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Abstract

Hand gesture recognition methods play an important role in human-computer interaction. Among these methods
are skeleton-based recognition techniques that seem to be promising. In literature, several methods have been
proposed to recognize hand gestures with skeletons. One problem with these methods is that they consider little the
connectivity between the joints of a skeleton, constructing simple graphs for skeleton connectivity. Observing this, we
built a new model of hand skeletons by adding three types of edges in the graph to finely describe the linkage action
of joints. Then, an end-to-end deep neural network, hand gesture graph convolutional network, is presented in which
the convolution is conducted only on linked skeleton joints. Since the training dataset is relatively small, this work
proposes expanding the coordinate dimensionality so as to let models learn more semantic features. Furthermore,
relative coordinates are employed to help hand gesture graph convolutional network learn the feature representation
independent of the random starting positions of actions. The proposed method is validated on two challenging
datasets, and the experimental results show that it outperforms the state-of-the-art methods. Furthermore, it is
relatively lightweight in practice for hand skeleton-based gesture recognition.
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1 Introduction
Hand gesture recognition plays a key role in human-
computer interaction and is attracting increasing interests
for its potential applications in various fields. The meth-
ods for recognizing hand gesture can be classified into
two categories, static and dynamic ways. The first cat-
egory identifies hand gestures from a single image and
thus runs faster while the second identifies hand ges-
tures from a sequence of images and thus yields high
precision. Dynamic identification methods are getting
rising attention with the fast development of hard-
ware. Recently, the advancement of precise hand pose
estimation [1–3] allows for the hand gesture skele-
ton sequences to be generated in real time. Conse-
quently, skeleton sequences which have high semantic
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information and small data size start to replace RGB
images and depth maps [4, 5] in dynamic hand gesture
recognition.
Smedt et al. [6] proposed a new descriptor, shape of

connected joints (SoCJ), for skeleton-based hand gesture
recognition in 2016 and demonstrated better performance
over the methods employing depth maps as input. In
addition to SoCJ, many other hand-crafted features [7, 8]
were also designed. However, the problem of hand-crafted
features is the inadequate ability to describe high-level
semantic information.
Recently, deep neural networks have been widely used

in the field of hand gesture recognition. Nunez et al. [9]
proposed a method to extract features of each frame using
CNNs and aggregate the outputs of CNNs with a LSTM
[10]. Chen et al. [11] proposed a new motion feature aug-
mented recurrent neural network that firstly encodes the
joints of each finger and then the joints of the whole hand.
The method in [9] treated the skeleton joints as a pseudo-
image and that in [10] treated skeleton joints as a vector

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-019-0476-x&domain=pdf
http://orcid.org/0000-0001-9685-2571
mailto: yli@bupt.edu.cn
http://creativecommons.org/licenses/by/4.0/


Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:78 Page 2 of 7

sequence, but the connectivity of joints was not explicitly
considered.
Hou et al. [12] designed an end-to-end spatial-

temporal attention residual temporal convolutional net-
work (STA-Res-TCN) which modifies temporal convo-
lutional networks [13] for skeleton-based dynamic hand
gesture recognition. STA-Res-TCN models the connec-
tivity between joints by multiplying the output of an
additional branch with the original branch, which forms
the soft attention mechanism. However, using 3-D coor-
dinates as a 1-D sequence, i.e., embedded X, Y, and Z
dimensional coordinates on the same channel, limited its
performance. Avola et al. [14] aggregated the leap motion
controller sensor (LMC) with deep LSTM for hand ges-
ture recognition. Features that are highly discriminative
for the recognition are extracted by LMC and input to
deep LSTM. But LMC was an independent module and
cannot be directly embedded in deep LSTM, which made
the model a two-stage structure.
An end-to-end model, spatial temporal graph convolu-

tional networks (ST-GCN) [15], was recently proposed for
skeleton-based human activity recognition. This network
used motion features and kept the connectivity of joints.
Because these two advantages are both critical to hand
gesture recognition, ST-GCN might also be suited for it.
However, we notice the performance of ST-GCN might
be limited in hand gesture recognition by the following
facts: (1) Hand gesture is much finer than human gesture
because the former typically has a higher intra-class vari-
ance and lower inter-class variance. (2) The datasets for
hand gesture recognition are much smaller than human
action recognition, which may more likely lead neural
networks to overfitting.
To adapt ST-GCN to the hand gesture recognition, this

work proposed a new architecture named hand gesture

graph convolutional networks (HG-GCN). The structure
is shown in Fig. 1; the convolution operations are only
executed between the joints which are linked. Also, the
usually embedded 3-D coordinates are expanded 10-D to
let models learn more semantic features. Moreover, rela-
tive coordinates are employed to help HG-GCN learn the
feature representation independent of the random start-
ing positions of actions. With these improvements, the
proposed method achieves considerable performance on
DHG-14/28 [16] and SHREC’2017 [17].
The rest of the paper is organized as follows: Section 2

presents the structure of ST-GCN and our modifica-
tions on it. Section 3 discusses the experimental results
obtained. Finally, conclusions are outlined in Section 4.

2 Researchmethods
Convolutional networks perform well on processing
images and skeleton joints sequences which can be seen
as special images. However, arranging the joints as pixels
in images leads to the destruction of the original human
body topology. Since this defect has been noticed, Yan et
al. [15] proposed a novel model named ST-GCN to limit
the convolutional operations between the linked joints.
Inspiring by their work, we proposed HG-GCN for the
finger hand gesture recognition. To put the proposed
model into context, a brief overview of this structure
is firstly provided. Then, we describe our HG-GCN for
hand gesture recognition. Also, we detail two strategies to
process embedded data.

2.1 Overview of spatial temporal graph convNet
This section analyzes the structure of ST-GCN and its
propagation. A normal convolutional network takes input
as a four-dimensional matrix whose shape is [N ,H ,W ,C]
where N denotes the batch size, C denotes the channel,

Fig. 1 An illustration of the spatial temporal network for dynamic hand gesture recognition proposed in this paper. Blue dots that present joints and
links between them construct a whole human hand skeleton. The fading of color presents the forward of frames. Joints in the red box propagate
their weights to the special joint in the next layer
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and H × W denotes the area of the image. In order
to use convolutional networks for skeleton-based action
recognition, an embedded skeleton joints sequence is
reshaped to [N ,T ,V ,C] where N denotes the batch size,
T denotes the length of frames, V denotes the number of
joints each frame, and C denotes the coordinate dimen-
sions of joints. Although skeleton joints can be presented
as an image in this way, it ignores the relationship between
different parts of skeleton joints and hence propagate
irrelevant information from one joint to another, which
introduces noise between them.
To address this problem, Yan et al. [15] proposed ST-

GCN to multiply an adjacent [V ,V ] matrix Awith feature
maps after t × 1 convolutional operations. The elements
in this matrix are decided by the relationship of each two
joints, e.g., column vectors denote joints themselves and
row vectors denote the joints linked to them. The whole
weights add to 1 for every joint and are the same for all
linked joints, e.g., numbers of A1,M and AN ,M are both 0.5
if joint VM is only linked to joint VN . An example of it is
shown in Fig. 2.
Once joint Vm is linked with otherN joints, the forward

propagation to one joint is presented:

V(l+1)m =
T∑

t=1
Vlmt

wlmt
1 + N

+
T∑

t=1

N∑

n=1
Vlnt

wlnt
1 + N

; (1)

where l denotes the layer of feature maps, N denotes the
set of joints linked to vm, w denotes the corresponding
weights, and T denotes the temporal stride of the kernel.
As for feature maps, the propagation is presented:

fout = finWA; (2)

where fin and fout denote the input and output fea-
ture maps, respectively. A denotes the adjacent matrix
and W denotes the weight matrix. Also, this model is
composed of 9 layers of spatial temporal graph convolu-
tion operators and is lightweight enough to run in real
time. Because hand gestures are much finer than human
actions and the dataset of the former is much small.
The suitable depth of HG-GCN is also explored, and
the results are shown in Table 1. HG-GCN with 8 con-
volutional layers not only alleviates the overfitting, but
also keeps enough parameters to precisely recognize hand
gestures.

2.2 Hand gesture graph convNet
This section discusses embedding the ST-GCN model
into hand gesture recognition. For DHG-14/28 [16] and
SHREC’2017 [17], there are 22 skeleton joints for a
hand as shown in Fig. 3a: four joints for each fin-
ger, one joint (1) for the palm, and one joint (0) for
the wrist. The thumb contains joints (5, 4, 3, 2), the
index finger contains joints (9, 8, 7, 6), the middle fin-
ger contains joints (13, 12, 11, 10), the ring finger con-
tains joints (17, 16, 15, 14), and the pinkie contains joints
(21, 20, 19, 18).
Yan et al. linked the 18 joints of the human body

skeleton with 17 edges from head to foot in order. Due
to the high intra-class variation of fine hand gestures,
linking the 22 hand skeleton joints with 21 edges may
be unable to sufficiently encode the connectivity infor-
mation between joints and hence the learned feature
from hand joint model may yield an inferior recognition
performance. Observing this, we proposed a hand gesture

Fig. 2 a A propagation example of an embeddingmatrix which contains four one-dimensional joints and three frames. This matrix first convolve with
a 3× 1 kernel and then multiply with the 4× 4 link matrix. b How these four joints link. c The directly propagating way of the joints of the first frame
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Table 1 Results of different numbers of convolutional layers in
HG-GCN on SHREC’17 Dataset in 120 epochs

Layers 10 9 8

Accuracy 89.32 90.88 91.21

Layers 7 6 5

Accuracy 90.55 90.55 90.77

model to more accurately describe the “linkage” motion
information of different joints and hence let CNNs learn
more semantic features for better gesture recognition.
Firstly, a basic hand skeleton is built by linking joints in

each finger, e.g., (5, 4), (4, 3), (3, 2) for thumb, the base of
thumbwith the wrist, e.g., (2, 0), and bases of other fingers
with the palm, e.g., (6, 1). Then, the three types of edges
are to be added: The first type is to link the tip of each
finger except the pinkie with the base of the finger to its
right, e.g., (5, 6); the tip of the pinkie is linkedwith the base
of the ring finger. The second type is to link the third joint
of each finger except the pinkie to the second joint of the
little finger. The third type is to link the tip and third joint
of the same finger. All added edges are shown in Fig. 4b.
The basic hand skeleton provides most of the topology

and motion information. The first type of added edges
allows the model to measure the distance of two adjacent
fingers horizontally and vertically. This type of addition
lets the information of one finger propagate to another
and hence is able to encode the relationship between
them, e.g., overlap or separate. The second type of added
edges provides one more original point. It is connected
with all fingers and hence bettermeasures the open degree
of the hand. The third type of added edges directly pro-
vides the information of some actions like grabbing in
which fingers bend. The propagation of our model is
as follows if these four types of edges are denoted as
A1,A2,A3,A4 in order:

fout = finW · Frowavg(A1 + A2 + A3 + A4); (3)

where Frowavg presents the function to make the sum of
elements in every row to 1.

2.3 Data embedding strategy
This section discusses two data processing ways in order
to address the two problems in recognizing hand gesture.
The first presents overfitting by expanding the dimen-
sions of coordinates. The second presents reducing loca-
tion noises by translating absolute coordinates to relative
coordinates.
The public datasets of skeleton-based dynamic hand

gesture recognition are usually small and thus are not
sufficient to well train a model, which always leads over-
fitting. Researchers adopt data augmentation strategy like
scaling, shifting, time interpolation, and adding noises to
alleviate it. In addition to these, we proposed a coordinate
conversion way to augment the embedding data. Train-
ing sets of DHG-14/28 [16] and SHREC’2017 [17] both
provide skeleton joints with three and two-dimensional
coordinates.We convert them to spherical and polar coor-
dinates, respectively. Formally,

r =
√
x2 + y2 + z2 θ = arccos

z
r

ϕ = arctan
y
x

(4)

ρ =
√
x̃2 + ỹ2 θ̃ = arctan

ỹ
x̃
; (5)

where (r, θ ,ϕ) and (ρ, θ̃ ) are vectors of spherical and
polar coordinate system, respectively. Due to the insuf-
ficiency of training data, the deep neural networks may
only learn the feature representation based on the carte-
sian coordinate, while the semantic features from the
spherical or polar coordinates are not well learned when
the networks overfit. Incorporating the joint coordinates
under the different system will effectively alleviate the
overfitting problem, making the embedded encode more

Fig. 3 An illustration of the codes of hand joints. Three types of additional edges colored in red, blue, and green
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rotation and distance (length) information. To further
analyze the effect of complex coordinate combinations in
HG-GCN, an ablation experiment without relative CO
is carried out as shown in Table 2. When single kind
of coordinates is implemented, word, spherical, image,
and polar coordinate yield 84.98%, 72.64%, 86.43%, and
81.20% classification accuracy, respectively. This reveals
that Cartesian and 2-D coordinates better describe hand
gestures. When working with non-Cartesian coordinates,
2-D and 3-D coordinates improve 2.90% and 3.78% accu-
racy, respectively. When four kinds work together, the
classification accuracy further improve, verifying that
each kind of coordinates can be a good supplementary
to another one. The results also show that implementing
handcraft coordinate transformations helps neural net-
works to understand the hand gestures. Consequently, the
channel number C of our matrix expands from 3 to 10,
in which exist 3-D, 2-D, spherical, and polar coordinates,
e.g., {x, y, z, r, θ ,ϕ, x̃, ỹ, ρ, θ̃}.
In addition to the insufficient training data, the actions

of hands start from varying places in skeleton-based
dynamic hand gesture recognition datasets. The random
starting positions have an impact on the recognition per-
formance as part attention of CNNs will be paid to the
variation of positions. To address this problem, we pro-
pose substituting relative CO for absolute CO. The coor-
dinates of the wrist joint at the first frame are subtracted
from the coordinates of all the joints. Formally:

X̃vt = Xvt − X00 v ∈[ 0, 21] , t ∈[ 0,T − 1] ; (6)

where X denotes the absolute CO vector {x, y, z, ...} and X̃
denotes the relative CO vector. Xvt denotes the coordinate
vector of vth joint at t frame. By this means, the coordinate
vector of the wrist joint at the first frame of every action
will be of the form {0, 0, 0, ...}. Thus, the starting positions
of hand gestures in different videos are the same as each
other, which relieves the burden on CNNs to exclude the
noises by the variation of locations and hence helps CNNs
extract features of a better generalization ability.

Table 2 Results of different combinations of the coordinate on
SHREC’17 Dataset

Word Spherical Image Polar Accuracy

� × × × 84.98

× � × × 72.64

× × � × 86.43

× × × � 81.20

� � × × 87.88

× × � � 90.21

� � � � 91.32

The�denotes the implemented operation and × denotes not

3 Results and discussion
We evaluated HG-GCN on two public datasets, DHG-
14/28 [16] and SHREC’2017 [17]. The experimental
results show the considerable performance of HG-GCN.
The two datasets and experimental results are outlined
in the rest of this section. Also, analysis of results and
limitations of the proposed methods are discussed.

3.1 Datasets
DHG-14/28 Dataset and SHREC’17 Track Dataset are
both public dynamic hand gesture datasets. Each of them
contains 2800 sequences of 14 hand gestures performed
in 2 finger configurations (hence can also be seen as
28 classes). For DHG-14/28, each configuration of one
gesture is performed 5 times by 20 participants. For
SHREC’17, each configuration of one gesture is per-
formed between 1 and 10 times by 28 participants. Both
of them provide coordinates of 22 hand joints in the 3D
word space and 2D image space per frame.

3.2 Experimental results
The experiment on DHG-14/28 follows a leave-one-
subject-out cross-validation strategy. The final result is
the average of the outputs of 20 experiments.
The performance comparisons of HG-GCN with other

advanced methods is shown in Table 3. The proposed
method achieves 89.2% and 85.3% classification accuracy
on 14 gestures and 28 gestures setting, respectively. DSTM
[14] is excluded from this experiment for not giving the
reference data and experiment result. HG-GCN improves
0.3% accuracy over STA-Res-TCN [12] for the compli-
cated 28 gestures setting, which shows the advantage of
the proposed method on recognizing fine gestures. As for
the comparison with other methods, HG-GCN shows its
advantages obviously.
The experiment on SHREC’17 Track Dataset follows the

division of the training set and the testing set that have
1960 training and 840 testing sequences, respectively. The
performance comparisons are shown in Table 4. Except
for DLSTM which uses hand-crafted angular features

Table 3 Results on DHG-14/28 Dataset

Method 14 gestures 28 gestures

SoCJ+HoHD+HoWR [16] 83.1 80.0

De Smedt et al. [6] 82.5 68.1

CNN+LSTM [9] 85.6 81.1

Chen et al. [11] 84.6 80.3

DPTC [18] 85.8 80.2

STA-Res-TCN [12] 89.2 85.0

HG-GCN 89.2 85.3

The second column describes the accuracy rates of 14 gestures setting. The last
column describes the accuracy rates of 28 gestures setting
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Table 4 Results on SHREC’17 Dataset

Method 14 gestures 28 gestures

HIF3D [19] 90.4 80.4

De Smedt et al. [6] 88.2 81.9

Devineau et al. [20] 91.2 84.3

STA-Res-TCN [12] 93.6 90.7

DLSTM [14] 97.6 91.4

HG-GCN 92.8 88.3

The second column describes the accuracy rates of 14 gestures setting. The last
column describes the accuracy rates of 28 gestures setting

from hand joints as the input, other results are similar
to the results on DHG-14/28. HG-GCN yields 92.8% and
86.3% accuracy on 14 gestures and 28 gestures setting,
respectively. The worse performance compared with STA-
Res-TCN may be caused by the reduced ratio of the
training set to the testing set (from 19 : 1 to 7 : 3)
[21–23]. In this case, the inverse kinematics used by
STA-Res-TCN works more effectively than the polar and
spherical coordinates which also need to be learned.
The results shown in Table 5 exhibits the surprising

speed of the proposed method. DLSTM [14] is excluded
from this comparison for not belonging to an end-to-end
structure. The Skeletons/s denotes the number of frames
we can calculate per second and the Gestures/s denotes
the number of gesture examples we can calculate per sec-
ond. The proposed method achieves 31605 Skeletons/s
and 525.0 Gestures/s, exceeding the speed of CNN +
LSTM and STA-Res-TCN by a large part, also far exceed-
ing the standard of real-time analysis (i.e., 30 skeletons per
frame) in the video.
The effects of our improvements on 14 gesture setting

of SHREC’17 are shown in Table 6. For comparison, ST-
GCN without any modification yields nearly 89.0% accu-
racy. The model with additional edges improves 0.33%
accuracy over the baseline ST-GCN. The addition of rel-
ative CO and coordinate conversion improve 0.23% and
nearly 1.00% accuracy over the model with additional
edges, respectively. The aggregation of them improves
3.78% over the baseline ST-GCN. The results not only
show that every strategy we adopt is useful, but also
reveals that they work well with each other.

Table 5 Speed of the methods

Method Skeletons/s Gestures/s

CNN+LSTM [9] 7615 126.5

STA-Res-TCN [12] 9691 161.0

HG-GCN 31605 525.0

The second column describes the max number of skeletons that can be processed
by the network per second. The last column describes the max number of gestures
that can be processed by the network per second

Table 6 Results of 14 gesture setting on SHREC’17 Dataset

Additional edges Relative CO CO conversion Accuracy

× × × 88.99

� × × 90.32

� � × 90.55

� × � 91.32

� � � 92.77

The�denotes the implemented operation and × denotes not

3.3 Discussion
This section discusses the implications of the findings in
the context of existing research and highlights a limitation
of the study.
The results in Tables 3 and 4 indicate the strong classi-

fication ability of the proposed method for hand gestures
and results in Table 5 indicate the fast classification speed
of the proposed method. Supporting by these two fea-
tures, HG-GCN can be implemented into devices for
video surveillance, human-computer interaction, robot
vision, autonomous driving, and so on and provide preci-
sion classification results in real-time.
Although HG-GCN shows intriguing effectiveness, a

drawback still limits its better performance which is to be
improved in the future. The adjacent matrix is heuristi-
cally pre-designed and the same for all layers. Considering
that different layers contain different-level semantic infor-
mation, the adjacent matrix should be adaptively changed
for different layers.

4 Conclusions
This paper proposed hand gesture graph convolutional
network which is modified from spatial temporal graph
convolutional networks for skeleton-based dynamic hand
gesture recognition. A special adjacent matrix is designed
to be multiplied with feature maps to amend the prop-
agating directions of joint weights. Also, the dimensions
of joint coordinates are expanded to better use domain
knowledge for CNNs. Moreover, the coordinates are nor-
malized to make every gesture start from the same posi-
tion. Hand gesture graph convolutional network achieves
high accuracy on both two challenge datasets with very
fast speed. This shows the effectiveness of the proposed
method. As for future development, more complex link
ways of joints can be designed for a larger dataset. Other
domain knowledge can also be introduced.

Abbreviations
CNNs: Convolutional neural networks; DPTC: Deformable pose traversal
convolution; HG-GCN: Hand gesture graph convolutional network; LMC: Leap
motion controller sensor; LSTM: Long time short memory; SOCJ: Shape of
connected joints; ST-GCN: Spatial temporal graph convolutional networks;
STA-Res-TCN: Spatial-temporal attention residual temporal convolutional
networks



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:78 Page 7 of 7

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful
comments and valuable suggestions.

Authors’ contributions
ZHH came up with this idea and did the experiments. YL and XY were the
major contributors in writing the manuscript. All authors read and approved
the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China
(No. NSFC-61471067, 81671651), the National Great Science Specific Project
(No. 2015ZX03002008), the Beijing Municipal Natural Science Foundation (No.
4172024), Beijing University of Posts and Telecommunications (No.
2013XD-04, 2015XD-02), and the Beijing Key Laboratory of Work Safety and
Intelligent Monitoring Foundation.

Availability of data andmaterials
Please contact the author for data requests.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Science, Beijing University of Posts and Telecommunications, No.10
Xitucheng Road, Haidian District, Beijing 100876, People’s Republic of China.
2School of Electronic Engineering, Beijing University of Posts and
Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing 100876 ,
People’s Republic of China. 3Ye Peida School of Innovation and
Enterprencurship, Beijing University of Posts and Telecommunications, No.10
Xitucheng Road, Haidian District, Beijing 100876, People’s Republic of China.

Received: 24 January 2019 Accepted: 19 July 2019

References
1. D. Tang, J. Taylor, P. Kohli, C. Keskin, T. K. Kim, J. Shotton, Opening the

black box: hierarchical sampling optimization for estimating human hand
pose. Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 3325–3333 (2015)

2. Q. Ye, S. Yuan, T. K. Kim, Spatial attention deep net with partial pso for
hierarchical hybrid hand pose estimation. Eur. Conference on Computer
Vision (ECCV), 346–261 (2016)

3. G. Wang, X. Chen, H. Guo, C. Zhang, Region ensemble network: towards
good practices for deep 3d hand pose estimation. J. Vis. Commun. Image
Represent. 55, 404–414 (2018)

4. P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, J. Kautz, Online detection
and classification of dynamic hand gestures with recurrent 3d
convolutional neural network. Comput. Vis. Pattern Recog. (CVPR),
4207–4215 (2016)

5. N. Neverova, C. Wolf, G. Taylor, F. Nebout, Moddrop: Adaptive
multi-modal gesture recognition. IEEE Trans. Pattern. Anal. Mach. Intell.
38, 1692–1706 (2014)

6. Q. D. Smedt, H. Wannous, J. P. Vandeborre, 3d hand gesture recognition
by analysing set-of-joints trajectories. Eurographics Work. 3D Object Retr.,
86–97 (2017)

7. X. Yang, Y. Tian, Eigenjoints-based action recognition using
naive-bayes-nearest-neighbor. Proc. IEEE Conf. Comput. Vis. Pattern
Recog. Workshops, 14–19 (2012)

8. H. Chen, G. Wang, J. Xue, A novel hierarchical framework for human
action recognition. Pattern Recognit. 55, 148–159 (2016)

9. J. C. Nunez, R. Cabido, J. J. Pantrigo, A. S. Montemyaor, J. F. Velez,
Convolutional neural networks and long short-term memory for
skeleton-based human activity and hand gesture recognition. Pattern
Recognit. 76, 80–96 (2018)

10. A. Graves, Long Short-Term Memory. Supervised Sequence Labelling
Recurrent Neural Netw., 37-45 (2012). Springer Berlin Heidelberg

11. X. Chen, H. Guo, G. Wang, L. Zhang. Motion feature augmented recurrent
neural network for skeleton-based dynamic hand gesture recognition,
(2017), pp. 2881–2885

12. J. Hou, G. Wang, X. Chen, J. Xue, R. Zhu, H. Yang, Spatial-temporal
attention res-TCN for skeleton-based dynamic hand gesture recognition.
Proc. Fourth Int. Work. Observing Underst. Hands Action, 273–286 (2018)

13. C. Lea, M. D. Flynn, R. Vidal, A. Reiter, G. D. Hager, Temporal convolutional
networks for action segmentation and detection. Comput. Vis. Pattern
Recognit. (CVPR), 1003–1012 (2017)

14. D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, C. Massaroni, Exploiting
recurrent neural networks and leap motion controller for sign language
and semaphoric gesture recognition. Computer Vision Pattern
Recognition, 234–245 (2018)

15. S. Yan, Y. Xiong, D. Lin, Spatial temporal graph convolutional networks for
skeleton-based action recognition. Association for the Advance of
Artificial Intelligence (AAAI), 7444–7452 (2018)

16. Q. D. Smedt, H. Wannous, J. P. Vandeborre, Skeleton-based dynamic hand
gesture recognition. Comput. Vis. Pattern Recog. Workshops, 1206–1214
(2016)

17. Q. D. Smedt, H. Wannous, J. P. Vandeborre, J. Guerry, B. L. Saux, D. Filliat,
Shrec’17 track: 3d hand gesture recognition using a depth and skeletal
dataset. Eurographics, 86–97 (2018)

18. J. Weng, M. Liu, X. Jiang, J. Yuan, Deformable pose traversal convolution
for 3d action and gesture recognition. Eur. Conf. Comput. Vis. (ECCV),
142–157 (2018)

19. S. Y. Boulahia, E. Anquetil, F. Multon, R. Kulpa, in International conference
on image processing. Dynamic hand gesture recognition based on 3D
pattern assembled trajectories, (2017), pp. 1–6

20. G. Devineau, F. Moutarde, W. Xi, J. Yang, in IEEE International Conference on
Automatic Face Gesture Recognition. Deep Learning for Hand Gesture
Recognition on Skeletal Data, (2018), pp. 106–113

21. C. Yan, H. Xie, J. Chen, Z. Zha, X. Hao, Y. Zhang, Q. Dai, A fast uyghur text
detector for complex background images. IEEE Trans. Multimed. 20, 1–1
(2018)

22. C. Yan, L. Li, C. Zhang, B. Liu, Q. Dai, Cross-modality bridging and
knowledge transferring for image understanding. IEEE Trans. Multimed,
1–1 (2019)

23. C. Yan, Y. Tu, X. Wang, Y. Zhang, X. Hao, Q. Dai, Stat: Spatial-temporal
attention mechanism for video captioning. IEEE Trans. Multimed, 1–1
(2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


