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Abstract

The binary coding technique has been widely used in approximate nearest neighbors (ANN) search tasks. Traditional
hashing algorithms treat binary bits equally, which usually causes an ambiguous ranking. To solve this issue, we
propose an innovative bitwise weight method dubbed minimal residual ordinal loss hashing (MROLH). Different from
a two-step mechanism, MROLH simultaneously learns binary codes and bitwise weights by a feedback mechanism.
When the algorithm converges, the binary codes and bitwise weights can be well adaptive to each other. Furthermore,
we establish the ordinal relation preserving constraint based on quartic samples to enhance the power of preserving
relative similarity. To decrease the training complexity, we utilize a tensor ordinal graph to represent quartic ordinal
relation, and the original objective function is approximated by the one based on triplet samples. In this paper, we also
assign different weight values to training samples. During the training procedure, the weight of each data is initialized
to the same value, and we iteratively boost the weight of the data whose relative similarity is not well preserved. As a
result, we can minimize the residual ordinal loss. Experimental results on three large-scale ANN search benchmark
datasets, i.e, SIFTTM, GIST1M, and Cifar10, show that the proposed method MROLH achieves a superior ANN search

performance in both the Hamming space and the weighted Hamming space over the sate-of-the-art approaches.
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1 Introduction

The aim of hashing algorithms [1-6] is to learn the binary
representations of data which can preserve their origi-
nal similarity relationship in the Hamming space. Thus,
hashing algorithms can retrieve the nearest neighbors of
a query data according to Hamming distances. As the
advantageous in storage and computation, hashing algo-
rithms have recently been popular in various computer
vision and artificial intelligence applications, e.g., image
retrieval, object detection, multi-task learning, linear clas-
sifier training, and active learning.

We roughly divide existing hashing algorithms into
either data-independent hashing or data-dependent ones.
The data-independent hashing, such as locality-sensitive
hashing (LSH) [7], randomly generates hashing functions,
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and it typically requires a long binary code or multi-
hash tables to achieve satisfying performance. In contrast,
the data-dependent hashing algorithms, such as BDMFH
[8] and ARE [9], utilize machine learning mechanisms to
learn similarity preserving binary codes. Bidirectional dis-
crete matrix factorization hashing (BDMFH) [8] proposes
to alternate two mutually promoted processes of learn-
ing binary codes from data and recovering data from the
binary codes. To enforce the learned binary codes inher-
iting intrinsic structure from the original data, BDMFH
designs an inverse factorization model. Angular recon-
structive embeddings (ARE) method [9] learns binary
codes by minimizing the reconstruction error between
the cosine similarities computed by the original data and
the binary embeddings. Usually, the data-dependent hash-
ing can obtain an excellent approximate nearest neigh-
bors (ANN) search performance with compact binary
codes. Furthermore, according to the similarity preserv-
ing restriction, the data-dependent hashing can be divided
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into the absolute similarity preserving hashing [10, 11]
and the relative similarity preserving hashing [6, 12]. The
former ones emphasize that the Hamming distances of
similar data pairs should be minimal enough, and they are
proper for the semantic neighbor search task. The relative
similarity preserving hashing demands that the ranking
orders of data in different spaces should be consistent with
each other. Thus, the relative similarity preserving hashing
can achieve a better ANN search performance.

Traditional hashing algorithms treat each binary bit
equally, which would cause an ambiguous ranking. For M-
bit binary codes, there are Cj; kinds of data sharing the
same Hamming distance m to a query sample. To further
explain this phenomenon, we give a simple example as in
Fig. 1.

In Fig. 1, H = {h1(x), ha(x)} represents a set of linear
hashing functions, and it separately maps x1, 3, and x3 to
a 2-bit binary code. If the importance of each binary bit is
considered to be equal, x3 and x3 have the same Hamming
distance to x1. As a result, xo and x3 will be simultane-
ously returned when retrieving the nearest neighbors of
x1 in the Hamming space. However, the similarity degrees
of (x1,x2) and (x1,x3) are different in the Euclidean space.
To avoid such an ambiguous situation, the bitwise weight
methods are proposed to assign different values to each
binary bit. Thus, the similarity degree among the data
pairs with the same Hamming distance can be distin-
guished by the weighted Hamming distances. In Fig. 1,
according to the distribution of the query data x; and
the hashing functions, a larger weight value is assigned
to ha(x). As a result, the weighted Hamming distance of
(x1,%2) is larger than that of (x1,x3). When retrieving the
nearest neighbors of x1, x3 is firstly returned. As described
above, in order to further distinguish the ranking orders
of the data with the same Hamming distance to a query
data, we should take the importance of bits into consid-
eration. However, the bitwise weight methods, such as
QaRank [13, 14], QsRank [15], WhRank [16], and QRank

h,(x)

Fig. 1 The hashing functions H = {h1(x), h»(x)} map the data to 2-bit
binary code. Without considering the importance of binary bits, x,
and x3 share the same Hamming distance to x;
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[17], just focus on learning bitwise weights by a two-step
mechanism. In this setting, these methods firstly gener-
ate binary codes by an existing hashing method (e.g., LSH
[7] and ITQ [10]), then generate bitwise weights accord-
ing to the learnt codes. The two-stage schema causes the
learning process of binary codes and bitwise weights to
separate with each other, and their performances cannot
be iteratively boosted.

In this paper, we propose a novel bitwise weight method
dubbed minimal residual ordinal loss hashing (MROLH)
and the flowchart is shown in Fig. 2. To enhance the
power of preserving relative similarity, we define the ordi-
nal relation preserving objective function based on quartic
samples in (a). In (b), we transform the constraint and
utilize a tensor ordinal graph to decrease the training
time consuming. Unlike most hashing, we simultaneously
learn the relative similarity preserving binary codes and
bitwise weights with a feedback mechanism by steps (c),
(e), and (f). During the iterative training process, we
update the weights of the data whose relative similar-
ity is not well preserved by steps (d) and (g), which can
minimize the residual performance loss. We compare the
proposed MROLH against various state-of-the-art hash-
ing methods on three widely used benchmarks, SIFT1M
[18], GIST1M [19], and Cifar10 [20]. Quantitative exper-
iments demonstrate that our algorithm achieves the best
ANN search performance in both the Hamming space and
the weighted Hamming space.

The main contributions of this paper include:

1. In this paper, both binary codes and bitwise weights
are demanded to preserve the original relative similarity
of training data, and we establish the similarity preserving
constraint based on quartic samples to enhance the power
of preserving ordinal relation.

2. To decrease training time complexity, we embed the
quartic ordinal relationship into a triplet one and utilize a
tensor product graph to approximate the ordinal set.

3. During the iterative training process, we jointly learn
binary codes and bitwise weights by a feedback mecha-
nism to make them well adaptive to each other, and fix
the problem of residual performance loss by boosting the
weights of the data whose ordinal relation is not well
preserved.

The rest of this paper is organized as follows: In
Section 2, we briefly overview the relative similarity pre-
serving hashing and the bitwise weight methods. Section 3
describes the proposed MROLH with three innovation
measures. In Section 4, we show and analyze the com-
parative experiments on three large datasets. Finally, we
conclude this paper in Section 5.

2 Related work
In this paper, we mainly focus on two issues: (a) How
to preserve the original ordinal relation in the Hamming
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Fig. 2 The flowchart of the minimal residual ordinal loss hashing
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space and the weighted Hamming space. (b) How to guar-
antee bitwise weights and binary codes are well adaptive
to each other.

To solve problem (a), we demand binary codes and
bitwise weights to preserve the relative similarity. How-
ever, almost of the existing relative similarity preserving
restrictions are defined based on triplet samples, which
has an inferior ANN search performance. Minimal loss
hashing [21] defines a hing-like loss to penalize the sim-
ilar (dissimilar) data pair with a large (small) Hamming
distance, and it solves this issue by optimizing the convex-
concave upper bound of the objective function using a
perception-like learning procedure. Triplet loss hashing
[22] and listwise supervision hashing [23] directly demand
that the Hamming distance among similar data points
should be minimal than that among dissimilar data points.
Ordinal preserving hashing (OPH) [12] divides all train-
ing data into different clusters, and all cluster centers
are involved in computing the performance loss. How-
ever, OPH demands the distribution of training samples
should be uniform. Ordinal constraint hashing (OCH)
[6] aims to minimize retrieval loss by preserving ordi-
nal relations of ranking tuples in the Hamming space.
As the number of ranking tuples is quadratic or cubic
to the size of the training samples, it is difficult to build
ranking tuples efficiently in a large-scale data set. To fix
the above problem, OCH embeds in which the origi-
nal quartic order relation can hold as the triplet order
relation.

As Hamming distances are discrete integer values, many
data pairs with different binary codes would share the

same distance value which causes their relative simi-
larity relationship hard to distinguish. To fix this issue,
the bitwise weight methods propose to assign different
weight values to each bit. QaRank [13, 14] learns bitwise
weights by minimizing the intra-class distance while pre-
serving the inter-class relationship computed based on
original training samples. The bitwise weights in QsRank
[15] are learned according to the probability of map-
ping training samples to specified codes, and it is well
designed for PCA hashing. WhRank [16] takes the dis-
tribution of query samples into consideration, which can
effectively distinguish the similarity relationship among
data pairs with the same binary codes. The bitwise
weights in QRank [17] relates to the discriminate ability
of hashing functions and the distribution of query data.
Most bitwise weight methods adopt a two-step mech-
anism, which firstly learns binary codes by a hashing
method (such as LSH [7] or ITQ [10]), then generates bit-
wise weights according to the learnt binary codes. As a
result, the retrieval results obtained by weighted Ham-
ming distances cannot further feedback the procedure
of learning binary codes, which causes binary codes and

bitwise weights not well adaptive to each other as in
problem (b).

3 Methods

For x € R? we can map it into M-bit binary code
B {b1,--- ,bp} by the hash functions H(x)
{h1(x),- -+, hp(x)}, and the mth bit b, is calculated as
Dy (x) sgn(f,(x)). In this paper, &, (x) is a linear
function.
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Generally, Hamming distances are utilized to achieve
an ANN search task. But, it usually causes an ambigu-
ous ranking order [15-17]. To avoid this embarrass-
ing situation, we learn the bitwise weights W(x) =
{wi(x), -+ ,war(x)} of data x, and w,,(x) represents the
mth bit weight function.

In this paper, to ensure the hashing functions H(x)
and bitwise weight functions W(x) have an excellent
performance, we propose three innovation measures
which are described in Sections 3.1, 3.2, and 3.3.

3.1 The ordinal relation preserving constraint based on
quartic samples

As discussed in many previous works [6, 12], both the
absolute similarity preserving hashing and the relative
similarity preserving hashing based on triplet samples
have a poor performance in retrieving approximate near-
est neighbors. In contrast, we demand binary codes and
bitwise weights should satisfy the ordinal relation preserv-
ing constraint defined based on quartic samples as in Eq.
(1). It directly maximums the number of the data points
whose ordinal relation is well preserved in set C.

max E

(i %) €C

I(Dy (%, %)) < Dy (xi, %) < Dp(x, %)) (1)

(i, %j, %k, %) are the quartic samples which satisfy the
ordinal relationship defined in the Euclidean space. I(-) is
the judge function. It returns 1, if the condition is satisfied;
otherwise, 0 is returned.

For the problem defined in Eq. (1), the primary question
is how to construct the ordinal relation preserving set C.
Generally, we can establish the set C by collecting simi-
lar data pairs and dissimilar ones. However, it is hard to
define the similarity relationship. To fix this problem, we
adopt a tensor product graph G to represent the ordinal
relationship of quartic samples as below:

G=S®DS (2)

The definition of graph S is shown in Eq. (3), which
utilizes the distance value to indicate the similarity rela-
tionship.

0 i=j

*Hxi*le\% (3)

e 22 otherwise

S@,)) =

DS represents the dissimilar graph, and the value of
DS(i, j) is computed as in Eq. (4).

DS(i,j) =

4
Ny @

® represents the Kronecker product of matrixes, then

G(ij, kl) = S(i,)) - DS(k,1). As a result, the value in G can
represent the similarity relationship of quartic samples as
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in Eq. (5).

{S(i, j) < Sk, G, kl) > 1

SG,j) > Stk 1) GGjkl) <1 (5)

As described above, the ordinal relation preserving set C
can be constructed according to the tensor ordinal graph
G. But, for massive samples, the construction time com-
plexity is relatively higher. So, we further transform the
ordinal relation constraint as shown in Eq. (6).

> 1 (=3 = i — x13)

V(i #x]‘,xk,X[)

2 2
— (1w = %13 = i — 5113 )

. I((xiij—xiTxk>2_<xiTx]-—xiTxl)2> ©)

V(X% %)%k X1)

= Z 1 ((xj — xl)TM(xj — xl)—(xj—xk)TM(xj —xk))
V(xj,xk,xl)
where M = ), xiTxi is a positive semi-definite symmet-
rical matrix. So, it is convenient to use SVD to decompose
into Z € RAva*d guch that M = ZTAZ. Then, a map-
ping function can be defined as u; = Zx; € Rsvd and the
ordinal relation constraint can be written as in Eq. (7).

> 1@ = u" A — u) — 4y~ ) TA) D)

V(u]',uk,ul)

= ¥ (]

V (ujuu)

2
2 2
. (g — wally — Iy — Mk”z))

oo > I(llw— wll3 — llw — will3)

Y ()t gestig)

Finally, the objective function defined in Eq. (8) is uti-
lized to learn binary codes. The set C can be easily
constructed by selecting the elements whose values are
minimal than 1 in G.

min E

(xi,xj,xk)éé

I(Dp (x4, %)) = Dpy (%, %x)) (8)

Similarly, the ordinal relation preserving restriction for
bitwise weights is re-defined as in Eq. (9).

min Z I(Dwr (%, %)) > Dwri (%5, xk)) ©)

(x,',x/,xk) eC

3.2 Minimal residual loss

For traditional algorithms, the weights of samples keep
unchanged during training process. As a result, each hash
function and bitwise weight just try to minimize the per-
formance loss induced by its own, and the residual loss
caused by their former ones are totally ignored. To fix up
the above problem, we propose to iteratively boost the
weights of the data whose similarity relationship is not
well preserved.
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Initially, we set the weight of each data as % (n is the
number of the training samples), and we utilize Eq. (10) to
update their weights during the training process.

T (1) = 715, (i) - BT (10)
Em
1-&,

7). (x;) is the weight of x; for the mth hash function
or bitwise weight function during the rth training proce-
dure. T (x;) returns 0, if the similarity relationship among
x; and its nearest neighbors is preserved; otherwise, 1 is
returned. The definition of £}, is shown in Eq. (12).

B = (11)

n
&, =Y )T (x) (12)
i=1
After introducing the data weights, we separately rede-
fine the objective function for learning hash functions and
bitwise weight functions as in Eqs. (13) and (14). JT}I\?,I(?CL')
is the weight value of the samples when the algorithm
converges.

min E

(xi,xj,xk) € é

min E

(ijxr)€C

7 () - I(Dp (w3, %)) > Dy (xi,5%1)) (13)

N (xi) - I(Dw (%3, %7) > Dywr (a1, %)) (14)

3.3 Joint optimization

To make binary codes and bitwise weights well adaptive to
each other, we propose a joint optimization mechanism,
and the objective function is defined as in Eq. (15). During
the training process, we iteratively optimize the parame-
ters of hash functions and bitwise weight functions.

® = min Z

(xi,%,%k) € c

+ I(Dwr (xi, %) > Dwri (%, %x))]

T ) [ I(Dpy (%1, %7) > Dy (xz, %))

(15)

In this paper, the sign function is utilized to generate
discrete integer values, which makes the objective func-
tion become NP hard problem. To solve this issue, we
adopt tanh(-) to approximate sign(-) function. Then, the
binary code is re-defined as B(x;) = tanh(VTx;). Thus,
we can separately compute the Hamming distance and
the weighted Hamming distance by Egs. (16) and (17).
M is the number of binary bits. © is the bitwise product
operation.

(M —BT () - B(xj))

1 & T( T T (16)
=3 (M— Z [tanh (vmxi) - tanh (vmx])])

N =

Dy (%, %) =
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1 T
Dwn (i) = 5 (M= (Wix) © Bx)” - By))
M
= % (M - mZZI [wm (x;) - tanhT (V,Z;,xi) (17)

tanh (1))

If we define ¢ (¢) and ¢ (¢) as in Egs. (18) and (19), the
objective function can be rewritten as in Eq. (20).

R 1
9 = 1 + exp(Dy (%, %k) — Dpr (%4, %)) (18)
¢ () = . (19)
1+ exp(Dwr (%, xk) — Dwr (%i, %))
©@=min ) w6 @@ +¢@) (20

(eiy %101 €C

When learning the mth hash function during the rth
training procedure, the partial derivation of the objective
function is shown in Eq. (21).

00
5 =2 ¢@0 - ¢@) (%)
ceC
' {[aDH(xi,xk) B aDH(xi:xj):| 1)
AV Vi
N |:8DWH(xi,xk) 3 aDWH(xi,xj)]}
MV Vi

For the parameter v,,, the partial derivation of the
Hamming distance function and the weighted Hamming
distance function can be computed as in Egs. (22) and
(23).

0Dy (xi, %)

Bvm % {xi ~[(1—tanh2 (V,Ex,)) -tanh (Vz,;xl)]:

- - 22)
- [<1  tanh? (v,{,x,)) -tanh (v;xl)] }

D) (1 ()

-tanh (v,z;,x])] !

. [(1 — tanh? (7)) - tanh (vfnxi)]T}

As aresult, the parameter v, can be updated by Eq. (24)
during the rth training procedure.

(23)

Vi =V — N—— (24)

oV
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Table 1 The mAP(%) values of the comparative experimental results in the Cifar10 dataset

NN Bits  MROLH  MROLB  OCH KMH_QRank ~ KMH [TQ_QRank  ITQ_WhRank  ITQ LSH_QRank  LSH_WhRank  LSH
10 32 12.26 12.14 11.61 11.25 8.56 7.25 5.1 4.08 4.15 4.03 2.68
64 17.31 17.26 1695 1637 1159 958 8.01 7.7 8.58 73 583
128 2147 21.35 21.02 2073 1512 1560 13.95 1327 14 9.99 9.36
100 32 12.08 11.97 1138 11.02 8.31 7.04 4.92 3.81 4.02 3.76 247
64 17.05 16.93 1665  16.08 1135 932 7.82 748 8.34 7.18 557
128 21.07 20.98 20.71 2045 1486 1538 13.61 13.04 1375 9.67 9.03

Algorithm 1 Minimal Residual Ordinal Loss Hash
Input: Training data: X; Binary bits: M.

Similarly, for the parameter w,,, the partial derivation of
the objective function is shown in Eq. (25).

90 3 y . 3Dy (i, %, %y %) Output: Hash functions: V' = {v1,---,vy}, Bitwise
P Z P OA—¢ () 7, (%) ™ (25) weights functions: W = {wy,-- -, wyh
" et " 1: Randomly initialize V and W.

2: Generate # training samples {x, ..., x,} using k-means

ODwr (Xis X Xis %) method.

1
—5 tanh(v,Tnxi) 1

oW (26) 3: Initialize the weight of each sample as .
: (tanh (V,{,xk> — tanh (vqu])) 4 form =1:Mdo
5 repeat
During the iterative training procedure, we can compute 6: Compute v, according to Eq. (24).
the value of w,, by Eq. (27). 7 Compute wy, according to Eq. (27).
90 8 update the data weights according to Eq. (10).
Wi = Wiy — A—— (27) 9 until convergence
IWm 10 fori=1:ndo
The iterative process for learning the hash functionsand 11 Assign the weight of x; to 0, , | (%7).
bitwise weight functions which can preserve the ordinal  12: end for
relation is described as in Algorithm 1. 13: end for

4 Results and discussion
In this section, we describe the ANN search comparative
experiments.

4.1 Experimental setting

In this paper, we evaluate the comparative experiments
on three large datasets SIFT1M [18], GIST1M [19], and
Cifar10 [20], which are widely used in ANN search exper-
iments. The SIFT1M dataset contains 1 million SIFT
descriptors [24] with 128 dimensions, and 100,000 of
them are considered as training samples. We also ran-
domly select 10,000 features from SIFT1M dataset as
query samples. In GIST1M dataset, there are 1 million

320-dimensional GIST descriptors [25], and we separately
choose 50,000 and 10,000 data as training and query sam-
ples. The Cifar10 dataset contains 60,000 GIST features
with 320 dimensions, and 50,000 samples are utilized as
training dataset. Correspondingly, the number of query
samples in Cifar10 dataset is 10,000.

The baseline methods include two kinds of algorithms:
the binary code methods and bitwise weight methods.
Locality-sensitive hashing (LSH) [7], iterative quantiza-
tion hashing (ITQ) [10], and k-means hashing (KMH)
[11] can generate the absolute similarity preserving binary
codes. In contrast, ordinal constraint hashing (OCH) [6]

Table 2 The mAP(%) values of the comparative experimental results in the GISTTM dataset

NN Bits MROLH MROLB OCH  KMH_QRank KMH  ITQ_QRank  ITQ_WhRank ITQ  LSH_QRank  LSH_WhRank  LSH
10 32 435 426 403 387 235 242 197 167 133 1.09 0.89
64 823 8.17 764 7.8 442 603 495 326 332 213 1.99
128 1114 11.06 1053 1022 679 875 639 427 683 486 2.75
100 32 398 393 375 361 217 225 1.68 143 108 0.85 067
64 784 7.75 742 685 427 587 471 302 307 1.88 167
128 1053 1048 1027 1003 654 857 6.13 401 658 462 256




Wang et al. EURASIP Journal on Image and Video Processing (2020) 2020:10 Page 7 of 11

Table 3 The mAP(%) values of the comparative experimental results in the SIFTTM dataset

NN Bits MROLH ~ MROLB  OCH KMH_QRank  KMH [TQ_QRank  ITQ_WhRank  ITQ LSH_QRank  LSH_WhRank  LSH

10 32 6.13 6.02 562 5.05 438 499 3.17 3.07 3.74 281 224
64 17.26 1713 16.57 16.21 8.89 15.16 8.86 571 10.22 6.14 544
128 3134 31.06 30.76  20.06 1017 29.86 18.15 794 2515 15.92 747

100 32 5.69 553 537 4.82 3.98 473 2.93 284 348 267 2.03
64 16.72 16.67 1642 16.07 8.76 14.95 8.62 553 10.07 5.94 517
128 30.89 30.75 3048 18.35 892 29.78 17.89 7.75 24.89 15.71 718

aims to preserve the relative similarity in the Hamming
space. QRank [17] and WhRank [16] assign different
weights to each binary bit, which can be applied to further
boost the ANN search performance of the binary code
methods.

We use the criterion of mAP and recall to evaluate
the ANN search performance. As defined in Eq. (28),

recall represents the fraction of the positive data that are
successfully returned. Npositive means the number of the
positive data that are retrieved. Ny is the number of the
true nearest neighbors.

N e
recall = —22ve (28)

all

0.8 4 0.8 4
0.6 4 0.6 4
(1) ?; 9| —m—MROLH E —&— MROLH
& 044 —8—MROLB & 044 —e—MROLB
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The recall criterion cannot exactly express which posi-
tion the ith positive data point locates in. To fix this prob-
lem, the criterion of mAP defined in Eq. (29) is adopted.
Where |Q| represents the number of query samples, K; is
the number of the ith query sample’s ground truth. rank(j)
is the ranking position of the jth true positive sample in
the retrieval results.

1 1Ql Ki

1
mAP = — —
Ql ; Ki

_J
pa= rank(y)

4.2 Experimental results
In this section, the data are separately mapped into 32-
, 64-, and 128-bit binary codes, and their corresponding
bitwise weights are learnt.

The purpose of hashing algorithms is to guarantee the
approximate nearest neighbors’ retrieval results obtained
in the Hamming space are identical to those in the
Euclidean space. Therefore, we consider a data pair’s
Euclidean distance as its true similarity degree, and we
separately define the 10 and 100 samples with smaller
Euclidean distances to a query data as its ground truth in
this paper. We show the experimental results in Tables 1,
2, and 3, and Figs. 3, 4, and 5. In the experimental
results, MROLB represents the retrieval results obtained
according to the binary codes, and MROLH utilizes the
bitwise weights to further improve the ANN search per-
formance of MROLB. From the experimental results, we
know that MROLH and MROLB separately obtains the
best ANN search performance in the Hamming space and
the weighted Hamming space.

LSH [7] randomly generates hashing functions without
training process, and its performance cannot be obviously
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improved with the binary bits increasing. I'TQ [10], KMH
[11], and MROLB utilize a machine learning mechanism
to generate compact binary codes which can achieve sat-
isfying ANN search performance. ITQ [10] maps data
points to the vertices of a hyper cubic. However, the ver-
tices in ITQ [10] are fixed, and the encoding results are
not adaptive to the data distribution. To fix this prob-
lem, KMH [11] learns encoding centers by simultane-
ously minimizing the quantization loss and the similarity
loss. LSH [7], ITQ [10], and KMH [11] belong to the
absolute similarity preserving hashing. In contrast, OCH
[6] establishes an ordinal constraint to preserve the rela-
tive similarity among data points in the Hamming space.
For the above hashing methods, the learning procedure
of each binary bit is independent with each other, and
the residual performance loss accumulated by former bits
cannot be eliminated. To solve this problem, we propose
to iteratively boost the weights of incorrectly encoded

data during training process. Furthermore, we establish
a ordinal relation preserving constraint based on quar-
tic samples, which can obviously enhance the power of
preserving relative similarity.

WhRank [16] can distinguish the similarity degree
among the data pairs which have the same Hamming dis-
tance. Furthermore, the bitwise weights in QRank [17]
and the proposed MROLH are sensitive to query data.
As a result, for the data pairs with the same binary code,

Table 4 Comparison of time consumed (seconds) in the GISTIM
dataset. We utilize 50,000 GIST to train hashing functions, and
map 1 million GIST to 128-bit binary code during the online
encoding procedure

Our method OCH KMH

ITQ LSH WhRank QRank
460 83 81 84
1382 75 2 569

586
1183

Online encoding 8.5 8.0

Offline training 1861 1572
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Table 5 The objective value (x 10%) decreases as the number of iteration increases, and it converges when the number of iteration

reaches 700

[teration number 200 300 400 500

600 700 800 900 1000 1100

® 851.7 5249 3824 2495

2038 193.7 193.2 1935 1933 1934

their similarity degree can be distinguished by QRank
and MROLH. WhRank [16] and QRank [17] demand the
bitwise weights should satisfy the absolute similarity pre-
serving restriction, and utilize fixed binary codes to learn
bitwise weights. Different from WhRank and QRank, we
simultaneously learn the binary codes and bitwise weights
by minimizing the ordinal relation preserving loss. As a
result, MROLH can well preserve the relative similarity
in both the Hamming space and the weighted Hamming
space, and the ANN search performances can be itera-
tively boosted by the feedback mechanism.

4.3 The efficiency and convergence

An excellent hashing method should online encode a raw
data efficiently and has a reasonable offline training time
complexity [10]. Below, we separately discuss the time
complexity of all compared methods.

For online encoding a query data as AM-bit binary
code, our algorithm, LSH [7], ITQ [10], OCH [6], and
WhRank [16] need to compute the sign of the results
projected by M linear functions, and they have the same
time complexity of O(M). Correspondingly, KMH [11]
should compute and compare the distances between
a query data and 2™ centers, and its time complex-
ity is 02M). QRank [17] firstly transforms a query
data into anchor representation and computes its sim-
ilarities to 2™ landmarks in O(r + 2M) and obtains
query-adaptive weights by quadratic programming in
polynomial time. Here, r represents the number of
anchors.

For offline training stage, LSH [7] randomly generates
M linear hashing functions with a constant time. QRank
[17] represents 2Y landmarks using r anchors in O(2Mr).
The time complexity of WhRank [16] is O(Mdk), and
k represents the number of nearest neighbors. ITQ [10]
iteratively optimizes a rotation matrix with a linear time
complexity. In order to decrease training time complexity,
OCH [6] and KMH [11] just select n (n <« N) sam-
ples with d dimensions from all N data to join in their
training procedure. For each iteration, KMH [11] com-
putes and compares the distances between # data points
and 2M centers, and the time complexity is O(2Mnd). In
contrast, the overall training complexity of OCH [6] is
O(tMn®d + nN), and ¢ is the number of iteration. For
our algorithm, the training process includes three stages,
and we separately discuss their time complexity as below:
Firstly, we adopt k-means algorithm to select n centers
from N training samples, which needs to compare the

distance relationship between each training data and all
cluster centers. Therefore, the time complexity of the first
stage is O(Nnd). Secondly, we utilize a gradient descent
algorithm to minimize the performance loss, and the time
complexity mainly depends on the number of training
groups. Initially, a training group contains quartic items,
and its number is #*. Actually, we project the original
set to an approximation ordinal relation set established
based on triplet elements, and the number of training
groups reduces to #>. In addition, to map d dimensional
data to M-bit binary code, the hash functions with Md
parameters are learnt. As a result, the time complexity
of the second stage is O(Mn>d). Thirdly, to minimize the
residual error, we update the weights of # training sam-
ples before learning each hashing function, and the time
complexity of this stage is O(Mn). As described above,
the overall training time complexity of our method is
O(Nnd + Mn3d + Mn).

To validate the above analysis, we separately test the effi-
ciency of online encoding procedure and offline training
process in the GIST1M dataset, and the time consumed is
shown in Table 4.

Generally, we consider an algorithm to have con-
verged when its objective value remains unchanged or
changed a little. In this paper, we define the number
of triplet elements whose ordinal relation is not well
preserved as the objective value ®. We conduct the
convergence experiments in the GIST1M database, and
the number of training samples is 50,000. As shown
in Table 5, the objective value decreases as the iter-
ation number increases. But, it changes a little after
700 iterations, and we consider the algorithm to have
converged.

5 Conclusion

In this paper, we propose a novel hashing algorithm
dubbed minimal residual ordinal loss hashing (MROLH).
Different from tradition hashing algorithms, MROLH
simultaneously learns binary codes and bitwise weights
by a feedback mechanism. When the algorithm con-
verges, the encoding results and bitwise weights are
well adaptive to each other. In this paper, we aim to
preserve the data pairs’ original relative similarity in
both the Hamming space and the weighted Hamming
space. Furthermore, we establish the relative similar-
ity preserving constraint based on quartic samples to
obviously enhance the power of preserving ordinal rela-
tion. During the training process, we iteratively boost
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the weight of the data whose relative similarity is not
preserved. Thus, the residual performance loss can be
minimized during later training procedure. Extensive
experiments on three benchmark datasets demonstrate
that the proposed MROLH is superior to many exist-
ing stat-of-the-art approaches. In the future work, we
will investigate to decrease the probability of an ambigu-
ous ranking occurring at the top position of retrieval
results.
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