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Abstract

Studying animal locomotion improves our understanding of motor control and aids in the treatment of motor
impairment. Mice are a premier model of human disease and are the model system of choice for much of basic
neuroscience. Placement of the tips of appendages, here paws, is typically critical for locomotion. Tracking paws from
a video is difficult, however, due to frequent occlusions and collisions. We propose a method and provide software to
track the paws of rodents. We use a superpixel-based method to segment the paws, direct linear transform to perform
3D reconstruction, a 3D Kalman filter (KF) to solve the matching problem and label paws across frames, and spline fits
through time to resolve common collisions. The automated method was compared to manual tracking. The method
had an average of 2.54 mistakes requiring manual correction per 1000 frames with a maximum of 5.29 possible errors
while these values were estimates of the expected errors. We present an algorithm and its implementation to track
the paws of running rodents. This algorithm can be applied to different animals as long as the tips of the legs can be
differentiated from the background and other parts of the body using color features. The presented algorithm provides
arobust tool for future studies in multiple fields, where precise quantification of locomotor behavior from a high-speed
video is required. We further present a graphical user interface (GUI) to track, visualize, and edit the tracking data.

Keywords: Biomechanics, Animal tracking, Optimization, Spline matching, 3D reconstruction, Superpixels, Kalman

filter python software

1 Introduction

Understanding biological movement is an important chal-
lenge for modern science. This understanding has a direct
impact on human health and wellbeing. It promises to
give new treatments for musculoskeletal injuries and neu-
rological disorders, improve prosthetic limb design, and
aid in the construction of more capable legged robots, all
in addition to providing a wealth of necessary scientific
information about biological systems [35].

One of the main features of locomotion is the gait (rel-
ative timing of leg recirculation, e.g., walk, run, trot, or
gallop). How gait is chosen and the regulation of gait
can provide detailed information about the condition of a
subject [8]. Although significant insight into the neurome-
chanical basis of movement has been gained [43], there
are many important open questions in this area; such as
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how does gait control reflect the morphology and dynam-
ics of the fast moving body and how is sensory feedback
used during rapid legged locomotion?

The intentional changes in an animal gait, the timing of
paw motion relative to each other using the animal [11],
can be seen during movement. The animal movement can
be perturbed using an internal or external perturbation. A
mechanical perturbation (e.g., earthquake) while the ani-
mal is running, for example, deflecting the surface during
running, an electrical stimulation applied to the nervous
system using nerve cuffs [33], or even the application
of new genetically targeted techniques, like optogenet-
ics [10] or designer receptors exclusively activated by
designer drugs [50], are several of the increasingly sophis-
ticated methods applying perturbations that dissect the
movement control.

Mice are a premier model of human disease and increas-
ingly the model system of choice for basic neuroscience.
High frame rates (higher than 150 Hz) are needed to quan-
tify the kinematics of running mice, due to their high
stride frequency (up to 10Hz). Achieving an adequate
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number of strides to capture inter-stride variability may
require 3s or more of a video; at least 450 frames need
to be captured. This number increases rapidly with frame
rate, which may be increased to capture sudden move-
ments or reaction to impulsive perturbations, or with
duration. This frame rate increase may yield large data sets
for a more sophisticated analysis of locomotor dynamics
[48]. More extensive data sets give researchers a better
insight into their studies [61], but larger data sets cause
difficulties in requiring space to store data and algorithms
to track the desired animal body regions automatically.

Commercially available systems (Digigait [12, 15, 40],
Motorater [46], Noldus Catwalk [11, 20, 23, 44]) are pro-
hibitively expensive and may only provide information
about paws during the stance phase which makes them
limited for some studies. In both research and commer-
cial systems, tracking of mice has frequently relied on
shaving fur and then drawing markers on the skin for
subsequent tracking from raw video [14], or on the attach-
ment of retroreflective markers, and the use of optical
motion capture systems [27].

Also, some computerized methods (simple threshold-
ing, circular correlation, or template matching) have been
proposed to answer this need [62]. However, manual [3]
or semi-manual [22] clicking can be considered the usual
method to track some markers or features. In addition, it
is often important to track the tips of appendages, e.g.,
paws, feet, and hands, because they often carry exten-
sive information relevant to a task [37]. However, they are
often prone to difficult and periodic occlusions. There-
fore, the need for a robust method to help neuroscientists
and biologists have been felt.

To track animal kinematics, studies are limited to a few
trials, because of low yield and a requirement for attach-
ing or drawing markers. For example, Karakostas et al.
[27] provide validation with two mice, one trial per mouse.
While the scale-invariant feature transform (SIFT) has
been successfully used for markerless tracking of the rat
head [29], in comparison with a paw, the range of motion
was limited because the animal was restrained during
imaging. As an example of animal tracking, methods for
fly tracking has been developed which they required a
constant background and a limited range of motion [39].
In our setup, which is very common in neuroscientific
applications, the use of a treadmill causes difficulties for
the background subtraction process. For these reasons, we
present a method for automated, markerless tracking of
rodent paws.

Two-dimensional tracking from a video can provide the
required information to examine gait. However, access to
3D information can improve our understanding of loco-
motion including roll, pitch, and yaw [38]. Indeed, a foot
position relative to the body has been found to explain a
large amount of the variation in kinematics from stride to
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stride [37]. In addition, using 3D can resolve occlusions
and collisions of paws with other paws or the animal’s
body.

In general, tracking has been a recent favorite
topic in image processing [63]. Many methods have
been developed for different applications: cell migra-
tion tracking [45], human tracking [30], and track-
ing diseased tissue across frames [16], [36]. Track-
ing methods typically need to be developed based
on the specific problem at hand. Kalman filters (KF)
[54], global nearest neighbor standard filters ([58],
joint probabilistic data association methods [49], mul-
tiple hypotheses tracking [28], Markov chain Monte
Carlo data association [41], and probabilistic multiple-
hypothesis tracking [57] techniques are some of the most
common methods presently used for multiple object
tracking.

We take advantage of superpixels for segmentation
of paws [35]. We have shown the possibility to seg-
ment different parts of the body using superpixel meth-
ods in [35]. Here, we extend these methods to make
a more robust, automated tracker for paws (required
one-time clicking of user), by utilizing 3D information
across views, and temporal prediction based on gener-
alized paw kinematics. The main contribution of this
study is thus a markerless paw tracker that is robust to
occlusions and collisions over multiple frames, resolv-
ing many of the limitations of our previous work [17],
[19]. We achieved this using 3D information, integrat-
ing information from four cameras at the same time.
A 3D KF and the direct linear transform were used to
achieve this goal. We employed an optimization method
to fit a spline reference of paw kinematics to the observed
data during tracking, to predict the position of paws and
resolve occlusions and collisions. Finally, we provide an
accessible software to use the tracker, to speed up kine-
matics analyses by researchers in, e.g., neuroscience and
biomechanics.

This manuscript is organized into five sections: the
methods, software, experimental conditions, results, and
conclusion. Section 2 presents our proposed tracking
algorithm in detail. Section 3 provides the required infor-
mation about the Python packages and the main param-
eters being involved for implementing the algorithm as
a code. Section 4.1 gives more details about our exper-
imental values for designing the software. Section 4
presents information about our methods performance,
and Section 6 summarizes our findings and possible future
directions.

2 Methods

We first describe the imaging setup and techniques to
control animal speed, then detail the segmentation pro-
cess, before finally discussing the 3D tracker.
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2.1 Setup

2.1.1 Camera system

Ximea USB3 (camera model: MQO022CG-CM) cameras
are used to capture frames using a 250 Hz external syn-
chronization signal. The trigger signal is generated and
synchronized with a host PC using the triggerbox tools
published by the Straw Laboratory [56]. Briefly, the trig-
ger pulses are generated by an Arduino Uno, running the
triggerbox firmware (the code can be found on Triggerbox
(https://github.com/strawlab/triggerbox). The Arduino is
controlled via serial over USB by a standard desktop PC.
The camera resolution is set to 2048 x 700 pixels at 8-bit
depth, using a Bayer filter pattern to recover color. The
capture time is 4's, gathering 1000 frames for each trial.
The frames are Bayer encoded, and we use a debayering
function to convert them to RGB color space frames [19].
Last but not least, the treadmill arena lightening condition
was remained constant using LED panels.

2.1.2 Treadmill and tracking system
We use a closed-loop treadmill system described in [55] to
control and adjust the speed of a treadmill while a mouse
is running. The feedback loop helps us to keep the ani-
mal in a specific place on the treadmill by varying the
belt speed (for example in the middle) or to automatically
capture data when the animal movement meets specified
criteria (e.g., constant speed for u strides). Four cameras
(four side views; Fig. 1) are used to capture the locomotion
of the animal on the belt. An additional camera located at
the top of the belt (shown in red) tracks the animal to pro-
vide a real-time feed of position and speed for the visual
servoing of the treadmill belt [55]. Here, we analyze the
frames captured by the cameras on side views (Fig. 1).
The mouse paw color is pink, which is a relatively
unique color in the video sequences, restricted to tail, ear,
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Fig. 1 Camera and treadmill arena. Four side view cameras are used
for capturing high-speed kinematics, and one camera above (red)
provided tracking of the animal and adjusted the speed of the belt
using the closed-loop feedback method of Spence et al. [55]
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nose, and any shaved parts of the body (if a study needs
shaving). We further enhance segmentation by painting
the treadmill belt with Chroma-key Green paint (Sher-
win Williams, interior acrylic latex, green-yellow custom
blended to match ROSCO GaffTac fluorescent green key-
ing tape). This helps to simplify the segmentation of paws
as described in [35].

2.2 Segmentation

Normalized cuts [51], the mean shift algorithm [9], graph-
based methods [13], simple linear iterative clustering
(SLIC) superpixels [1], and optimization-based superpix-
els [59] are all modern methods with which to segment
regions of an image. Superpixels contract and group uni-
form pixels which make a more natural and perceptually
meaningful representation of the input image, as com-
pared to single pixels. We choose to use superpixels
because their over- and under-segmentation criteria and
performance are well suited to the task of segmenting the
paws. We use simple linear iterative clustering [1] because
it generates superpixels faster than other methods. As the
size of our images is constant, the number of superpix-
els is the critical parameter. The speed of the superpixels
algorithm depends largely on this number of superpix-
els and the size of the image as it has been discussed in
[1]. Figure 2 shows how the number of SLIC segments
can affect the segmentation process around the body and
paws.

2.3 3D tracking system

For clarity, we describe the tracking system in four parts:
first, manual initialization of paws positions for the first
frames of each camera (and if needed, for the second
frames); second, the 3D reconstruction and how it is
employed to aid in tracking; third, a typical paw locomo-
tion pattern; and finally, the automatic tracking system,
referred as the “general tracker”

The following terms should be clarified to simplify the
descriptions: “hidden paw,” “collision type I, “collision
type 11, and “collision type III” The “hidden paw” is a paw
becoming obscured by the body. The collisions of a paw
with paws on the other side of the body is referred to as a
“collision type I” The collision of the front and hind limbs
on the same side is referred to as a “collision type II” We
detect the “collision type II” when the paws on a same side
are closer than “collision type II threshold,” as defined in
Section 3.2. The “hidden paw” typically happens for the
front paws at the early stage of the swing phase of a stride.
This is similar for the “collision type II,” with a small differ-
ence: the “collision type II” occurs before having a “hidden
paw.” It should be noted that “collision type II” might hap-
pen more frequently as compared with the “hidden paw”
On the other hand, “collision type I” happened while one
paw is in the stance phase and the other one, on the other
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Fig. 2 a A frame captured from a C57BL/6 mouse where the paws have a “collision type Il." The SLIC results with 5000, 10,000, and 15,000 superpixels
for the marked red region in a are illustrated in b, d, and f, respectively. The marked red region is selected to demonstrate a better resolution of SLIC
segmentation around the mouse body; this box does not show the “sub-image” to reduce the time required for generating superpixels. Panel ¢

shows a “collision type I" for the front paw. Note that a similar collision can occur for the hind paw. The calibration object with 25 markers is seen in e

side, is in the swing phase. Finally, the “collision type III”
is like the “collision type I but it happens because of
resolving the “collision type II” The detected paw, while
resolving the “collision type II,” might jump to the other
side paws which can cause a similar condition as “collision
type 17 This can happen because the other side paw has
the same color information and being relatively close to
the desired paw. “Collision type I” and “type II” are shown
in Fig. 2.

2.3.1 |Initialization

The major role of this simple step is to find the paws
coordinates in the four 2D camera frames and extract
some features to aid in finding the best-matched segment
from among the paw segments for the subsequent frames.
Therefore, the superpixels are generated using the initial
value for the number of superpixels, and the user is asked
to zoom in, using a rectangle zoom tool in the software,
for a better resolution and click on the paws (front and
hind paws, respectively) for each camera. This means that
the initialization consists of one round of clicking on the
paws by the user and further processing as described in
Algorithm 1 and Algorithm 2. From this step, we extract
the following features: initial red, hue, and green values
(RDy,07 HD{poo» a0d Gy, in Eq. 3). The red and green
values are extracted from RGB color space while hue is
extracted from HSV color space. These three values would
remain constant unless the user requests to modify the
tracking parameters. In the case that a user asked for
changes, these values could be updated by new values for

Algorithm 1 The presented algorithm includes an ini-
tialization step for the first frame which needs manual
clicking by user. The variables m, n, ¢, and i are paw index,
frame number, camera number, and superpixel number,
respectively. The parameter j keeps two same side cam-
eras (cameras 1 and 2 or cameras 3 and 4) index to use
3D reconstruction information. H, G, and R are the related
hue, green, and red channels, respectively. D, U, and V are
the detected paw, coordinate in the horizontal direction
of an image plane, and coordinate in the vertical direc-
tion of the image plane, respectively. The parameters X,
Y, and Z are coordinates in 3D. SP shows superpixels.
DLT and DLTI are direct linear transform and direct lin-
ear transform inverse which can be calculated based in
equation 1. The initial tracker generates superpixels for
the entire image and the user select the paws in each cam-
era image plane. It should be noted that we have four KFs
for the paws.

1: procedure INITIAL TRACKING(First Frame (n=1))

2 for each camera (c) do Generate SPs

3 for each paw (m) do
4 Manual Clicking
5
6

Extract Features
Set D[m'”vc] ’ HD[m,n,c] ’ GD[m,n,c] ’ RD[m,n,c]

7: for j=[1,2] or [3,4] do

8: for each paw (m) do

9 (X, Y,Z) < DLT(Dynnj1)]s Pimnj2)1)
10: Initialize KF(X, Y, Z, m, j)
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that frame. These values are used to extract features for
the next frame, see Eq. 3.

Then, the paw coordinates in each direction (U and
V) are summed with a number (“PawXWindowSize” in
the U direction and “PawYWindowSize” in the V direc-
tion, defined in Section 3.2) to make sure that the paw
is not missed in the next frame. “PawXWindowSize” and
“PawYWindowSize” are typically 70 and 40 pixels, respec-
tively. The values of 70 pixels in the U direction and 40
pixels in the V direction ensure that, at the chosen frame
rate of 250 Hz, the paws do not move beyond the window
of detection in one frame. We analyze a range of animal
speeds from 10 cm/s to 70 cm/s, and the maximum dis-
placement of the paw for two consecutive frames is 30
pixels in the U direction and 15 pixels in the V direc-
tion. This value can be adjusted by the user, based on the
setup; however, having higher values would reduce the
speed.

The initialization process can be repeated for the
second frame of each camera or be bypassed. The
second frame initialization is recommended if “colli-
sion type I “collision type II, or “hidden paw” are
occurring at the start. However, the tracker does not
require the second frame initialization, and frequently
tracks the paw successfully without this. Any incorrect
tracking can be corrected using the software described
in Section 3.

2.3.2 3Dreconstruction and 3D Kalman filter

We previously developed 2D-based tracking systems
using a support vector machine [19]. The main limita-
tions for those systems (relying on machine learning) are
a loss of tracking due to “hidden paw;” “collision type I
and “collision type II” issues, that are difficult to over-
come using only 2D information. Also, the 2D nature
of those tracking systems means that they are sensitive
to the animal moving diagonally across the belt. This
diagonal movement results in large numbers of hidden
paws.

We can take advantage of 3D reconstruction to solve the
“hidden paw” and “collision type I” issues, as well as the
change of direction, if we track the paws in at least two
cameras. We calibrate the treadmill volume with a custom
Lego calibration object, with markers located at known
coordinates. This calibration object is shown in Fig. 2.

Then, direct linear transform (DLT) is used to map
the 2D coordinates to 3D in the calibrated volume [21],
[47]. DLT has been a popular method for 3D modeling
of objects, in both biology and biomechanics fields [6, 7,
22, 25, 26]. The projection from 3D domain to the 2D
camera image planes (focal planes) is shown in Fig. 3.
DLT method formalizes the following relation between an
object located in 3D with a corresponded object on an
image plane of a camera, e.g., camera 1:
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Algorithm 2 The second frame tracking algorithm. This
includes a possible initial tracking for the second frame;
however, this can be done by the general tracker as
explained in Algorithm 3. In other words, this is an
optional step which can be skipped; however, it can help
for more accurate results. The variables are defined in
Algorithm 1.

1: procedure INITIAL TRACKING(Second Frame (n=2))

2 for each camera (c) do Generate SPs

3 for each paw (m) do
4 Manual Clicking
5
6

Extract Features
Set Diyn,cls HDjpy e » GDpey RD,
7: for j=[1,2] or [3,4] do
for each paw (m) do
(X,Y,Z) < DLT(Dpmnj1))> Dimnj@))
10: Update KF(X, Y, Z, m, j)

m,n,c)

R

. LiX+ LY +L3Z+ Ly
C LoX+LpY+LnZ+1
_ LsX+LeY +L7Z + Lg
~ LoX+ LY +LiiZ+1°

uil

V1 (1)

Where U1 and V1 are the coordinates in the focal image
plane of camera 1. /2 and V2 for other cameras can be
calculated based on calculated coefficients correspond-
ing to that camera. X, Y, and Z are the coordinates in
the 3D domain, and L; to L;; are eleven DLT coeffi-
cients being calculated by the calibration object [22]. The
camera calibration is done using DLTdv5 Matlab package
and manually clicking on the 25 balls from each camera,
shown for a camera in Fig. 3, to calculate the DLT coeffi-
cients. Using Eq. 1, we can map the 2D coordinates from
two cameras to 3D or come back from the 3D coordinates
to the 2D camera image planes.

Fig. 3 This figure shows the concept for 3D reconstruction using two
cameras image planes (focal planes of cameras). O is a point located
in a 3D object space having the X, Y, and Z coordinate system. /1 and
12 are the projected points in the image plane 1 of camera 1 and the
image plane 2 of camera 2, respectively
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For the reasons explained, we use the 3D reconstructed
coordinates to predict the position of a paw for the next
frame based on the tracked markers for the current frame.
We employ a 3D KF that can take observed measurements
over time and estimate variables related to the motion [24]
to achieve this goal. The KF model considers a state for a
frame # evolving from the prior state at frame n — 1 [5].
We had previously used a 2D KF, while here, we apply the
KF to X, Y, and Z directions (in 3D; the coordinate sys-
tem illustrated in Fig. 3). The 3D KF includes the following
parameters: (1) the dynamic parameters or dimensional-
ity of the states are three states because we need three
dimensions (X, Y, and Z), (2) the measure parameters
or dimensionality of the measurements are six measure-
ments because we assume the paw motion has a constant
speed (no acceleration) pattern and to avoid complexity,
and (3) default covariance matrices by OpenCV package.
Therefore, the measurement matrix is defined as follows:

1000007
010000
(001000

and this is the transition matrix:

(1001007
010010
001001
000100
000010

(000001 |

The KF implementation details as a code can be found in
Section 3.1. Therefore, we can use the estimation the 3D
location of paws for the next frame using the coordinates
from the initialization step or the previously tracked paws.

2.3.3 Computation of a spline template of paw kinematics
for collision resolution

By looking at tracked paw coordinates in a 2D camera
image for just one stride, it can be similar to donuts shape.
Animals have to take the paw off from the ground, called
swing, and then step down, called stance. This pattern
might have a longer or shorter stance time, referred to
as “frequency of paw locomotion;” the paw goes higher
in the air, referred to as “amplitude of paw locomotion;”
and time difference that a paw does a specific part of the
motion pattern, referred to as time shift. The swing time
depends on the morphology and mechanical properties of
paws. A typical walk and trot have been shown in Fig. 4.
The “amplitude of paw locomotion” is more related to the
size of the animal and it remains roughly constant with
the same animal size. On the other hand, the “frequency
of paw locomotion” can vary from one stride to another
stride. This pattern is shown in Fig. 5. However, the paw
locomotion is not necessarily periodic; we use the term
“frequency of paw locomotion” to show the changes in the
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Walk
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0

B
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H Stance M Swing

a

Trot

FR
HR

0

ES

25% 50% 75% 100%

B Stance M Swing

b

Fig. 4 Gait Diagram. Panel a shows the typical walk gait diagram for
quadrupeds and panel b shows the ideal trot gait for quadrupeds,
adopted from [53]. In each of the graphs, blue and red bars are the
stride cycle part that leg is in the stance phase (foot on the ground)
and the part that leg is in the swing phase, respectively. FR, HR, FL,
and HL are front right, hind right, front left, and hind left, respectively

required time for one full circulation. It should be men-
tioned that the front and hind paws have different splines,
but the other side limbs (either the front or hind paws)
have the same spline functions.

We tracked ten strides from an animal with constant a
speed, 30 cm/s, and calculated the average. Cubic splines
were fit using SciPy to the average for each paw.

G) =dgx’ + e + g +hy 0<x<K 2)

where K is the number of points for the locomotion pat-
tern (K was 50 for rats in our case). This number is
selected based on the average frames numbers for one
stride among those ten strides constant the speed of 30
cm/s. dy, eg, g4, and hy are coefficients for each knots )
while the term x denotes the continuous numbers in the
range covering the spline function. This spline is used in
the “general tracker” step to help to resolve the “collision
type I It should be mentioned that splines are calculated
before running the software.
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Fig. 5 Utilization of a spline function for tracking through collisions. The front paw motion pattern in the U — V plane, the front paw motion pattern
in the U direction, the hind paw motion pattern in the U — V plane, and the hind paw motion pattern in the U direction for four consecutive strides
are illustrated in a, b, ¢, and d, respectively. In panels a to d, the colors show different strides. Panels b and d show the coordinates shifted up to have
the same minimum number (zero). The plots in the U — V plane are shifted to have approximately the same start point. The predicted points for
future frames when “collision type II” occurs are shown in e. Front and hind paw predicted locations based on previously tracked points are
illustrated in f and g, respectively. Each of these two plots contains the spline function (which is generated from a previously studied mouse with a
constant speed of 30 cm/s and averaged from ten strides) before fitting, after fitting of the spline templates to the tracked paw coordinates by
applying “frequency of paw locomotion” and not time shift, and final spline function helping the prediction of paws location when “collision type Il
happens. It should be noted that fitting is applied for the U coordinates, and the V coordinates are moved accordingly. Finally, two cycles of splines
are considered to make sure that the trajectory of coordinates will be continuous




Haji Maghsoudi et al. EURASIP Journal on Image and Video Processing

Algorithm 3 The presented algorithm includes general
tracker. The variables are defined in Algorithm 1. In addi-
tion, L is a symbol for the spline, defined in equation 7.
Flag_Collision is a flag to keep the collision event condi-
tion (if it happens or not). The variables, 7, f, and a are
the time shift, “frequency of paw locomotion,” and “ampli-
tude of paw locomotion,” respectively. Last but not least, O
shows that we have a pair of image planes, but we process
the cameras in 2D separately using DLTT function. DLT
and DLTT use the coefficients calculated in equation 1. In
other words, O has the value which is the j vector but not
assigned as the value of c¢. The general tracker uses the
pair of cameras located on a same side (j) and DLTI to
map the predicted 3D coordinates of KF to provide the
window in 2D image planes. However, if the collision type
IT happened, it uses the Spline_Predictor vector for this
purpose.

1: procedure GENERAL TRACKING(Frame number n)
2: for j= same side camera number ([1,2] or [3,4]) do
3: Flag_Collision(j(1)) = 0
4: Flag_Collision(j(2)) = 0
5: for each paw (m) do
6: for each camera (c) in j do
7: if Flag_Collision(c) is equal by 0 then
8: (X,Y,Z) < Predict KF(X, Y, Z, m, j)
9: [(um,n,c: Vm,n,c)v (um,n,O’ Vm,n,O)] <~
DLTI(X, Y, Z,j(1),(2))
10: else
11: [ (Umner Vimm,e)s (um,n,O’ Vm,n,O)] <«
Spline_Predictor(c)
12: for each camera (c) in j do
13: Create sub-images based on (Uy,iu,c, Vinn,c)
14: Generate SPs
15: for each SP (i) do
16: Extract Features (described in equation 3)
17: Apply Fusion Function (equation 6)
18: Find SP with minimum Score
19: Keep Best Three SPs
20: Set D[mxnxc] ’ HD[m,n,c] ’ GD[m,n,c] ’ RD[m,n,c]
21: if Collision Type II happens and Flag_Collision(c) is
equal by 1 then
22: Fit Spline to Detected Paw (m)
23: Flag_Collision(c) = 1
24: Estimate ( 7, f, a) parameters using the fitting
process defined in equation 8
25: Set Spline_Predictor(c) = L(t-7)
26: Set Weights =

Adjust_Weight_Factors(Weights) as described in Algorithm 4
27: else

28: Flag_Collision(c) = 0

29: Set the weight factors to the original values

30: if Collision Type III happens then

31: if Collision Type III happens for the first time in
this stride then

32: Based on the expected paw motion direction

(front paw should go forward and hind paw should go backward),
Find the first SP among Best Three SPs that follows the motion
direction of paw

33: else

34: Remove the SP with minimum Score from
the Best Three SPs (Two SPs remaining)

35: Find the first SP (priority goes with the bet-

ter SP in the remaining two) that has an U coordinate (horizontal
direction) less than previous frame (D[, ;—1,]) and higher than

the SP with minimum Score (D, ,¢])

36: Set Diyncls HD[m,n,c] ) GD[m,n.c] , RD[m,n,c] with
the results

37: X,Y,Z2) <« DLT(D[m,n,/’(l)]’D[m,n,j(Z)])

38: Update_KF(X, Y, Z, m, )
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2.3.4 General tracker

In a first step, we use a median filter to reduce noise in the
image (low-pass filter works the same). We subsequently
focus on a 140 x 80 pixel region of interest, given by the
2D projection of the 3D coordinate predicted by a 3D KF
filter (see Section 2.3.2 for more details). This point has
2D coordinates of [Up,,, , 4> VP, ] in image plane of cam-
era number ¢ for the paw number m and frame number
n. It should be noted that paw number is one (front paw)
and two (hind paw). We refer to this zoomed region as the
“sub-image” The “sub-image” center is determined by the
3D KEF filter prediction. Then, we generate the superpixels
for the “sub-images” and extract eight color and location
features as follows:

3)
Fotimne = IMean (Rspy,,) — Mean (Rp,,,, 1) |
Frlimna = Sqrt ([Mean(Usp,,,,,) — UB[MC]]Z +
[Mean(Vsp;;,,.) = VB ]2)
Fslimne) = Sqrt ([Mean(UspU,,,,C]) — Up [’"»"'61]2 +

[Mean(Vsp,.) = VPpuna ]2)

where i, m, ¢, and n are the superpixel number (for all
superpixels in a “sub-image”), the paw number (four cam-
eras and two paws for each camera), the camera number,
and the frame number. SP(; ¢, Dinnc), and Py, are
the superpixel number i for the frame # in camera c, the
detected paw number m for frame number # in camera
¢, and the predicted position of paw number m for frame
number # in camera ¢. Fi[jmnu] tO Fg[imnc are the eight
features corresponding to SPJ; ;. ¢). In addition, R, H, and G
are intensity values in the red channel from the RGB color
space [18], values in the hue channel from the HSV color
space [31], intensity values in the green channel from the
RGB color space, and the center of a “sub-image;” respec-
tively. B and P are the coordinates of the bottom left and
the center of the “sub-image” in the camera image planes.
Therefore, the term Mean(Gspy,, ;) means the average of
intensity values of pixels in i-th superpixel of n-th frame
from the c-th camera.

It should be noted that the SP denotes superpixels for
the current frame (in other words, superpixels candidates
for being a paw in frame number #), and the term i is
an index to test all the superpixels in the window. On
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the other hand, D is the detected superpixel from the
previous frame (frame number n — 1). After the segmen-
tation, tracking, and the resolution of the collisions (if
needed), the best superpixel is assigned to Dj,,,, for
frame number #, as illustrated in Algorithm 3. In addi-
tion, since a superpixel has many pixel members and each
pixel has coordinates in the image in the U/ and V direc-
tions, Usp, Vsp, Up and Vp are arrays of scalars. Therefore,
Mean(Usp) means that we calculate the average of coor-
dinates in a direction for all for the pixels associated with
that superpixel.

Eight features are normalized (Ng[; m,n,c] Where k shows
the feature number between one to eight) as follows:

Fk[i,m,n,c] - min(Fk[Vi,m,n,c]) )
maX(Fk[Vi,m,n,c]) - min(Fk[‘v’i,m,n,c])

Nk[i,m,n,c] =1-

The normalized features are weighted based on the impor-
tance of features using the following arrays:

Weights_F =[2,0,4,2,2,0,1,4]
Weights_H =[2,0,4,1,2,0,2,4]
(5)

where Weights_F and Weights_H are the weights to cal-
culate a score for the front and hind paw segments,
respectively. The reason for the selection of these weights
is discussed in Section 4.1.2. By having the weights and
normalized features, we can have a fusion function as
follows:

>~ Nitimme Wk

k=18

W
where W is the one of the weight vectors (Weights_F
or Weights_H). PF is calculated for each superpixel in
a “sub-image”, and a superpixel with minimum value is
selected as the paw for that image plane, referred to as the
“best superpixel” However, three superpixels with mini-
mum values, referred to as the “three best superpixels,” are
stored for further possible required processes (resolving
the collisions). Therefore, we have the most likely super-
pixel showing the paw and storing the other two possible
candidates for the paw. The number for other candidates
can be any number; however, we suggest keeping the num-
ber close to two or three because the higher number can
increase the chance of mislabeling of paw.

Through experimentation, we found that the “best
superpixel” is accurate enough to track the paw if a “col-
lision type II” does not happen. But, this issue happens
in almost every stride, and an error in the tracking of
the paws for a single frame could lead to missed track-
ing for all subsequent frames. To solve this issue, we
develop a method previously calibrated spline from a paw

PE(i, m, n,c) = (6)
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motion template pattern to the tracked paw coordinates,
as described in section donuts.

We fit the spline function to the previously tracked paw
coordinates to calculate the “frequency of paw locomo-
tion” and the time shift. The same coefficients calculated
in Eq. 2 (d, e, g, and /) is used to find the proper knots for
integer points based on the time shift and “frequency of
paw locomotion” as follows:

Ly (%) = dg(xf)° +eq(xf)* +84(xf) +hq (Vaf in [0,K])
(7)

where L is the spline points of a paw for fitting process.
The term f shows the “frequency of paw locomotion” The
term x is all the possible integer numbers in [ 0, K].

A cost function is defined to minimize by finding the
maximum value of circular correlation between these two
signals by varying the “frequency of paw locomotion” and
the time shift as shown in Fig. 5. It should be noted that a
low-pass filter was applied to smooth the tracked coordi-
nates. The frequency of cutoff was set in a way to avoid the
frequency of movement. It should be noted that the cut-
off frequency of filter is selected based on the maximum
frequency of paw movement (10 Hz) versus the capturing
rate (250 Hz). The fitting for amplitude and frequency is
performed as follows:

(@.f) = arg min((Tjg — T{g) —a(Ly(t—7)—Le(t — 7))
af

(8)

where 7 is being calculated based on the maximum value
of circular correlation formalized by the product of the
tracked points and spline knots as follow:

7 =arg r;lax((T[t] —ﬂ)*a(Lf(t—r) —Ls(t = 1)) 9)

where T are the previously tracked U coordinates of a
paw. T is an array which does circular rotation on array
elements based on the value of ¢ as time shift. The term
7 is the time shift to maximize the the circular correla-
tion product. The terms f and a are the frequency and
amplitude of paw locomotion being minimized by the
defined cost function. The term ¥ (¢) = %(max(l/f(t)) +
min(y (£))) denotes the midpoint between the upper and
lower evaluated points of the sequence. To make sure that
T and L have the same number of elements, we added
zeros if T has a fewer number of elements. Also, we make
sure that T does not have more members than L. It should
be noted that we fitted the spline function for the U coor-
dinates, not V. The reason is that the V coordinates are
noisier, causing poor fits. Therefore, we use the frequency
and time shift from the U/ movement to adjust the related
spline function in the V direction for the prediction, as
shown in Fig. 5.
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Algorithm 4 This is adjustment function. This function
can affect up to %10 in the major revision needed. There-
fore, it can be an optional step.
1: function ADJUST_WEIGHT_FACTORS(Weights)
2 if Weights is equal by Weights_F then
Weights[1] = Weights[1] + 1
Weights[4] = Weights[4] - 1
Weights[7] = 0
elseWeights is equal by Weights
Weights[3] = Weights[3] + 2
Return(Weights)

*® N Dok ow

” o«

The calculated “frequency of paw locomotion,” “ampli-
tude of paw locomotion,” and the time shift for achieving
a maximum value for matching of the two signals are used
to make a new spline function, referred as the “predicted
spline function” This “predicted spline function” helps to
predict the location of paws on a same side when “collision
type II” happened. It means that the paws are closer than a
threshold to each other, called “collision type II threshold”
This function is illustrated in Algorithm 3.

However, while the “predicted spline function” fixed the
issue of “collision type II, it could cause a new problem:
a possible jump from the same side front paw (happen-
ing for the front paw, not the hind paw) to the other side
front paw. As described at the beginning of Section 2.3,
this makes “collision type III” This issue is solved using
the fact that the front paw after having the “collision type
II” should go forward while the front paw on the other
side should move toward the back. By tracking the paws
for all four cameras, we can use the information from the
other side to find the direction of paw movement for both
sides based on the movement direction from the previous
frames. In addition, 3D reconstruction aided in finding
“collision type III because the jump from the correct
front paw to other side paw causes a significant 3D recon-
struction error. This error is used to make sure the front
paw is tracked correctly. The “collision type III” could be
detected after having the paws tracked based on the “best
superpixel” To correct this mistake in tracking, we find
the best superpixel having the same motion direction and
being closest in 3D among the “three best superpixels”
The algorithm is shown in Algorithm 3.

Last but not least, the algorithm illustrated in Algo-
rithm 4 can be considered as an option step. We realized
that this step can reduce the number of mistakes in detec-
tion as explained in Section 4.5. The reasons for selecting
the changes have been discussed in that section.

3 Software
The advantages of using Python, which is not limited to
clear syntax, useful built-in objects, ease of extension,
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and so many packages developed for scientific applica-
tions, compared to the other programming languages are
discussed in [42]. In addition, Python for image process-
ing has a very rich set of image analysis tools including
OpenCV [4] and the scikit-image libraries [60]. Therefore,
we use it for developing the software.

In this section, the required packages for using
the software are discussed while the software can be
downloaded on GitHub Repository (https://github.com/
omaghsoudi/3D-Paw-Tracking-Edition-Python.git). The
graphical user interface of software has been shown in
Fig. 6.

3.1 Required packages and software engineering

Python 3.6.5 is used to develop the open-source soft-
ware. The following packages are needed to be installed
for using the software: OpenCV 3.4.1, numpy 1.14.5,
matplotlib 2.2.2, pandas 0.23.1, scipy 1.1.0, guidata 1.6.1,
termcolor 1.1.0, and scikit-image 0.14.0.

From SciPy package, “minimize” function is used for the
fitting process. In addition, a low-pass filter to smooth
the previously tracked coordinates (before doing the fit-
ting process) is performed using “signal” toolbox in SciPy.
Many functions from OpenCV are used, including, color
transform, KF, and drawing circle on an image to demon-
strate the tracked coordinates. SLIC method is performed
using the scikit-image package, and pandas is used to
save the coordinates in a “csv” format file or to load the
saved file.

The code is developed in an object-oriented pro-
gramming method [52] to easily track the functions
and their outputs. This can help programmers to
develop and extend our work. In addition, we con-
sider the main code, “GUI_Tracker.py,” calling four mod-
ules (codes): (1) “CSV_RW.py” to read and write the
results; (2) “Global_Var.py” to pass all required global
variables between the modules and the main code; (3)
“Keyboard_Fun.py” to interact with a user through key-
board, in addition, the SLIC is performed using this mod-
ule; and 4) “Kalman_DLT.py” to apply 3D reconstruction
functions or 3D KE.

In addition, we have considered a system to edit the
tracking mistakes. If any mistake would be seen in the
tracked coordinates, the user can request to edit them
using some keyboard shortcuts. However, it should be
noted that the system would not stop tracking unless
the user asks for a demonstration or edition. The proper
implementation and integration of resolving the mistakes
with the tracker is difficult due to a need for resetting
many parameters (e.g., features, coordinates, Kalman pre-
dictor system, 3D coordinates) based on a request for
visualizing (with ability to go back and fore in the frames),
editing the tracked coordinates (with ability to go back
and fore in the frames), tracking of the paws, or saving
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This is a Graphical User Interface for getting the initial values and genral paths.

General Parameters

caml_path /Users/ohm/Documents/Videos/Annie/cam1/2017-10-09_14_06_47 y—

dlt_path /Users/ohm/Documents/Videos/Annie/cam1/cal01_DLTcoefs.csv L

NumSLIC 15000 Tracking_Mode 1

Collision Parameters

Collision_Threshold 50 Start_Frame_Collision 20

Sub_image Parameters

PawXWindowSize 70 PawYWindowSize 40

visualization Parameters
Demonstration_Flag 2 Demonstration_Delay 0.6

Jump_Frame_Number |-1| Collison_Demonstartion 0

Probabilistic Parameters

Weights_F Weights_H

1 1x8 - I 1x8 &
4 0.000 + 0.000

T 4.000 T 4.000

Cancel @

Fig. 6 The Python GUI. Five major parameters classes are illustrated in the GUI: general, collision, “sub-image”, visualization, and fusion parameters.
The general parameters contain the camera one path which the other paths would be found based on this by just replacing the camera number.
The collision parameters show the two major parameters to resolve the collision issue. The “sub-image” parameters easily help the user to set the
paw region that segmentation would be done. The visualization parameters can be adjusted based on the user need. The fusion parameters are the
two weight factors being used in Eq. 5. Therefore, the user can adjust the parameters based on the setup and animal. Last but not least, if a
parameter would be set out of the acceptable boundary, like Demonstrating_Flag, the system will highlight it

happen, it is referred to as “collision type II

threshold.” Default = 60.
e Start Frame Collision. This number shows the

minimum frame number that “collision type II” is
checked. The reason is the signal shape with just a
few points can be noisy and causing mistracking.

Default = 20.
e PawXWindowSize. The number of pixels in the U

direction that “sub-image” is extended from its center
to both sides for faster tracking. Default = 70.

the results by a user. We employ some keyboard shortcuts
to get commands from a user in which the details can be
found on GitHub Repository.

3.2 Software key parameters
The important parameters needed to be set for the soft-
ware are listed as follow:

e NumSLIC. The number of segments for the SLIC
method. In this paper, we refer to it as the number of

superpixels. Higher number generates more
superpixels, but it increases the required processing
time. Default = 15,000.

Collision_Threshold. If the paws on the same side
have less than this number, “collision type II” might

PawYWindowSize. The number of pixels in the V
direction that “sub-image” is extended from its center
to both sides for a faster tracking. Default = 40.
Weights_F. This is the weight vector for the front paw
defined in Section 2.3.4. Default = [2, 0, 4, 2, 2, 0, 1, 4].
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e Weights_H. This is the weight vector for the hind paw
defined in Section 2.3.4. Default = [2, 0,4, 1, 2, 0, 2, 4].

All these parameters might need to be varied based on
the size of the animal and the resolution of the image,
expect the “weights vector” “Weights Vector” might need
to be varying based on setup if the background color is not

green or the animal has different color features.

4 Results

4.1 Experimental conditions

4.1.1 Animal housing conditions

We analyze data from five C57BL/6 mice, a common
strain of laboratory mice, because it is the most widely
used strain in basic research and biomedicine.

The animals were housed under a 12-12h light-dark
cycle in a temperature-controlled environment with food
and water available ad libitum. Animal procedures were
approved by the Temple University Institutional Animal
Care and Use Committee, in ACUP #4675 to Andrew
Spence.

4.1.2  Fusion function weights selection

This section will help researchers to adjust the weights,
referred to as the fusion function, based on the setup and
the animal’s paw features.

The weight vectors for the fusion function could play a
significant role in determining the results. However, this
vector is mainly defined based on the general features of
the setup and animal. The eight features have two com-
ponents from each of the followings terms: green channel,
red channel, hue channel, and location of the tracked paw
in the previous frame. The green background preserves
information in the green channel. It means that the green
channel could be helpful to remove all the superpixels
related to the treadmill and background. We realized that
one of the channels could differentiate mouse paw from
the rest of body is the red channel; however, it could get
noisy, and the difference gets negligible. On the other
hand, the best channel is the hue which has been stud-
ied in [35]. Finally, the location of the tracked paw in the
previous frame is a critical parameter for tracking.

The weight is set based on the importance of the infor-
mation that they could have. We considered the weights
to be a power of 2 and used 0 for showing the fea-
ture should be excluded. In other words, 4, 2, 1, and 0
show the feature having supreme importance for tracking,
are needed, show the minimum importance for tracking,
and are not required, respectively. Therefore, the fea-
tures based on the average of the hue channel for the
paw in the initialization step, F3, and the tracked paw
coordinates from the previous frame, Fg, get the weight
of 4. The features based on the average of the red (Fs)
and green (F;) channels for the paw in the initialization
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step can differentiate paws from the background; thus,
they get a weight of 2. The average values for the red
and green channels from a previous frame should not
affect the tracking for the current frame because one
mistake in tracking could lead to further errors. There-
fore, the weight of the related features, F» and Fg, are
considered 0.

The front paw compared to the hind paw has a smaller
size, more variation in the shape and color information,
the possibility to get hidden by the hind paw, and has more
potential to be mislabeled with the other parts. These dif-
ferences make us consider two different weights vectors
for the front and hind paws, Eq. 5. The weight vectors,
Weights_F and Weights_H, are similar except the related
weights for F; and F;.

Fy4 involves the hue color information from the previous
tracked frame (not the initial tracked one). It helps us to
track the front paw as it had more changes. Especially in
the early swing phase, from the back view, the fury part of
the paw would be seen which it has a little different hue
value compared with the foot part. This could not happen
for the hind paw as it is much larger than front paw and
always being visible. Therefore, we assigned a factor of 2
for the front and a factor of 1 for the hind paw.

F; shows the difference between superpixels with the
bottom left corner of “sub-image”. This helped to track a
relatively constant point of the paw, the tip of the paw. The
front paw was small, and it generated one to three super-
pixels which the centers of them were close to each other.
This is why the weight is 1 for the front paw. While the
hind paw can have more superpixels. A weight of 2 was
considered for F; to avoid the movement of tracked paw
because of this issue.

The last weight, Fg, has a factor of four as the compari-
son of coordinates for superpixels with the predicted paw
either using the 3D KF followed by inverse DTL or using
the spline fitting protocol for paws collision resolution
plays an important role in labeling of paws.

It also should be mentioned that a paw (the tip of paw
which is being tracked) might consist of a few superpixels
close to each other. The fusion function helps us to find
the best superpixel based on the color similarity (Fi_e)
and distance from the previously tracked coordinate (Fg).
However, we considered F; with the lowest weight of one
for front paw (as it is smaller in size) and a weight of two
for hind paw (as it has a larger size) to find the superpixel
which is closest to the bottom left corner of “sub-image.”

4.2 Mistakes in tracking

We used five mice running freely on the treadmill to
analyze the performance of our algorithm. Two trials
from each mouse were randomly selected. Each trial con-
tained data from four cameras and having 1000 frames.
However, the frames should meet one condition that the
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mouse should move forward on the belt (any direction
toward front but not backward) or stay stationary. In other
words, an animal should not turn back and move back-
ward or try to climb the plexiglass walls. Therefore, 3300
frames were eliminated from the study for this reason,
and a total of 36,700 frames were selected to evaluate the
performance.

For all these frames, the animal was freely moving,
and the speed of animal relative to the belt was varying
between 0 and 64 cm/s. The average speed was 35cm/s
with a standard deviation of 15cm/s. The treadmill was
adjusting the speed using closed-loop feedback described
in [55] to keep the animal in the middle of the belt for
a better resolution. The frames were captured if the ani-
mal was running faster than 20 cm/s for at least 2's (500
frames) to make sure that the animal would move during
the capturing time.

We considered two parameters to evaluate the number
of mistakes for our method: major and minor errors. The
major error was the number of times that a user needed
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to intervene to avoid a “critical mistake” While a “critical
mistake” was defined as a mistake for which the system
could not track the paws correctly after it occurred with-
out user intervention. The minor error was the number
of times that mistakes happened which the software could
still manage to track the paws after a few times wrong
labeling. In other words, the second type of mistakes
happened, but the system was recovered a few mistakes.
In addition, we compared our algorithm with three
methods. The first method used the SLIC method for
segmentation followed by a 2D KF as a tracking sys-
tem; it is referred to as “SLIC+2D. The second method
was the SLIC method followed by a 3D KF as track-
ing system; it is referred to as “SLIC+3D” In addition,
the proposed algorithm results were compared to man-
ual tracking (MT). This comparison is shown in Fig. 7
and Table 2. The 3D KF method uses the same algo-
rithm described in Algorithm 3 while it does not apply
any collision resolution steps (any steps related to splines).
Also, the 2D KF uses the KF to predict the position
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Fig. 7 The error plots. Panels a, b, and ¢ show a comparison between our proposed algorithm with four other methods for the dataset (4 cameras x
2 trials each animal x 5 mice = 40 trials). These three methods are SLIC with 2D KF, “SLIC+2D"; SLIC with 3D KF, “SLIC+3D;" and MT. Panel a shows
the required time by different methods to process one trial, 1000 frames from each of the four cameras. Panels b and ¢ show the average number of
“critical mistakes” per trials that software needed user intervention to label paws correctly after that mistake (major error) and the average number of
mistakes per trials that the software did not need any user intervention to recover from the mistake (minor error), respectively. While panels d, e, and
f show the results of each trial for the measures presented in panels a, b, and ¢, respectively. The colors show the results for the methods presented
in a, b, and . 3D reconstruction error, Section 4.4, is shown in g. It shows the error for the calibration object, front paw, and hind paw in the four
cameras. The blue, red, yellow, and green colors in g show the results of camera 1, 2, 3, and 4. The plots h and i show the 3D reconstruction error of
different trials for front and hind paws, respectively
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of paws followed by the fusion function, please see
Algorithm 3.

It should be noted that majority of the failings in track-
ing happened during the collision of paws (although we
resolved most of them) or because of the fast or sudden
movement of paws.

Last but not least, one of the advantages of 3D recon-
struction has been shown in Fig. 8. This figure illustrates
how we can find the location of paws on a camera image,
which the paws were not tracked for that camera. The
paws can be tracked on other side cameras. Then, based
on the 3D reconstruction of tracked paws (filled circles)
for those cameras using DLT, we can find the location of
paw (unfilled circles) in different cameras using the DLT
inverse. Also, Table 1 shows how the cameras were sig-
nificantly different compared to each other for the 3D
reconstruction error.

4.3 Time performance of algorithm

The performance was examined on a MacBook Pro 2.7
GHz Intel Core i5 with 8 GB 1867 MHz DDR3. The
average and standard deviation of the required time to
process one frame from four cameras were 0.94+0.12 sec-
onds. The slowest steps in our algorithm were generating
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superpixels (0.15 £ 0.03 seconds), demonstrating the
tracked coordinates on image planes if requested (0.33
0.05 seconds), and loading the frames from the hard drive
(0.38 £ 0.02 seconds). These numbers were calculated
without considering the time needed for the initialization
processing and any possible required editions. However,
we investigated the average required time to process one
trial, as shown in Fig. 7. The results showed an average of
1267 seconds with a standard deviation of 129 seconds for
processing of 1000 frames for the four cameras.

The demonstration is an optional parameter; however, it
might be necessary to visualize the tracking results and to
edit the possible mistakes. We considered some keyboard
shortkeys to let the user close the tracking results for a
frame, “current frame,” and see the results after a specific
frame number (based on the pressed shortkey). Therefore,
the user can save time for visualization based on the need
for the edition.

On the other hand, the required time to perform the
SLIC on a frame could be reduced if the images size was
lower or the number of superpixels would be smaller. We
reduced the frame size from 2048 x 700 to the “sub-image”
size (the default is 140 x 80). The “sub-image” size can be
adjusted by the user if needed as explained in Section 3.2.

Fig. 8 A video (MP4 82.3 MB) of tracked paws for 100 consecutive frames which compare the results between MT and our proposed method (OPM).
The filled and unfilled circles show the tracked paws using the cameras located on the same side of paws and the remapped of paws locations to
the other side cameras relative to the paw side, respectively. The unfilled circles show the concept of transferring 2D coordinates to 3D and
remapping the 3D coordinates to 2D images (in this figure to other cameras while it can come back to the same cameras and finding the 3D
reconstruction error). The red, blue, green, black, cyan, yellow, magenta, and white show the tracked coordinates of paws for front right by MT, hind
right by MT, front left by MT, hind left by MT, front right by OPM, hind right by OPM, front left by OPM, and hind left by OPM
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Table 1 P-value calculated by t-test for 3D reconstruction error between cameras (shown in Fig. 7)

cam1-cam2 caml1-cam3 caml1-cam4 cam2-cam3 cam2-cam4 cam3-cam4
Front Paw 0.00000004 0.00001030 0.00684739 0.07784151 0.00055666 0.05207830
Hind Paw 0.01414776 0.01414776 0.08251063 0.00210960 0.04616507 0.07077881

The results show that the 3D reconstruction errors for the majority of cameras were significantly different between cameras. However, the highlighted results in grey show

the ones which were not significantly different with a relatively small margin

To find the best number of superpixels, we presented the
details in [32]. Briefly, the number of superpixels is deter-
mined by the number of pixels in an image divided by the
twice number of pixels in the object needed to be tracked.
The reason is that the SLIC makes superpixels with twice
or half size of the object [1]. We showed that if the size
of a marker would be a known parameter, then, the fol-
lowing equation can find the best value for the number of
superpixels:

row x col

number of superpixels = (10)

mnop x2

where mnop is the minimum number of object (paws)
pixels. The terms row and col are the image width and
the image height, respectively. The front paw was the
smallest object, and it was getting as small as 50 pixels
(even sometimes getting hidden). Therefore, we consid-
ered the number of superpixels equal to 15,000. However,
this number can be adjusted based on setup and animal
size.

It should be noted that we did not investigate the
required time for the SLIC because Achanta et al. compre-
hensively studied the required time for the SLIC method
to generate a different number of superpixels [1].

4.4 3D reconstruction error

The 2D UV coordinates (on an image plane of camera)
were mapped to the 3D XYZ coordinate system using
the DLT coefficients to investigate the 3D reconstruction
error. The 3D reconstruction shown in Fig. 3 is an ideal
scenario while the result of mapping to 3D is two lines
(ray beams of cameras) not intersecting with each other.
A point should be found which is located between the two
lines, and it is the closest point to both lines. Therefore,
if a point in 3D was remapped to the 2D UV coordinate
systems (on the image plane of camera) using the DLT
inverse, there can be a difference between the tracked
points and remapped points (which shows ideal points on
the 2D images for having that point in 3D) on the image
planes of cameras. Therefore, the difference between the
ideal coordinates of reprojected points and the original 2D
coordinates can be a factor showing how accurate the 3D
reconstruction process was done. All tracked frames for
each method were used to evaluate the 3D reconstruction.
The resuFig. 7 and Table 2.

4.5 Adjustment function effect

As briefly discussed, the front paw is prone to more shape,
size, and color changes compared with hind paw. These
changes are more dramatic during the swing phase while
the late stance or early swing phase of the front paw is
when the “collision type II” happens. We noticed that
when “collision type II” occurs, as illustrated in Algo-
rithm 3, we can adjust the weight reducing the major error
by almost 10%. The major error was 2.82 before using the
function and reduced to 2.54. This was studied for three
trials our of ten trials (the other trials were not evaluated).

The logic behind the selection of weight changes, illus-
trated in Algorithm 4, is as follow for front paw weights:
(1) Incrementing the first weight by one representing F;
(previously tracked green value) because this can help us
to avoid finding dark treadmill (green spots on treadmill)
as front paw. (2) Reducing the fourth weight by one rep-
resenting Fy (previously tracked hue value) because one
mislabeling in the front paw could lead to a constant mis-
labeling. In other words, the previously tracked hue value
can be critical if the fur of body is detected as the front
paw (which the real front paw is dark showing the fur parts
during the swing phase). (3) Setting the seventh weight
equal to zero representing F; (bottom left coordinate of
image) because the spline prediction algorithm rules the
prediction of coordinates.

The severity of this issue for the hind paw was less and
we adjusted one weight: incrementing the first weight by
two representing F3 (the initial hue value) because the
pink parts of hind paw are completely obvious, and the
hue channel carries the color information. This incrimi-
nation is done for the initial hue value because we are sure
about the color information from the first frame.

Table 2 A summary of tracking results
Our Algorithm  SLIC+ 2D SLIC+3D Manual

Total Number of Frames 36,700 8000 8000 4000
Time Avg 1267 2701 2650 7848
Time STD 129 236 171 1320
Major Error Avg 2.54 13.23 1143 0
Major Error STD 1.87 5.63 348 0
Minor Error Avg 529 8.06 10.29 0
Minor Error STD 2.38 348 539 0

This table summarizes the results presented in Fig. 7
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5 Discussion

It is often important to track the tips of appendages,
e.g., paws, feet, hands, because they often carry exten-
sive information relevant to a task [37]. But they are often
prone to difficult and periodic occlusions.

We presented a method to solve this problem by seg-
menting and tracking markerless paws of running rodents
on the treadmill. The treadmill arena was captured using
four side view cameras; two cameras were located on
each side of the treadmill, and the setup can be seen in
Fig. 1. SLIC superpixel method was used for segmenta-
tion. After one or two rounds of initial tracking, which was
MT, we predicted the location of paw using the 3D KF.
A “sub-image” was extracted from the frame. Then, eight
features described in Eq. 3 were extracted for each super-
pixel. These features were normalized and used to find
the best match for the paw based on the coordinates and
color features of the paw in the previous frame, and the
color features of the paw in the first frame tracked man-
ually. This was done using the fusion function based on a
weight vector presented in Eq. 5. The proposed method
requires calibration of the capture volume to extract the
DLT coefficients and a spline function calculation for find-
ing the paw motion pattern. Both of these calibrations
are needed only once for a given setup and specific
animal.

The main difficulties to develop a method were occlu-
sion, three types (I, II, and III) of collisions for the paws,
relatively rapid variations in the size and shape of paws,
distinguishing the paws from the other parts of the body,
and differentiating the paws from background and tread-
mill. One of the innovations that we employed was using
the scipy fitting tools to match the previously tracked paw
coordinates with the spline function from a typical motion
of paws. It helped us to fix the most severe collision,
“collision type II

A software to modify any possible mistakes was also
presented. The software gives the option of showing the
results for any sequence number of frames, saving the
results at any time while running the code, having the
possibility to adjust the parameters, visualizing the saved
results, and applying an edition at any time of tracking
or visualization. Figure 7 demonstrates that our proposed
method could track the paws with fewer mistakes in label-
ing and faster than other methods. To track a complete
trial, we needed an average of 2.54 editions (to fix major
errors) to have an acceptable tracked coordinates for the
paws. There was 5.29 mistakes, the minor error, after fix-
ing the major errors. Therefore, by a total of 7.83 editions,
clean tracking can be achieved. However, a low-pass fil-
ter can almost remove the adverse effect of 5.29 mistakes
among 1000 frames in a trial which means an average of
2.54 editions can have acceptable results. These reported
values are estimates of the expected errors.
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For tracking of the paws from four cameras, our pre-
sented method was about ten times faster than the manual
clicking and more than two times faster than three pos-
sible combinations of SLIC with 2D KF and 3D KE. This
has been illustrated in Fig. 7c. The reason that the other
three methods were slower was the need for manual click-
ing to avoid the major error. Fig. 7a suggests that the major
errors could lead to nonrecoverable mistakes and they
should be edited to complete a trial which the editions
were slowing down the speed of processing. However,
Fig. 7b shows about one half of minor errors for our
method. In addition, although KF is a powerful tool for
predicting states, the results of SLIC with 2D KF and 3D
KF suggest that KF in our setup would not be enough for
tracking of a paw. We believe that more parameters can
be involved for KF to improve its performance in future
works.

We also investigated the 3D reconstruction error shown
in Fig. 7d. The calibration object had an error of about 2
pixels offset between the original points and reprojected
points when the 25 markers were transferred to the 3D
domain, and then, they remapped to the 2D image planes.
This error was varying between 5 and 8 pixels for the paws
for the four cameras. The interesting point is that the two
front cameras, camera 1 and 4, had a slightly better 3D
reconstruction results for the front paws compared to the
hind paws. While the opposite trend can be seen for the
back cameras, camera 2 and 3.

The proposed algorithm is limited to quadruped ani-
mals, and it requires availability of a color difference
between the paws and the body of animal. It is indepen-
dent of the speed and gait; however, the animal cannot
move backward (turning back and move toward back),
climb the plexiglass walls, or stand on hind foods. In other
words, the animal should run (just not in the reverse
direction) or remain stationary. For rats and mice, these
conditions happen most of the recording time. If the color
features of the paw are not enough to differentiate the
paws from body for an animal, researchers can develop
a similar method using superpixels with extracting more
higher order features (like texture features or higher order
statistical color features).

It should be noted that the available methods for com-
parison were limited to manual segmentation or using a
combination of SLIC with 2D and 3D information in this
manuscript However, we have tried to employ a neural
network or optical flow for tracking which we had much
lower success in tracking; therefore, the results were not
presented here.

As our method relies only on the general assumption
that the individual legs will recirculate through space
and time, but not on any specific set of phase relation-
ships between legs, it will likely handle arbitrary gaits,
or issues with individual legs (hesitation, perturbation,
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The 3D reconstruction of these ten markers is illustrated on right

45 50 -5 60 65 -70

Fig. 9 3D reconstruction for a few landmarks. On the left, four camera frames are shown with ten markers. We bleached four markers on the body of
the mouse to make tracking easier for the body. In addition, ear, tail, nose, two paws, and top of the curve of the body are the other six landmarks.

injury, stuttering), without issue. While the generality of
the tracking is useful for tracking raw kinematic data from
recirculating paws, future work will build on these data to
construct a 3D model of the mouse body (Fig. 9). Body
roll, pitch, and yaw could be investigated, along with spinal
curvature, for example, to answer interesting questions in
biomechanics and disease models.

6 Conclusion

We have in fact developed a method based on kinematic
structure, in the sense that 3D trajectories through space
and time are considered, but not kinematic in the sense
of a “kinematic chain” or “skeleton” with multiple “bones”
or “segments” and joints, that are part of the tracker state.
The main assumption for our tracker is that the legs recir-
culate through a relatively flexible path in space and time.
As such, it will likely capture abnormal gait, or differ-
ent speeds, without difficulty. We believe that utilizing
the kinematic structure of the rodent, in the sense of a
detailed “skeleton” model of the animal, fit to the data,
is beyond the scope of this paper, due to the difficulty
of gathering raw kinematics from these animals without
markers. Future work will build on these data to build
such models of the rodent kinematic structure. Gait and
kinematic trajectory features vary by speed and animal to
animal, and it would make the method limited to specific
speed or gait. This can be done using a probabilistic joint
movement predictor position based on physical limitation

[2] and applying more sophisticated trackers [57], [41].
Finally, we would like to develop software for kinemat-
ics study for markerless tracking as we presented for
marker-based studies[34].
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