively high confidences are preserved. Additionally, the

rectangular boxes are combined based on the object class information.

Specifically, in the detection results of rectangular object boxes with intersection over

union (IOU, i.e., the ratio of the intersection of rectangular boxes to the union of rectangu-

lar boxes) values that are greater than the threshold th and of the same class, the rectangular

box with a relatively low object confidence is directly removed. The rectangular object boxes

with an IOU greater than th and of different classes are then combined. The smallest en-

closing rectangle in the union region of the two rectangular boxes is selected.

Nonmaxima suppression in the proposed algorithm takes into account not only the

IOU of the detection box but also the class attribute, i.e., it treats the class attribute as

an additional restriction of the rectangular box constraint. This approach ensures that

the merged detection box can satisfactorily preserve the semantic integrity of the object

and provides the object tracker with a better initial value.

3 Method
3.1 CF object tracking based on deep features

An object tracker generally consists of three parts, namely, an appearance model, a mo-

tion model, and an update model. The general flow of an object tracking algorithm is

described as follows: (1) each tracked object is represented by modeling, and an appear-

ance model is established based on the initial information. (2) The appearance model is

used to determine the location of the object in the current frame. (3) Based on the

tracking results with respect to the current frame, an update strategy is used to update

the appearance model to allow it to adapt to changes in the object and the environ-

ment. Based on whether the appearance model is established using the background in-

formation, object tracking algorithms can be categorized into two types: generative and

discriminative models [24]. Because they use both the background and object informa-

tion, discriminative models generally exhibit higher tracking performance than genera-

tive models. In recent years, discriminative models based on the CF tracking

framework have garnered extensive attention due to their advantageous performance

and efficiency [25]. The CF algorithm generates positive and negative samples by cyclic-

ally shifting feature maps (e.g., grayscale, color, and histogram of oriented gradients

(HOG) feature maps) to learn the filter h and then perform a convolution operation on

the imagefi:
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gi ¼ f i�h ð1Þ

Thus, a correlation information map is obtained. In the correlation map, the location

with the maximum value is the location of the object.

As deep learning advances, deep features will replace conventional features, which

will further improve the tracking performance of CF algorithms. The deep spatially reg-

ularized discriminative CF algorithm [26] learns a CF in the first layer of a single-

resolution deep feature map. The hierarchical convolutional feature (HCF) algorithm

[27] improves the tracking performance by training a CF based on the features of mul-

tiple convolutional layers.

Deep learning is advantageous because this technique, which is driven by data and

tasks, is capable of automatically learning how to extract model features and avoids the

incompleteness caused by hand-designed features.

The DCFNet algorithm proposed by Wang et al. [28] treats a CF as a layer of a deep

network, thereby achieving end-to-end training for tracking tasks. While they have

achieved relatively satisfactory tracking performance, these algorithms generally have

relatively low processing speeds and are inadequate for practical applications. The time

cost of CF tracking algorithms results from the feature extraction process as well as the

online-learning, detection, and update processes of the filter.

3.1.1 Network structure design

Figure 1 shows the tracker network structure designed in this study. This network

structure consists of three parts; namely, a feature extraction network, a CF layer, and a

response loss layer. The feature extraction network is a vertically symmetrical twin

structure. The upper branch of the feature extraction network is referred to as the his-

torical branch, i.e., the branch where the location of the object is known. The lower

branch of the feature extraction network is a branch where the location of the object is

unknown, and its objective is to allow the network to learn how to search for the object

in the subsequent frame when its location in the current frame is known.

Two key issues need to be addressed when using deep learning to extract features,

namely, (1) how to design a suitable feature extraction network structure based on a

specific task and (2) how to design a model training loss function to optimize the net-

work parameters.

The feature extraction process for deep convolutional networks shows that shallow

networks tend to obtain features of an object, such as physical outline, edges, color,

and texture. The extracted features become increasingly abstract as the number of

Fig. 1 Network structure

Yang et al. EURASIP Journal on Image and Video Processing         (2020) 2020:17 Page 5 of 20



network layers increases. As the network deepens, the object positioning precision de-

creases. In a traffic scene, a significant change in the size of a vehicle occurs as the ve-

hicle moves from far to near or from near to far. Therefore, an excessively large

number of network layers will be unfavorable to small-scale detection and tracking. An

increase in the number of network layers will cause an increase in the computational

load and affect real-time application.

Inspired by this, a lightweight shallow feature extraction network was designed in this study,

because shallow networks can more easily learn the features (e.g., physical outline, edges,

color, and texture) of objects. This network consists of a convolutional layer, an inception

module [29], two channel attention modules, and a local response normalization (LRN) layer.

(1) Convolutional layer: this layer contains 96 3 × 3 convolution kernels with a step

size of 1.

(2) Channel attention mechanism module 1: this module recalibrates the feature maps

generated by the convolutional layer, suppresses the invalid features, and improves

the valuable features.

(3) Inception module: as demonstrated in Fig. 2, the inception module combines the

features of the receptive fields of multiple scales (1 × 1, 3 × 3, and 5 × 5) and

allows the network to determine the filter type in the convolutional layer on its

own. This enriches the features learned by the network. Additionally, the 1 × 1

convolution kernels before the 3 × 3 and 5 × 5 convolution kernels reduce the

feature channel thickness and the computational load of the network structure.

The dimensions of the feature channels outputted by the receptive fields of the 1 ×

1, 3 × 3, and 5 × 5 scales are 4, 8, and 4, respectively. This is because the receptive

field of the 3 × 3 scale outperforms the receptive fields of the 5 × 5 and 1 × 1

scales in terms of local perceptibility.

(4) Channel attention mechanism module 2: this module recalibrates the feature maps

generated by the inception module.

(5) LRN layer: this layer performs interchannel normalization on the outputted feature

maps, limits the magnitude of the outputted eigenvalues, and renders the training

process more stable.

The rectified linear unit (ReLU) activation function is used after each convolutional

layer for response. This is mainly because ReLU is a piecewise linear function with a

Fig. 2 Inception module
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relatively high forward propagation and backward feedback speeds. Additionally, ReLU

has a gradient of 1 in the > 0 region and is not associated with the vanishing or explod-

ing gradient problem.

The conventional CF approach is adopted for the CF layer. The CF layer learns a fil-

ter based on all the cyclic shifts of the feature maps outputted by the historical branch

and correlates the filter with the feature maps outputted by the current branch to gen-

erate a response map.

The response loss layer uses a two-dimensional (2D) Gaussian function with a peak

at the center as the label and the L2 norm to measure the loss between the response

map and the label. The following section provides a detailed introduction to the key

components of the network structure.

3.1.2 Channel attention mechanism

In the video-based vehicle tracking process, indiscriminately searching for a vehicle in

all regions within the field of view is clearly time-consuming. The attention mechanism

of biological vision can help an organism to quickly focus on an object of interest.

Introducing the attention mechanism into computer vision to increase the search speed

in regions where the vehicle is suspected to be located in the full field of view will un-

doubtedly be favorable to improving the vehicle detection and tracking performance

[30]. In this study, a visual attention mechanism is introduced into the feature extrac-

tion network. This approach enables the feature extraction network to highlight the ve-

hicle features in the scene, suppress the background features, and improve the

effectiveness of the network in representing vehicle features, which improves vehicle

detection and tracking precision and speeds. The channel attention module shown in

Fig. 3 is introduced to the output of each layer [31].

This module consists of three components, namely, a squeeze operation, an excita-

tion operation, and a scale operation.

For an input x with c1 feature channels, a feature map with a feature dimension of c2

is outputted after a convolution operation. By global pooling, the squeeze operation

turns each 2D feature channel into a real number with a global receptive field and gen-

erates a one-dimensional vector consistent with the dimension of the feature map. This

vector characterizes the global distribution of responses in the feature channel and al-

lows the layers close to the input layer to have a global receptive field.

Fig. 3 Schematic of a squeeze-and-excitation channel attention module
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The main goal of the excitation operation is to explicitly model the correlation be-

tween channels. This step is achieved through two fully connected layers. The first fully

connected layer reduces the feature dimension to 1/16th of the feature dimension of

the input. After obtaining a response from the ReLU activation function, the dimension

is increased to the original dimension through another fully connected layer. Ultim-

ately, the output and input have the same feature dimension. Finally, a sigmoid activa-

tion function is used to normalize the output value to the range of 0–1. This approach

has the following advantages:

(1) It allows the structure to be nonlinear to better fit the complex correlation

between channels.

(2) It reduces the number of parameters and computational load and ensures a

lightweight network.

The weights outputted by the previous step represent the importance of the feature

channels selected by the attention module.

3.1.3 CF and response loss layers

In the CF layer, let M ×N be the dimensions of the input image block x in the histor-

ical branch. A feature map φ(x) ∈ RM ×N ×D is obtained for the image block using the

feature extraction network. Positive and negative samples are then generated by cyclic-

ally shifting the feature map and are then used to train a filter w, which can be obtained

using a minimization equation (Eq. (2)):

min
w

Xw−yk k22 þ λ wk k22 ð2Þ

where λ (λ ≥ 0) is a regularization coefficient and X = [x1, x2,…, xn]
T is a data matrix

consisting of all the positive and negative samples generated by cyclically shifting the

feature map. A closed-form solution to Eq. (3) can be calculated using the least-squares

method [32]:

w ¼ XTX þ λI
� �−1

XTy ð3Þ

The above equation can be rewritten as the following equation in the complex num-

ber field:

w ¼ XHX þ λI
� �−1

XHy ð4Þ

X is a circulant matrix. Therefore, the filter in the lth (1 ∈ {1,…, D}) feature channel

can be written in the form of Eq. (5):

ŵl ¼ ŷ⊙x̂�lPD
i¼1x̂

�
i⊙x̂i þ λ

ð5Þ

where e signifies the Hadamard product, •∗ signifies a complex conjugate operation,

and •̂ signifies the discrete Fourier transform of the vector.

In the current branch, the to-be-searched-for image block z and the image block x

have the same dimensions. Through the feature extraction network, a feature map φ(z)
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is obtained for the image block z. The response R of the feature map φ(z) and filter can

be calculated using Eq. (6).

R ¼ F−1
XD

l¼1
ŵl⊙φ̂ zð Þ�l

� �
ð6Þ

The loss function of the network is defined as the L2 norm between the response R

and the label ~R of the 2D Gaussian function with the peak at the center. Equation (7)

shows the loss function.

L θð Þ ¼ R−~R
�� ��2 þ γ θk k2

s:t: R ¼ F−1
XD
l¼1

ŵ�
l⊙φ̂l z; θð Þ

 !

ŵi ¼ ŷ�⊙φ̂l x; θð ÞPD
i¼1φ̂i x; θð Þ⊙ φ̂i x; θð Þð Þ� þ λ

ð7Þ

The forward derivation process for the CF layer was previously provided. To achieve

end-to-end training, it is also necessary to derive backpropagation forms. The backpro-

pagation forms of the historical and current branches can be derived using the chain

method, as shown in Eq. (8) (see elsewhere [26] for details).

∂L
∂φl xð Þ ¼ F−1 ∂L

∂ φ̂l xð Þð Þ� þ
∂L

∂ φ̂l xð Þð Þ
� ��� �

;

∂L
∂φl zð Þ ¼ F−1 ∂L

∂ φ̂l zð Þð Þ�
� �

:

ð8Þ

3.1.4 Online update and scale adaptation

In the object tracking process, changes occur in the scale and angle of the object in the

image sequence. Additionally, the background where the object is located also changes

with time. To achieve accurate and stable object tracking, an online update strategy

must adapt to the changes in the object and background.

Figure 4 shows the online tracking process of a deep network–CF-combined object

tracker. First, the deep features of the object region in the first frame of the tracking

video sequence is extracted and used to train an initial filter. Then, in the subsequent

frame, a search region is set with the object’s location in the previous frame as the cen-

ter. Deep features within this search region are located and inputted into the filter for

response. The maximum location in the response map is the location of the object in

the current frame. Finally, the filter template is updated based on this new location.

In the tracking flow in Fig. 4, based on the response map, only the position of the ob-

ject can be predicted, whereas changes in the scale of the object cannot be accurately

perceived. If the object shrinks, the filter will learn a large amount of background infor-

mation. Conversely, if the object expands, the filter will drift with the local texture of

the object. To allow the tracker to adapt to scale variations, a multiscale search strategy

is often adopted. The general flow of a multiscale CF tracking algorithm is described as

follows:

(1) The deep features of the tracked object region in the first frame of the video

sequence are extracted, and a CF is obtained by initialization.
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(2) For each image frame in the subsequent input video sequences, an image pyramid

is established based on the tracked object region predicted from the previous

image frame. Equation (9) shows the pyramid scale factor.

asjs ¼ −
S−1
2

	 

; −

S−3
2

	 

;…;

S−1
2

	 
� �
ð9Þ

Because the filter template has a fixed size, it is necessary to uniformly normalize the

multiscale images to the size of the filter template. Then, a multiscale feature map can

be obtained by using the feature extraction network.

(3) The feature maps of each scale are first processed with a window function and

then allowed to respond to the CF template. In each response map, the location of

the maximum value is the predicted location of the object, and the corresponding

scale is the scaling ratio for the object in the current frame.

(4) The image features of the new location of the object are extracted to update the

CF template. Equation (10) shows the update strategy for the filter template. This

update strategy is then implemented to sufficiently make use of the historical

information provided by the video sequence and improve the robustness of the

filter to allow the filter to cope with interference from external factors (e.g.,

illumination and blocking objects).

W ¼ ηW þ 1−ηð ÞAi ð10Þ

where η is the learning efficiency and Ai is the calculation results for the current

frame.

3.2 Tracker–detector-integrated object tracking

The detector of the target is designed to provide the initial positioning for the target to

be tracked and then provide objects for the tracker to achieve tracking. Based on the

detector, automatic detection of the target can be achieved without manual determin-

ation of the initial tracking target and can address the dynamic change in the

Fig. 4 Deep network–CF-combined tracker framework
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appearance of the new target and the disappearance of the old target in the monitoring

process, which is the necessary link of the automatic tracking of the target.

The target detector can be used to detect the target in the video image and extract

the target information of each frame of the image. In the case of single target tracking,

target tracking can be achieved by simply using the detector. In the case of multitarget

application in the scene, however, multitarget tracking cannot be realized because the

target detector cannot establish the corresponding relationship between two multitarget

frames.

In this study, a YOLO detector–CF tracker-integrated object tracking algorithm was

proposed for tracking moving objects in complex traffic scenes. First, a tracker is used

to predict the locations of the objects in the subsequent frame. Observed values close

to the predicted values are searched for close to the predicted values. Additionally, the

CF template is used to select the matched observed values to correct the predicted

values. Then, each object that fails to be tracked due to blocking is retracked based on

the correlations between the spatial location, moving direction, and historical features.

The experimental results have demonstrated that the proposed algorithm is relatively

highly robust and able to retrack objects that were previously blocked for a short period

of time. Figure 5 shows the flowchart of the object tracking algorithm designed in this

study, which mainly consists of two parts: (1) matching between the observed and pre-

dicted values and correction of the predicted values; and (2) processing the blocked

and new objects.

3.2.1 Peak-to-sidelobe ratio (PSR)-based tracking quality evaluation

In ideal conditions, a CF can predict the location of an object at the current moment if

its location at the previous moment is known. When tracking objects in an actual traf-

fic scene, a tracking drift or a loss of tracked objects can often occur due to mutual

blocking between objects or other factors. Therefore, determining whether a tracking

drift or a loss of tracked objects has occurred and, if so, addressing the problem are the

key issues in achieving robust tracking. In this study, the PSR, which is extensively used

Fig. 5 Flowchart of the tracker–detector-integrated object tracking algorithm
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when applying CFs, was used to evaluate the tracking quality. The PSR can be calcu-

lated using Eq. (11) [33].

PSR ¼ gmax−μs1
σs1

ð11Þ

where gmax is the peak value of the CF response map, and μs1 and σs1 are the average

value and variance, respectively, within an N ×N window, with the peak value of the re-

sponse map as its center, respectively.

In this study, N was set to 12. Through testing and statistical analysis, the PSR was

found to range from 5 to 10 in the normal tracking state. When PSR < 5, it can be de-

termined that a tracking drift or loss of the tracked object has occurred. If a tracker ex-

hibits relatively poor tracking quality or fails to match the observed values in multiple

consecutive frames, it may be because the object has been blocked or has left the field

of view. In this study, an effective detection region was established in the object track-

ing process. The distance d of an object from the boundary of the detection region

along its moving direction can be calculated. When d<D (D is the distance th between

the object and the boundary), the object has left the field of view. Trackers whose rela-

tively poor tracking quality has been determined to not be due to the departure of the

object from the field or view, or that fail to match with the observed values in multiple

consecutive frames, are added to a temporary linked list. Additionally, a survival period

is also set. Trackers past the survival period will be removed.

3.2.2 Matching between the observed and predicted values and the correction of the

predicted values

Continuous, steady object tracking can be achieved by correcting the tracker based on

the observed values for the object. Therefore, how to establish the matching relation-

ship between observed and predicted values is a key issue in achieving steady tracking.

Generally, the predicted and observed values for an object are relatively close in terms

of spatial distance. Matching between the predicted and observed values by spatial con-

straints is sufficient for scenes with relatively low vehicle densities. However, for scenes

with relatively high vehicle densities and objects that relatively heavily block one an-

other, as shown in Fig. 6, spatial constraints may easily lead to mismatching. In view of

this problem, observed and predicted values were matched in this study through a com-

bination of a spatial constraint and filter template. The spatial constraint is as follows:

IOU rd; rp
� � ¼ rd∩rp

rd∪rp
> th ð12Þ

Observed values are selected as candidate matches if the IOU between them and the

predicted values is greater than th. Extracting objects relatively close to the predicted

values significantly reduces the search region and improves the processing efficiency. In

this study, th was set to 0.2.

An image block is extracted with each candidate matched object selected in the pre-

vious step as the center. A deep network is then used to extract the image features. A

response value is subsequently obtained by performing a correlation operation on the

image features and the object filter template corresponding to the predicted value. The
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candidate match with the highest response value is the ultimate match. To correct a

predicted value, the higher predicted value and the highest response value correspond-

ing to the observed value are selected because the peak response value represents the

predicted object confidence, i.e.,

r ¼ rd if grd ≥grp
rp else

�
ð13Þ

where r is the final result, rd is the predicted value, and rp is the observed value.

3.2.3 Tracking of blocked and new objects

An unmatched observed value may be a new object that has entered the field of view

or an object that has been blocked again. To retrack blocked objects, objects that meet

the following conditions are first searched for on the temporary linked list:

(1) An object on the temporary linked list that is located within a circular region with

the observed value as the center and R as the radius.

(2) In a traffic scene, an object will not suddenly change its direction within a short

period of time. The location where an observed value reappears should be in front

of the moving direction of an object on the temporary linked list.

For each object that meets the above conditions, an image block is extracted with its

observed value as the center, and the image features are extracted using a deep net-

work. Then, the PSRs of the feature map and the response map outputted by the object

tracker filter template are calculated. If the PSR of the response map is greater than th,

then the object is the same object that previously disappeared, and the tracker is moved

to the tracking linked list; otherwise, the object is a new object. A new object is located

on the boundary of the monitoring region. As a result, its observed value only contains

part of its information. Using this rectangular box to initialize the tracker will result in

unsteady tracking results. To address the boundary issue, let p(xi, yi) be the location of

the center of an object at the current moment. The distance di (i = 0, 1, 2, and 3) of

Fig. 6 Schematic that depict overlapping observed and predicted values of an object (red box signifies the
predicted value; blue boxes signify the observed values)
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the object from the boundary of the image can be easily calculated. When min({di, i =

0, 1, 2, 3}) > dist, the object has completely entered the monitoring region. Under this

condition, the tracker for this object is initialized. In this study, th for the rematching

blocked objects was set to 6.0.

4 Results and discussion
This section mainly shows a comparative analysis and discussion of the tracking algo-

rithm proposed in this study and the available high-performance CF trackers in terms

of speed and performance based on open datasets to examine the effectiveness of the

proposed algorithm.

4.1 Experimental parameters and dataset

The experiment was conducted on a computer with a Windows 10 operating system,

an Intel Core i7-7700 K quad-core processor, 8 GB of random-access memory, an NVI-

DIA GeForce GTX 1080 graphics card, and 8 GB of video memory. The video object

detection dataset used in the ImageNet Large Scale Visual Recognition Challenge 2015

[34] was used as the experimental training dataset. This dataset contains 3862 training

sequences, 555 validation sets, and 937 training sets. The length of the video sequences

ranges from 56 to 458 frames. During the training process, samples of one object at

two moments were selected from a video sequence to constitute a sample pair. A re-

gion 2.5 times the size of the object was clipped, and the areas beyond the boundary

were filled with zeros. The sample input size was normalized to 75 × 75, and the batch

size was set to 50. A stochastic gradient descent with a momentum of 0.9 was used to

adjust the parameters. The weight decay coefficient and learning efficiency were set to

0.005 and 0.00001, respectively. A total of 20 epochs of iteration were performed. The

number S of the CF scale pyramids was set to 3, and the scale factor a was set to

1.0275.

The test datasets OTB2013 and OTB2015 contain 100 video sequences and addresses

the difficult problems in the visual tracking field, e.g., scale variation, rapid movement,

and motion blur. The OTB standard test platform was used for testing.

4.2 Evaluation metrics dataset

Three indices, namely, one-pass evaluation (OPE), time robustness (TRE), and spatial

robustness (SRE), were used to evaluate the performance of the tracking algorithm.

The average precision and success plots were applied in the quantitative analysis of the

robustness of these indices.

To evaluate the performance of the tracking algorithm, three indices—OPE, TRE,

and SRE—were used for evaluation. In the quantitative analysis of the robustness of

these indices, the average accuracy curve and average success rate curve were used to

describe them.

(1) Average precision plot: precision refers to the percentage of video frames in which

the Euclidean distance between the centers of the tracker-predicted and actual lo-

cations (unit: pixel) is shorter than the given th to all the video frames. A precision

plot is produced by varying th.
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(2) Average success plot: success refers to the percentage of video frames in which the

overlap rate (OR) between the tracker-predicted and actual rectangular location

boxes is greater than th for all the video frames. A success plot is produced by

varying the overlapping ratio th. The area under the success curve (AUC) can

more comprehensively reflect the performance of a tracker. OR is defined as the

ratio of the area of the intersection between the predicted and actual rectangular

boxes to the area of the union between the predicted and actual rectangular boxes.

OR ¼ j rp∩rg j
j rp∪rg j ð14Þ

where rp and rg are the predicted rectangular box and actual rectangular boxes,

respectively.

OPE was used to evaluate the tracking performance. Specifically, only the first frame

was initialized, and then the average precision and success were calculated using the

aforementioned methods. The 2013 and 2015 Online Tracking Benchmark (OTB) data-

sets were selected. These two datasets contain a total of 100 video sequences, covering

11 difficult problems in the visual tracking field, e.g., scale variation, rapid movement,

and motion blur. The OTB standard test platform was used for testing.

4.3 Experimental results and discussion

4.3.1 One pass success rate (OPE)

Figure 7 shows the average success and precision curves for various algorithms with re-

spect to the OTB 2013 and 2015 datasets. In the average success plots, the number

within each pair of square brackets is the AUC value. In the average precision plots,

the number within each pair of square brackets is the average precision for 20 pixels.

The experimental results show that the model designed in this study achieved a preci-

sion similar to that of the deep network–CF-combined trackers (e.g., HCF [27] and

DCFNet [28]). Due to their deep network structure or high dimensionality, these algo-

rithms have relatively low processing speeds but relatively high tracking precision and

are advantageous over CF trackers (e.g., circulant structure kernel (CSK), KCF [6], dis-

criminative scale space tracker (DSST), and Staple tracker) with hand-crafted features

in precision.

4.3.2 TRE

A total of 100 frames are randomly selected from each test sequence as the initial frame

and the initial frame of tracking, which yields the average accuracy and average success

rate, respectively, of the different tracking algorithms.

As shown in Fig. 8, for the OTB2013 dataset, the methods proposed in this paper

rank first among the listed comparison methods in terms of average success rate curve

and average accuracy. In the OTB2015 dataset, the average success rate curve and

ranking of the average accuracy of the proposed method have both decreased but are

comparable to Staple.
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4.3.3 SRE

For each test sequence, the position and size of the initial target box were chan-

ged based on the ground truth. In the setting process of the position deviation, a

rectangular area with a target size of 10% was constructed with the center of the

ground truth as the center, and the spatial position was randomly selected in the

area with a random frequency of 20% of the area size. In the process of setting

the scale change, the scale change should be 0.8, 0.9, 1.1 and 1.2 times the accur-

ate values.

As shown in Fig. 9, for the OTB2013 dataset, when the OR is less than 0.4, the

average success rate of the algorithm in this paper is equal to DCF Net and ranks

second only to the HCF. When the OR is greater than 0.4, the average success

rate of the algorithm in this paper is higher than the rates of other algorithms.

In terms of average accuracy, when the location error threshold is less than 19,

the performance of the algorithm in this paper is in an absolute advantage. When

the location error threshold is less than 19, the performance of the algorithm in

this paper is similar to that of the HCF, which ranks first. In the OTB2015 data-

set, the average success rate and average accuracy of the algorithm proposed in

this paper also decreased but the difference was less than that for the algorithm

that ranked first.

Integrating different datasets, average success rate and average accuracy evalu-

ation indices ensures that the proposed method has a competitive performance.

Fig. 7 Average success and precision curves of various algorithms
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4.3.4 Real-time performance of the algorithm

The main objective of this study is to provide a suitable vehicle tracking algorithm

for real-time multichannel video analysis in intelligent transportation. The real-time

processing performance of the algorithm is important. The timeliness of object

tracking, an important part of a real-time monitoring system, is very important.

Table 1 summarizes the comparison of seven trackers in terms of processing speed.

The comparison data show that the tracker designed in this study notably outper-

forms the deep network–CF-combined trackers in terms of processing speed. The

relative acceleration rate of the proposed algorithm is 150% of that of the original

DCFNet algorithm, and the speed of the proposed algorithm is near 14 times

higher than that of the HCF algorithm. The advantage of the proposed algorithm

can be mainly attributed to the capacity of the lightweight network designed in this

study to learn compact, distinct features.

To comprehensively evaluate the timeliness and tracking precision indices of the

tracking algorithms, a real-time multichannel video analysis application is applied

as an example for comparison. If the real-time video processing requirement for

each channel is 24 FPS, then an average processing speed that is higher than 96

FPS is required for real-time video analysis of four or more channels. The test re-

sults in Table 1 show that three algorithms satisfy this application, namely, CSK,

KCF, and the proposed algorithm. The tracking precision indices shown in Figs. 7,

8, and 9 show that the proposed algorithm in this study is superior to the other

two algorithms.

Fig. 8 Average success and precision curves of various algorithms
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5 Conclusions
In this study, an object tracker–detector combined with an object tracking algorithm was pro-

posed for tracking vehicles in traffic scenes. For object detection, a detection box merge strat-

egy was used to prevent YOLO from detecting an object more than once or partially

detecting an object. For the tracker design, a deep feature-based CF tracker was designed, and

for tracker–detector integration, a tracker was first used to predict the location of an object in

the subsequent frame. The tracking quality was evaluated based on the PSR. For trackers with

relatively poor tracking quality or that have failed to match with the observed values in mul-

tiple consecutive frames, a spatial location constraint was applied to correct the predicted loca-

tions. Objects that failed to be tracked due to blocking were retracted based on the

correlations between the spatial location, moving direction, and historical features. Through

experiments, the proposed multiobject tracking algorithm was found to be capable of steadily

and continuously tracking objects in traffic scenes and retracking blocked objects.

Fig. 9 Average success and precision curves of various algorithms

Table 1 Comparison of various trackers in terms of processing speed

Tracker Source Average processing speed
(frames per second)

HCF European Conference on Computer Vision 2012 269

KCF arXiv 2014 172

DSST British Machine Vision Conference 2015 24

Staple Computer Vision and Pattern Recognition 2016 80

HCF International Conference on Computer Vision 2015 11

DCFNet arXiv 2017 60

Proposed method This study 150
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