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Abstract

Due to various accidents and crime threats to an unspecified number of people, many surveillance technologies
have been studied as an interest in individual security continues to increase throughout society. In particular,
intelligent video surveillance technology is one of the most active research areas in the field of surveillance; this
popularity has been spurred by recent advances in computer vision/image processing and machine learning. The
main goal is to automatically detect, recognize, and analyze objects of interest from collected sensor information
and then efficiently extract/utilize this useful information, such as by detecting abnormal events or intruders and
recognizing objects. Anomalous event detection is a key component of security, and many existing anomaly
detection algorithms rely on a foreground subtraction process to detect changes in the foreground scene. By
comparing input image frames with a reference image, changed areas of the image can be efficiently detected.
However, this technique can be insensitive to static changes and has difficulties in noisy environments since it
depends on a reference image. We propose a new strategy for improved dynamic/static change detection that
complements the weak points of existing detection methods, which have low robustness in noisy environments. To
achieve this goal, we employed a self-organizing map (SOM) for data clustering and regarded the cluster
distribution of neurons, represented by the weight of the optimized SOM, as a directed graph problem. We then
applied the shortest path algorithm to recognize anomalous events. The real-time monitoring capability of the
proposed change detection system was verified by applying it to self-produced test data and the CDnet-2014
dataset. This system showed robustness against noise that was superior to other surveillance systems in various
environments.
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1 Introduction
Governments and institutions are currently paying a
great deal of money to solve and prevent crime and ter-
rorism threats. However, while efforts are being made to
develop surveillance technologies and deploy monitoring
equipment and personnel, the occurrence of safety-re-
lated incidents continues to increase demand for ad-
vanced and efficient equipment to improve safety [1].
For this reason, industries and technologies related to
anomaly detection, including intruder detection, image
change detection, and surveillance systems, are continu-
ously growing. Many of the surveillance systems that are

currently available commercially include analog surveil-
lance systems, based on sensor information such as in-
frared rays and ultrasonic waves, and digital surveillance
systems that are centrally managed through servers
based on similar sensors and CCTV (closed-circuit tele-
vision) image information. However, these monitoring
systems can have significant consequences if a single
misjudgment is made. Therefore, robustness and oper-
ational efficiency in various environmental conditions
are required. Unfortunately, existing commercial moni-
toring systems have some disadvantages.
Sensors used in analog surveillance systems are di-

vided into passive sensors and active sensors. Passive
sensors detect energy emitted from nature and have the
disadvantage of being overly sensitive to heat radiation
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from people, the ambient temperature, and the presence
of the sun. Alternatively, active sensors, which have their
own energy source for illumination, are used to detect
reflected radiation after it is emitted. These have higher
reliability but their performance can be deteriorated de-
pending on the terrain of the installation site. In
addition, a higher energy source is required compared to
passive sensors. Also, as the desired range of illumin-
ation increases, astronomical costs are incurred, which
leads to operational efficiency problems [2, 3]. A digital
surveillance system using an unmanned security system
or CCTV to improve the vulnerability of an analog sur-
veillance system is advantageous in that it is highly effi-
cient and free from restrictions related to the installation
environment, as compared to existing surveillance sys-
tems using a single analog sensor. However, in the case
of a centralized supervisory surveillance system consist-
ing of numerous CCTVs, an administrator is still re-
quired; thus, this setup is still limited in that it relies
heavily on the concentration and judgment of an

administrator; problems related to carelessness or mis-
judgment can still occur [4, 5].
In addition to the aforementioned surveillance sys-

tems, intelligent surveillance systems, which use moni-
toring algorithms rather than simple surveillance based
on video information obtained from CCTVs, have been
attracting attention due to recent advancements in com-
puter vision/image processing and the remarkable devel-
opment of machine learning. The primary role of such a
system is to automatically identify and analyze objects of
interest and efficiently extract and provide interpreta-
tions of scenes, such as abnormal event monitoring, in-
truder detection, and object recognition, from the
collected sensor information. Here, recognition of an ab-
normal event is made by checking the state difference of
an object or phenomenon based on observations over
time [6]. Recognition of objects or events requires vast
amounts of information that span multiple areas of
space and time, and most recognition methods rely on
an image subtraction process that detects changes from
foreground scenes. Another way to effectively recognize
and classify objects is based on machine learning algo-
rithms, such as convolutional neural networks (CNNs)
and support vector machines (SVMs) [7–9]. The tech-
nologies applied to intelligent surveillance systems allow
for very good active judgment and cognitive ability com-
pared to existing surveillance techniques.
Anomalous change detection for the implementation of

intelligent surveillance systems is one of the most challen-
ging and long-standing tasks in computer vision [10, 11].
Various simple methods for the implementation of intelli-
gent surveillance systems have been proposed to detect
changes in an image. These include using global illumin-
ation based on a single grayscale/color image without a
moving object and using a median filter based on a tem-
poral image filter [12, 13]. The use of Gaussian mixture
models (e.g., WrenGA and Grimson GMM [14, 15]) has
been proposed to describe the background of animated

Fig. 1 Lattice structure of the SOM

Fig. 2 Change detection process of the proposed CDAS framework
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textures, and a high-performance background subtraction
algorithm using a deep convolution network (e.g., FeSeg-
Net and DeepBS [16, 17]) has also been proposed recently.
These intelligent surveillance methods provide better per-
formance than analog/digital surveillance systems, but
there are still some drawbacks. Methods based on image
subtraction are relatively simple to implement but very
susceptible to abnormal situations, such as static/dynamic
changes, image brightness changes, and noise, because
they depend on a reference image [18–20]. Alternatively,
for machine learning-based detection algorithms, high-
performance hardware is required due to the demand for
high levels of computation ability in the learning process,
and a vast amount and wide variety of data learning pro-
cesses are also involved [21–23]. In addition, it is difficult
to detect static abnormalities when tracking a moving ob-
ject based on pixel changes, and this technique may be
vulnerable when there is noise or a change in shading. An
intelligent surveillance system guarantees superior surveil-
lance performance; however, because it requires a lot of

time and cost for operation, the availability and efficiency
in various fields are limited and commercialization has
progressed slowly.
In this paper, we propose a new intelligent anomaly

detection system to complement the low robustness of
existing surveillance systems for detecting static anomal-
ies in various environments. Our proposed system also
addresses cost-efficiency problems. To achieve this, we
consider a clustering method that can learn the topology
and distribution of the input, exhibit robustness to noise,
and classify the entire scene as an attribute. To imple-
ment the proposed change detection architecture, we
employ a representative data-clustering technique, i.e., a
self-organizing map (SOM); SOMs have been applied in
various fields, such as data visualization, process moni-
toring, and data analysis [24, 25]. After training the
SOM, we classify abnormalities by analyzing the cluster
distribution of the neurons, which are represented by
the connection weights, of the optimized SOM. The
weights associated with neurons are regarded as

Table 1 Sample images classified into three levels

Training dataset
(scenario)

Level Class 1 (normal) Class 2 (static abnormal) Class 3 (dynamic abnormal)

Negative Positive Positive

No people Little movement of objects or people Objects or people moving constantly

Fig. 3 Performance comparison for choosing the optimal CDAS parameters in terms of (a) PWC and (b) MR
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directional graph problems, and the shortest path algo-
rithm is applied to determine the abnormality. In the
test phase, the proposed algorithm finds the winner
neuron in the image that has been newly input to the
SOM and searches for the neuron class located in the
shortest path to determine whether anomalies are de-
tected based on dynamic environmental changes.
We confirmed the real-time monitoring capability of the

proposed change detection system by using self-produced
test data in an indoor environment. We also used the
CDnet-2014 dataset, which is a change detection bench-
mark dataset. This system showed superior robustness in
various environments, compared with other surveillance
systems. Therefore, we expect that the proposed system
can be used for practical applications [26].

2 Methods
2.1 Training of the SOM for image clustering
Self-organizing maps (SOMs) are unsupervised data clus-
tering algorithms inspired by human cognitive processes
and neurological conditions. They have been applied in
various fields along with the development of data cluster-
ing techniques [27–29]. The SOM is characterized by car-
rying out dimension reduction of high-dimensional input
vectors and data clustering simultaneously. This is done
through the winner-take-all learning mechanism and
visualization in a two-dimensional form by extracting fea-
ture points of complex and non-linear data [30]. Gener-
ally, the SOM is composed of a two-dimensional lattice
structure, and each neuron on the grid consists of a
weight vector. The Euclidean distance between neurons i

and i′, which are the positions of neurons ðri1; ri2Þ and ðri01 ;
ri

0

2 Þ, respectively, is given by Eq. (1).
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Each neuron i is connected to a prototype weight vec-
tor Wi = {wi1,…,wid}, which represents a cluster of input
vectors. Here, d is the dimension of the input vectors,
and the number of neurons on the lattice can be struc-
turally extended by several hundred (or more) depending
on the complexity of the data [31, 32]. The lattice struc-
ture of the SOM is shown in Fig. 1. Here, the input vec-
tor is rearranged as a one-dimensional vector X ∈ ℝd × 1,
compressed into a single gray point, and normalized
from the RGB image data (Nrow ×Ncol pixels) collected
from the surveillance camera.
The learning of the SOM proceeds in an iterative way

in the direction of optimizing the connection strength
with the neurons. The topological distance between the
input vector X and the weight vector Wi of each neuron
is obtained in each epoch t. At this instance, the neuron
closest to the input vector is the winning neuron, which
is also defined as the best matching unit (BMU). This is
selected through the competitive learning process, as de-
scribed in Eq. (2) [33].

BMU Xð Þ ¼ argmin
i∈ 1;…;Kf g

‖X−Wi tð Þ‖ ð2Þ

Then, all the weight vectors around the BMU are ad-
justed for i ∈ {1,…, K} as follows:

Wi tþ 1ð Þ ¼ Wi tð Þ
þ τ tð ÞδBMU Xð Þ;i X−WBMU Xð Þ tð Þ� � ð3Þ

Here, τ(t) is a decaying learning rate that determines
the learning speed. Additionally, δ(BMU(X), i), which is de-
fined as a neighborhood function, adjusts the connection

Table 2 Comparison results with the hand-labeled dataset

Method Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

FNR 0.024 0.000 0.031 0.074 0.086 0.013 0.010

FPR 0.813 0.034 0.706 0.812 0.719 0.000 0.000

PWC (%) 33.751 0.316 19.409 17.693 16.848 0.422 0.331

FAR (%) 10.000 0.000 22.913 64.214 68.823 2.432 3.534

MR (%) 31.274 0.344 19.108 14.243 13.753 0.010 0.000

Table 3 Comparison results with the hand-labeled dataset in a noisy environment

Method Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

FNR 0.043 0.056 0.064 0.036 0.034 0.024 0.000

FPR 0.823 0.047 0.672 0.796 0.794 0.831 0.163

PWC (%) 42.891 5.023 13.520 30.894 30.184 38.540 7.995

FAR (%) 28.530 51.478 56.184 21.766 22.214 31.253 0.000

MR (%) 33.351 0.186 9.076 31.94 31.85 10.150 8.834
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strength with neighborhood neurons around the BMU
into a concave Gaussian filter-type scalar, as described
in Eq. (4).

δBMU Xð Þ;i ¼ exp −
dist i;BMUð Þ2

2σ2 tð Þ

 !
ð4Þ

Here, σ2(t) is the decaying variance representing the
radius of the neighborhood function. As a result, the
SOM is optimized by adjusting the connection strength
around the BMU and its neighbors through the competi-
tive learning between the input vector and the neuron.

2.2 Image change detection based on the SOM
By using this learning mechanism and assigning a
class to the two-dimensional lattice structure based
on the clusters of neurons, classification and predic-
tion problems can be solved by the competing
process of new inputs [34–36]. Considering this, the
proposed change detection architecture based on the
SOM (referred to as CDAS) learns the image data
collected from the surveillance camera based on the
SOM and assigns classes to the cluster characteris-
tics of optimized neurons. Next, the BMU is ob-
tained through the input of the image propagated in
real-time, and the neuron closest to the BMU is de-
fined as the nearest neighbor (NN). To account for
the cluster distribution characteristics of the opti-
mized grid structure, the mutual distance to the
BMU is regarded as the shortest path search prob-
lem. This uses the weighted directed graph based on
the connection strength with neighbors, as defined

in the unified distance matrix (U-Matrix), which is a
visualization technique used with SOMs [37].
Consider a directed graph G = (A, E) consisting of a

finite set of nodes (the position of neurons) A ∈ {1,…,
K} and E, denoting a set of mij directed edges, which
represent the connection strength of a neighboring
neuron pair (i, j) based on the U-Matrix. Additionally,
two nodes, i.e., an origin node (BMU) s ∈ A and a
destination node (target) t ∈ A, which represents neu-
rons containing class information, are specified. Then,
the shortest path problem SPs→ t is applied to find
the path with the minimum total distance from s to t,
as described in Eq. (5) [38, 39].

SPs→t ¼ min
X
i; jð Þ∈A

mij dist i; jð Þð Þ ð5Þ

The distance between the finally obtained BMU and
the neuron cluster is obtained by calculating SPs→ t, and
the detection of the image change can be found through
the class information of the SOM. This makes it possible
to reduce the error probability of anomaly detection that
occurs in existing anomaly detection schemes. We can
construct a real-time anomaly detection system with im-
proved monitoring robustness and efficiency in a noisy
environment. Figure 2 illustrates the change detection
process of the proposed CDAS. In summary, the pro-
posed CDAS reduces the detection error probability in a
real operating environment. It can be operated at a rela-
tively low cost and improve the robustness and efficiency
compared to conventional surveillance systems.

Table 4 Comparison results with the hand-labeled dataset when the brightness changes

Method Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

FNR 0.084 0.043 0.087 0.063 0.068 0.043 0.000

FPR 0.895 0.037 0.788 0.724 0.716 0.823 0.289

PWC (%) 44.723 4.164 15.790 20.186 21.013 29.531 3.694

FAR (%) 48.244 42.659 74.126 17.689 16.871 24.584 2.065

MR (%) 44.366 0.158 9.723 28.847 27.980 7.244 3.861

Table 5 Sample images classified into two levels

Training dataset (Scenario)

Level Class 1 (normal) Class 3 (dynamic abnormal)

Negative Positive

No Change Objects or people moving constantly
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3 Results and discussion
In order to evaluate the capability of the proposed
CDAS, anomaly detection tests were conducted based
on two datasets: hand-labeled data for an indoor envir-
onment and the public CDnet-2014 (change detection)
benchmark dataset. It has been confirmed that the static
abnormal condition can be detected by the CDAS. It
also operates normally, even in the presence of noise.
Qualitative results and future directions are discussed
below.

3.1 Performance evaluation with the hand-labeled dataset
First, data in an indoor office environment, which are
generally applicable to various indoor and outdoor envi-
ronments requiring surveillance, were produced and
tested to evaluate the proposed surveillance system. A
total of 3600 images were captured at a resolution of
1280 × 720 and 30 frame/s using a Logitech HD webcam
in an indoor space (8 m × 6 m). The collected video im-
ages were classified as one of three image change detec-
tion levels depending on static changes, such as a door
opening/closing, the number of subjects present in the
image, and the degree of motion. The levels include the
normal state with no motion (negative/class 1), a static
abnormal state with minimal static environment change
(positive/class 2), and a dynamic abnormal state with a
large dynamic change (positive/class 3). Examples of im-
ages from the indoor office environment, classified into
these three levels are illustrated in Table 1.
For training the SOM, we randomly extracted 120 im-

ages from the 3600 single images that were collected.
Performance evaluation was carried out using four video
scenarios, which contained all classes with various static
and dynamic changes, in order to avoid the possibility of
duplication with learning data. We also evaluated the ro-
bustness of surveillance on continuous images. The de-
tection of change, which can be interpreted as a binary
classification, is regarded as a classification problem by

determining a normal state (negative = 0) in which there
is no change and an abnormal state (positive = 1) in
which a change in the static or dynamic environment is
detected. For this binary classifier problem, we have con-
sidered the binary classification performance metrics,
listed in Eq. (6)–(10), as recommended in the CDnet-
2014 motion detection benchmark; they are false nega-
tive rate (FNR), false positive rate (FPR), percentage of
wrong classification (PWC), false alarm rate (FAR), and
missing rate (MR).

FNR ¼ FN
TPþ FN

ð6Þ

FPR ¼ FP
FPþ TN

ð7Þ

PWC ¼ FNþ FP
TPþ FPþ FNþ TN

� 100 ð8Þ

FAR ¼ FN
FNþ TN

� 100 ð9Þ

MR ¼ FP
TPþ FP

� 100 ð10Þ

Here, FN is the number of false negatives, TN is the
number of true negatives, FP is the number of false posi-
tives, and TP is the number of true positives. Note that
because the goal of our task is global anomaly detection,
the performance metrics listed above are calculated at
the frame level, not at each pixel level so that it is con-
sidered a frame with abnormal changes if the percentage
of changed pixels is higher than 10% of the total.
Because of the complexity and diversity related to the

dimensions of the input data, it is necessary to derive
the optimal value of the parameters of the proposed de-
tection system based on strategic learning in order to
obtain the optimal performance. Factors influencing the
proposed system performance are related to preprocess-
ing, such as size adjustment and normalization of the

Table 6 Comparisons of FNR of the competing methods over tested scenarios

Scenario Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

Office 0.071 0.013 0.038 0.136 0.109 0.014 0.023

Fall 0.878 0.858 0.903 0.866 0.897 0.658 0.650

Traffic 0.711 0.353 0.409 0.401 0.200 0.198 0.137

Over pass 0.613 0.606 0.679 0.508 0.497 0.181 0.412

Table 7 Comparisons of FPR of the competing methods over tested scenarios

Scenario Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

Office 0.033 0.000 0.000 0.028 0.014 0.000 0.000

Fall 0.097 0.066 0.081 0.042 0.025 0.008 0.115

Traffic 0.083 0.135 0.174 0.055 0.060 0.071 0.070

Over pass 0.002 0.010 0.035 0.029 0.033 0.016 0.003
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input image, as well as the density of the two-dimen-
sional lattice structure composed of neurons, i.e., the
size of the SOM. To optimize the proposed CDAS, we
compared the change detection performance in terms of
the PWC and MR values while varying the size of the
SOM and the size of the input image; these results are
shown in Fig. 3. The same data and parameters of τ(t)
and σ2(t) were used for SOM learning. When changing
the size of the image data, the PWC and MR values
remained relatively low, regardless of the grid size of the
SOM when using a half-compressed image. The highest
performance was achieved with a grid size of 5 × 5; thus,
this was selected for future tests.
To evaluate the CDAS, after optimization via learning,

we adopted detection techniques that have been widely
used for change detection and require relatively small
computation. We employed the frame difference (Frame
Diff) scheme, which tracks movement by looking at the
difference between the current image and the previous
one [40]; a median filter (MF), which detects objects
through filter-based background removal [32]; a global
illumination (Global Ilu) algorithm, which removes
backgrounds from pre-trained images [41]; the Gaussian
mixture model that uses two mixture of Gaussians,
Grimson GMM [15]; and the Gaussian mixture model
containing a non-fixed number of Gaussian models, Ziv-
kovic GMM [42]. Additionally, an artificial neural net-
work-based change detection methodology named
spatially coherent self-organizing background subtrac-
tion (SC-SOBS) [43] was also considered. All of the de-
tection techniques used in this comparative study are
methods for removing the background and tracking an
object. If the number of detected pixels is above a
certain detection threshold, the result is determined as
being normal or abnormal; Table 2 shows these results.
In the table, the proposed change detection scheme
showed good performance over the entire test image re-
gardless of the degree of abnormality. Although the FNR

values were low for all of the detection techniques used
in the performance comparison tests, the Frame Diff,
MF, and GMM-based methods showed inferior perform-
ance for all of the other measures. The high FNR values
indicate relatively low detection performance in the clas-
ses 1 and 2 test images in terms of the dynamic vari-
ation. Additionally, although the PWC and FAR values
of the proposed CDAS are higher than the results by the
Global Ilu, this difference is negligible.
Additional experiments were conducted to evaluate the

robustness of the proposed system in a noisy environ-
ment. Additive white Gaussian noise (AWGN), which can
occur during various processes (e.g., image signal process-
ing, data transmission, and storage), with zero mean and
unit variance scaled by 0.2 is applied to the image to
evaluate performance. In addition, we assessed the robust-
ness of the proposed system to light noise by also adding a
value, which is generated randomly in the range from − 75
to 75, for the entire pixel of the original image, taking into
consideration of the change in brightness of the surround-
ings due to the monitoring environment and weather con-
ditions. These results are shown in Tables 3 and 4. For the
conventional detection methods we considered, including
Frame Diff, MF, GMM-based methods, and SC-SOBS, the
degree of change in the image due to noise was too fre-
quent, and the calculated measures were over the upper
limits, causing the PWC, FAL(R), and MR values to be-
come large. These existing methods are inappropriate for
the detection of image changes in noisy environments.
The CDAS showed the PWC and MR values that were
somewhat higher than the Global Ilu method, which was
due to the degradation of noise immunity in some test in-
tervals. However, the CDAS showed a FAR value of 0%,
while Global Ilu and SC-SOBS exceeded 40% and 20%, re-
spectively, proving the relative noise robustness of the
CDAS.
Overall, these results demonstrate the outstanding

scalability of the CDAS and its overwhelmingly positive

Table 8 Comparisons of PWC of the competing methods over tested scenarios

Scenario Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

Office 3.851 0.084 0.936 2.368 1.987 0.134 0.530

Fall 31.075 28.272 30.575 26.625 26.321 24.458 37.063

Traffic 64.677 49.032 45.645 30.161 28.709 29.244 24.171

Over pass 13.200 13.633 17.241 13.233 13.133 8.338 11.284

Table 9 Comparisons of FAR of the competing methods over tested scenarios

Scenario Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

Office 6.841 0.000 0.000 3.160 2.284 8.331 0.000

Fall 26.765 25.664 27.014 25.433 25.688 27.516 34.651

Traffic 77.641 84.408 70.817 66.671 56.250 31.412 47.260

Over pass 14.223 14.138 15.960 12.742 12.178 11.207 9.124
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performance in a noisy environment. The immunity to
noise of a surveillance system is one of the most import-
ant factors because a single error can lead to failure of
the system.

3.2 Performance evaluation with the CDnet-2014 dataset
We used the ChangeDetection.net (CDnet-2014) dataset
to validate the performance of the CDAS, which was de-
signed as a binary classifier, in a wider variety of envi-
ronments (e.g., office, environment in dynamic
background, camera jitter), as shown in Table 5. The
dataset consists of 2050 image frames (360 × 240 reso-
lution) collected at a speed of 17 frames/s. The ground
truth label was regarded as a binary classification prob-
lem consisting only of class 1 (normal) and class 3 (dy-
namic abnormal) conditions. After labeling the images
corresponding to each sequence, 10% of the total data
was used for learning and 90% was used for evaluation.
The optimal parameter values of the CDAS were de-

rived as 0.5 and 5 × 5 for the image scale and the size of
the SOM through learning. Performance testing of the
CDAS was carried out in various environments and was
compared with conventional change detection algo-
rithms. The same performance metrics used in the pre-
vious section were used. As shown in Tables 6, 7, 8, 9,
and 10, the CDAS showed good performance, similar to
the results observed in the previous section, for all of the
evaluation metrics. In particular, it demonstrated super-
ior performance compared to existing Frame Diff, Global
Ilu, and GMM-based methods, and is similar to SC-
SOBS in scenarios of “fall,” “traffic,” and “over pass” with
dynamic background or camera jitter noise. It was very
similar to the Global Ilu and MF results in the case of
“office” scenario, with very small performance differ-
ences. In addition, since the data used for the test did
not include the class 2 level, both the Frame Diff and

GMM-based methods, which were relatively weak in
static abnormal conditions, showed low PWC and MR
values of higher than 30%.
As seen in Tables 11 and 12, which show the results

for the robustness evaluation in environments where
white noise is added or a brightness change exists, excel-
lent change detection performance of the proposed tech-
nique is confirmed, as compared with the conventional
methods. Regardless of the type of noise, the PWC, FAR,
and MR values of the conventional methods were greatly
increased, and the overall detection performance was
significantly degraded. The Global Ilu, Frame Diff, SC-
SOBS, and GMM methods, which showed excellent per-
formance in a noise-free environment, had FAR values
exceeding 90% in a noisy environment and were unable
to detect a normal condition. In an additional test in a
noisy environment, which was made by varying the ir-
regular brightness, the conventional detection tech-
niques once again showed large FAR and MR values,
confirming their weakness to noise. In the case of the
proposed CDAS, the PWC, FAR, and MR values in all
noisy environments are similar to the results in a noise-
free environment, indicating excellent robustness to
noise and confirming that the change detection capabil-
ity is maintained despite the presence of interference.
Figure 4 compares the performance of the proposed

method with those of conventional detection tech-
niques depending on the degree of image change
using the CDnet-2014 “office” dataset. It also depicts
some of the change detection results in the noisy en-
vironment and includes the original image. The
CDAS demonstrated excellent change detection
performance and can distinguish any of the classes
existing in the video. Unlike the other algorithms,
which cannot detect a variation due to their low
noise robustness when white noise is added or

Table 10 Comparisons of MR of the competing methods over tested scenarios

Scenario Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

Office 2.660 0.157 1.328 2.481 2.144 0.000 0.751

Fall 68.105 55.587 69.616 44.578 39.459 3.866 7.880

Traffic 39.906 33.871 27.823 28.282 27.980 18.271 17.552

Over pass 3.992 9.025 28.919 18.836 19.395 2.798 1.247

Table 11 Comparison results with the CDnet-2014 “office” dataset in a noisy environment

Frame Diff Global Ilu MF Grimson GMM Zivkovic GMM SC-SOBS CDAS

FNR 0.293 0.221 0.018 0.223 0.241 0.101 0.008

FPR 0.025 0.000 0.036 0.374 0.365 0.667 0.020

PWC (%) 28.531 20.198 1.361 20.384 20.176 10.954 0.580

FAR (%) 97.000 70.700 2.205 71.745 72.923 95.384 0.000

MR (%) 0.784 0.000 1.023 5.584 5.264 1.079 0.795
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brightness changes exist, the CDAS maintained its
high-detection performance without performance deg-
radation over the entire range. This confirms the out-
standing ability of the proposed CDAS and its very
high robustness in noisy environments.

4 Conclusion
In this paper, we proposed a real-time intelligent surveil-
lance system, i.e., a SOM-based image change detection
technique, to overcome problems related to low noise
robustness and operational cost-efficiency, which are

Table 12 Comparison results with the CDnet-2014 “office” dataset when the brightness changes

Frame
Diff

Global
Ilu

MF Grimson
GMM

Zivkovic
GMM

SC-SOBS CDAS

FNR 0.248 0.105 0.134 0.013 0.013 0.005 0.000

FPR 0.635 0.019 0.040 0.0442 0.048 0.988 0.002

PWC (%) 38.295 7.513 11.518 22.768 23.225 39.293 0.577

FAR (%) 50.945 26.357 38.121 2.986 2.718 36.363 0.000

MR (%) 33.241 0.015 0.908 34.131 33.416 39.315 0.774

(a) (b) (c)
Fig. 4 Performance comparisons with the CDnet-2014 dataset with the CDAS and other surveillance systems. (a) In a noise-free environment. (b)
In the presence of noise. (c) When the brightness changes, the pictures on the top are sample images of an “office” scenario
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inherent in existing video surveillance systems. The pro-
posed detection method was optimized via clustering
through the competitive learning process of the SOM.
Then, classes were assigned according to the cluster
characteristics of neurons in a two-dimensional lattice
structure. The similarity between image data (input in
real-time) and the optimized neuron was checked. We
classified and predicted the class of the nearest neighbor
neurons based on a weighted directed graph, and finally
determined the change of the image based on the class
information of the classified winner neuron, i.e., BMU.
In order to verify the superiority of the proposed system,
we conducted comparative tests with other detection
methods using both a hand-labeled dataset with various
environmental changes and the CDnet-2014 dataset. We
successfully demonstrated that our method is suitable
for image change detection. In particular, the ability to
detect static anomalies (object movement or on-screen
placement changes) and maintain monitoring in noisy
environments, which are critical to surveillance systems,
was proven to be better than other change detection sys-
tems. The proposed system can be applied in various in-
dustrial environments, including indoor and outdoor
monitoring. Additionally, it can become a more general-
ized anomaly monitoring system through the develop-
ment of learning reinforcement techniques to further
improve robustness in the future.

Abbreviations
CCTV: Closed-circuit television; CDAS: Change Detection Architecture based
on SOM; CNN: Convolution neural network; FAR: False alarm rate; FNR: False
negative rate; FPR: False positive rate; GMM: Gaussian mixture model;
MF: Median filter; MR: Missing rate; NN: Nearest neighbor; PWC: Percentage
of wrong classification; SOM: Self-organizing map; SVM: Support vector
machine; U-Matrix: Unified distance matrix

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful
comments and valuable suggestions.

Author’s contributions
All authors took part in the discussion of the work described in this paper.
All authors read and approved the final manuscript.

Funding
This work was supported by a National Research Foundation of Korea (NRF)
grant funded by the Korea government (MOE) (no. 2018R1D1A3B07041729)
and the Soonchunhyang University Research Fund.

Availability of data and materials
Please contact the corresponding author for data requests.

Competing interests
The authors declare that they have no competing interests.

Received: 7 March 2019 Accepted: 12 August 2019

References
1. Wang, M. L., Huang, C. C., & Lin, H. Y. (2006, June). An intelligent surveillance

system based on an omnidirectional vision sensor. In 2006 IEEE Conference
on Cybernetics and Intelligent Systems (pp. 1-6). IEEE.

2. M. Valera, S.A. Velastin, Intelligent distributed surveillance systems: a review.
IEE Proceedings-Vision, Image and Signal Processing 152(2), 192–204 (2005)

3. F. Ortega-Zamorano, M.A. Molina-Cabello, E. López-Rubio, E.J. Palomo, Smart
motion detection sensor based on video processing using self-organizing
maps. Expert Systems with Applications 64, 476–489 (2016)

4. B. Sun, S. Velastin, Fusing visual and audio information in a distributed
intelligent surveillance system for public transport systems. Acta Autom. Sin
20(3), 393–407 (2003)

5. Tao, J., Turjo, M., Wong, M. F., Wang, M., & Tan, Y. P. (2005, December). Fall
incidents detection for intelligent video surveillance. In 2005 5th
International Conference on Information Communications & Signal
Processing (pp. 1590-1594). IEEE.

6. A. Singh, Digital change detection techniques using remotely sensed data.
International Journal of Remote Sensing. 10(6), 898–1003 (1988)

7. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K., & Davis, L. S. (2016).
Learning temporal regularity in video sequences. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 733-742).

8. Xu, D., Ricci, E., Yan, Y., Song, J., & Sebe, N. (2015). Learning deep
representations of appearance and motion for anomalous event detection.
arXiv preprint arXiv:1510.01553.

9. Malisiewicz, T., Gupta, A., & Efros, A. A. (2011, November). Ensemble of
exemplar-SVMs for object detection and beyond. In Iccv (Vol. 1, No. 2, p. 6).

10. Cui, X., Liu, Q., Gao, M., & Metaxas, D. N. (2011, June). Abnormal detection
using interaction energy potentials. In CVPR 2011 (pp. 3161-3167). IEEE.

11. Leo M., Furnari A., Medioni G.G., Trivedi M., Farinella G.M. (2019) Deep
learning for assistive computer vision. In: Leal-Taixé L., Roth S. (eds)
Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in
Computer Science, vol 11134. Springer, Cham

12. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, et al.,
Interpreting patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation. Proceedings of
the National Academy of Sciences 96(6), 2907–2912 (1999)

13. S.V. Verdú, M.O. Garcia, C. Senabre, A.G. Marin, F.G. Franco, Classification,
filtering, and identification of electrical customer load patterns through the
use of self-organizing maps. IEEE Transactions on Power Systems 21(4),
1672–1682 (2006)

14. C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland, Pfinder: real-time
tracking of the human body. IEEE Transactions on pattern analysis and
machine intelligence 19(7), 780–785 (1997)

15. Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models
for real-time tracking. In Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)
(Vol. 2, pp. 246-252). IEEE.

16. M. Babaee, D.T. Dinh, G. Rigoll, A deep convolutional neural network for video
sequence background subtraction. Pattern Recognition 76, 635–649 (2018)

17. L.A. Lim, H.Y. Keles, Foreground segmentation using convolutional neural
networks for multiscale feature encoding. Pattern Recognition Letters 112,
256–262 (2018)

18. D. Vallejo, F.J. Villanueva, J.A. Albusac, C. Glez-Morcillo, J.J. Castro-Schez,
Intelligent surveillance for understanding events in urban traffic
environments. International Journal of Distributed Sensor Networks 10(8),
723819 (2014)

19. M. Al-Nawashi, O.M. Al-Hazaimeh, M. Saraee, A novel framework for
intelligent surveillance system based on abnormal human activity
detection in academic environments. Neural Computing and
Applications 28(1), 565–572 (2017)

20. D. Murray, A. Basu, Motion tracking with an active camera. IEEE transactions
on pattern analysis and machine intelligence 16(5), 449–459 (1994)

21. M.J. Roshtkhari, M.D. Levine, An on-line, real-time learning method for
detecting anomalies in videos using spatio-temporal compositions.
Computer vision and image understanding 117(10), 1436–1452 (2013)

22. Sultani, W., Chen, C., & Shah, M. (2018). Real-world anomaly detection in
surveillance videos. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 6479-6488).

23. Gordo, A., Almazán, J., Revaud, J., & Larlus, D. (2016, October). Deep image
retrieval: Learning global representations for image search. In European
conference on computer vision (pp. 241-257). Springer, Cham.

24. L. Peeters, F. Bacao, V. Lobo, A. Dassargues, Exploratory data analysis and
clustering of multivariate spatial hydrogeological data by means of
GEO3DSOM, a variant of Kohonen's Self-Organizing Map. Hydrology and
Earth System Sciences 11, 1309-1321 (2007)

KIM and CHO EURASIP Journal on Image and Video Processing         (2019) 2019:76 Page 10 of 11



25. P. Stefanovic, O. Kurasova, Visual analysis of self-organizing maps. Nonlinear
Analysis: Modeling and Control 16(4), 488-504 (2011)

26. Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014).
CDnet 2014: an expanded change detection benchmark dataset. In
Proceedings of the IEEE conference on computer vision and pattern
recognition workshops (pp. 387-394).

27. M.L. Shahreza, D. Moazzami, B. Moshiri, M.R. Delavar, Anomaly detection
using a self-organizing map and particle swarm optimization. Scientia
Iranica 18(6), 1460–1468 (2011)

28. R. Xiao, R. Cui, M. Lin, L. Chen, Y. Ni, X. Lin, SOMDNCD: image change
detection based on self-organizing maps and deep neural networks. IEEE
Access 6, 35915–35925 (2018)

29. Tian, J., Azarian, M. H., & Pecht, M. (2014, July). Anomaly detection using self-
organizing maps-based k-nearest neighbor algorithm. In Proceedings of the
European Conference of the Prognostics and Health Management Society.

30. Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer
Science & Business Media.

31. Cohen, I., & Medioni, G. (1999, June). Detecting and tracking moving objects
for video surveillance. In cvpr (p. 2319). IEEE.

32. Z. Zivkovic, F. Van Der Heijden, Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern recognition
letters 27(7), 773–780 (2006)

33. P. Törönen, M. Kolehmainen, G. Wong, E. Castrén, Analysis of gene
expression data using self-organizing maps. FEBS letters 451(2), 142–146
(1999)

34. R. Dlugosz, T. Talaska, W. Pedrycz, R. Wojtyna, Realization of the conscience
mechanism in CMOS implementation of winner-takes-all self-organizing neural
networks. IEEE Transactions on Neural Networks 21(6), 961–971 (2010)

35. T. Russo, P. Carpentieri, F. Fiorentino, E. Arneri, M. Scardi, A. Cioffi, S. Cataudella,
Modeling landings profiles of fishing vessels: An application of Self-Organizing
Maps to VMS and logbook data. Fisheries Research 181, 34–47 (2016)

36. A. Ultsch, Self-organizing neural networks for visualisation and classification. In
Information and classification (pp. 307-313) (Springer, Berlin, Heidelberg, 1993)

37. A. Ultsch, Kohonen’s self-organizing feature maps for exploratory data
analysis. Proc. INNC90, 305–308 (1990)

38. G. Yu, J. Yang, On the robust shortest path problem. Computers &
Operations Research 25(6s), 457–468 (1998)

39. Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L. (2016,
November). Applying Dijkstra algorithm for solving neutrosophic shortest
path problem. In 2016 International Conference on Advanced Mechatronic
Systems (ICAMechS) (pp. 412-416). IEEE.

40. Bouwmans, T., Porikli, F., Höferlin, B., & Vacavant, A. (Eds.). (2014). Background
modeling and foreground detection for video surveillance. CRC press.

41. Vijverberg, J. A., Loomans, M. J., Koeleman, C. J., & de With, P. H. (2009,
September). Global illumination compensation for background subtraction
using Gaussian-based background difference modeling. In 2009.

42. Zivkovic, Z. (2004, August). Improved adaptive Gaussian mixture model for
background subtraction. In ICPR (2) (pp. 28-31).

43. Maddalena, L., & Petrosino, A. (2012, June). The SOBS algorithm: what are
the limits?. In 2012 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (pp. 21-26). IEEE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

KIM and CHO EURASIP Journal on Image and Video Processing         (2019) 2019:76 Page 11 of 11


	Abstract
	Introduction
	Methods
	Training of the SOM for image clustering
	Image change detection based on the SOM

	Results and discussion
	Performance evaluation with the hand-labeled dataset
	Performance evaluation with the CDnet-2014 dataset

	Conclusion
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

