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Abstract

In this paper, we propose a robust visual tracking method based on mutual kernelized correlation filters
with elastic net constraint. First, two correlation filters are trained in a general framework jointly in a

closed form, which are interrelated and interacted on each other. Second, elastic net constraint is imposed
on each discriminative filter, which is able to filter some interfering features. Third, scale estimation and
target re-detection scheme are adopted in our framework, which can deal with scale variation and

tracking failure effectively. Extensive experiments on some challenging tracking benchmarks demonstrate that
our proposed method is able to obtain a competitive tracking performance against other state-of-the-art
algorithms.
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1 Introduction

Visual tracking is a fundamental task in computer vi-
sion with numerous applications, such as unmanned
control systems, surveillance, assistant driving, and so
on. Given the position of the tracked object in the
first frame, the goal of visual tracking is to estimate
the position of the tracked target in the subsequent
frame precisely. Although great progress has been
made in recent years [1, 2], designing a robust track-
ing algorithm is still a challenging problem due to
negative factors such as background clutters, severe
occlusion, motion blur, and illumination variation (see
Fig. 1).

Generally speaking, visual tracking methods can be
divided into two categories: generative methods [3-7]
and discriminative methods [8-13]. Generative
methods attempt to build a model to represent
tracked target and find the region with the minimum
reconstruction error from a great deal of candidates.
For example, under the particle filter framework, Mei
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et al. [14] developed a tracker method based on
sparse representation, called the £; method, which re-
constructs each candidate with dictionary template
and trivial template. The sparse representation coeffi-
cients of each candidate can be computed by solving
£, minimization. Despite £; method demonstrated im-
pressive tracking performance, the tracking speed is
very slow because of its huge computation load. In
order to solve this problem, Bao et al. [15] proposed
a fast €; tracking method by using accelerated prox-
imal gradient approach. Xiao et al. [16] presented a
fast object tracking method by solving €, regularized
least square problem. Wang et al. [17] developed a
novel and fast visual tracking method via probability
continuous outlier model. Different from the general
method, discriminative algorithms regard visual track-
ing as a binary classification problem which distin-
guishes the correct tracked object from the
background. For example, Babenko et al. [18] trained
an online discriminative classifier to separate the
tracked object from the background by online mul-
tiple instance learning. Zhang et al. [19] formulated
visual tracking as a binary classification via a naive
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Fig. 1 Tracking results in challenging environments including background clutters (motorRolling), severe occlusion (Jogging-1), fast motion
(skiing), illumination change (Singer2). The tracking results of HDT, Staple, KCF, CNN-SVM, DSST, MEEM, and our tracker are shown by red, green,
blue, black, magenta, cyan, and gray rectangles, respectively

Bayes classifier with an online update scheme in the
compressed domain.

In recent years, visual tracking methods based on
correlation filter [20-25] have attracted great atten-
tion due to its real-time tracking speed and robust
tracking performance. Under the framework of correl-
ation filter, a discriminative classifier is trained with a
great deal of dense sampling examples. These dense
sampling examples are with circulant structure which
allows the use of the fast Fourier transform (FFT).
Bolme et al. [26] first developed a minimum output
sum of squared error filter for real-time visual
tracking. After that, a great deal of tracking methods
based on correlation filter has been proposed to
improve tracking performance. Henriques et al. [27]
developed a high-speed tracker with kernelized correl-
ation filters which can deal with multi-channel fea-
tures. Danelljan et al. [28] presented a discriminative
scale space tracker with a correlation filter based on a
scale pyramid representation. In order to mitigate the
unwanted boundary effect which appeared in
traditional correlation-based trackers, Danelljan et al.
[29] figured out spatially regularized discriminative

correlation filters (SRDCF) for visual tracking. Recent
researches have shown that features from convolu-
tional neural networks (CNN) can improve tracking
performance greatly [30-33]. Zhang et al. [34] builded
a simple two-layer convolutional network to learn
robust representation for visual tracking without off-
line training. Ma et al. [35] utilized three convolu-
tional layers to learn robust target appearance for
visual tracking. Wang et al. [36] exploited robust tar-
get appearance representation from the top layer to
lower layer for object tracking. Heng et al. [37] incor-
porated recurrent neural network (RNN) into CNN to
improve tracking performance. He et al. [38] inte-
grated weighted convolution responses from 10 layers
and achieved a very promising performance.

Although correlation filters based trackers have ob-
tained superior tracking performance, many trackers
utilized a single correlation filter and could not
achieve promising tracking results. Figure 2 gives the
precision plots and success plots of OPE by methods
with a different number of correlation filters on
OTB-2013. It is obvious that just simply merging two
correlation filters is able to greatly improve tracking
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Fig. 2 Precision plots and success plots of OPE by methods with different correlation filters on OTB-2013
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performance in both precision and success rate. How-
ever, there is still much room for improvement for
methods using two correlation filters which are inde-
pendent of each other.

Inspired by the above discussions, we develop a ro-
bust visual tracking method via mutual kernelized
correlation filters using features from convolutional
neural networks (MKCN_CNN), where each tracker
works on its own and tries to correct the other one.
At the same time, an elastic net constraint is imposed
on each filter, which can eliminate some distractive
features. Finally, the proposed tracking framework can
be solved in a closed-form fashion. Extensive experi-
ments demonstrate that our method can achieve
promising tracking performance competing with some
other state-of-the-art trackers.

The rest of this paper is organized as follows.
Section 2 briefly summarizes the principle of visual
tracking based on kernelized correlation filter. Section
3 introduces the proposed tracking algorithm in de-
tails. The experimental results and corresponding dis-
cussions are described in Section 4, followed by the
conclusion in Section 5.

2 Visual tracking based on kernelized correlation
filters

Henriques et al. [27] proposed a fast discriminative visual
tracking method based on kernelized correlation filters
(KCF). Given a 1 x 1 vector X = [Xy, Xo, .., X,1] © denoting a
base image, a shifted version of x can be defined by
{P'x|u=1} =[x, X1, o) X, _ 1% Here, P is a permutation
matrix. So, the full shifted signals of x are given by
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Fig. 3 The flowchart of our proposed tracking framework
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Table 1 Matlab pseudo-codes of MKCF_CNN

The details of MKCF_CNN method

Input:

X, :training features from conv5—4 convolution layer.
X, :training features from conv4—4 convolution layer.
x, :testing features from comv5—4 convolution layer.
xz :testing features from conv4—4 convolution layer.
y :regression label.

A, 1,7, p :constant parameters in equation (15) and (17).
Output:

The final response and the position of target

Function [« f,,,, ,]=train (xl,xz,y,l, 1T, p)
k, = kernel_correlation (x, , X, );
k, = kernel_correlation (x,,X, );
y=ffi2(y);
G = K oy +2pK o Kyoa, +upf |
(1+2p)k, ok, + Ak, +

B =sign(al)max(0, a]|—LJ;
2u
4 :ﬁzoy"‘z?ﬁzfl}looﬁ"'ﬂﬂz .
(1+2p)k, ok, + Ak, + p

B, = sign(a, Jmax (0, |o,| - 2;} ;

End

Function response = detect (al 05 X, X, X, xz)
k, =kernel_correlation (x,, X, );
k,=kernel_correlation (x,,x, );

responsel = F ! (kl ° al’,);

response2 = F ! (k1 oa,,);

If max (responsel(:) ) > max (response2(:) )
response = max( responsel(’)) ;

Else

response = max( response2(:))

End

End

Function k = kernel_correlation (x,, X, sigma)
¢ = iff2(sum(conj(ifft2 (x,) ). *fft2 (x,),3));
d=x,0) *x,() +x,() *x,() —2*c;

sigmad *abs(d)

k=exp| =———|;
P numel(d)

End
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{P"x|u=1,2,...,n—1}. Then, the data matrix X is defined
by all the cyclic shifted version of x which can be made di-
agonal by discrete Fourier transform (DFT).

X = F diag(x)F (1)

Here, F means the DFT matrix, H stands for trans-
pose and complex-conjugate, X = % (x), which com-
putes the DFT of vector x. The goal of KCF is to
find a discriminative correlation classifier fix) over
the data matrix X for separating the target object
from the surrounding environment. Given the training
dataset and their corresponding labels (x3,%1), ..., (X,
¥m), the discriminative correlation classifier fix) can
be obtained by the following equation,

min > (f(x)-;)” +Aflwi* (2)

where 1 means the regularization parameter. x; stands
for the ith row element of the data matrix X. A
Gaussian function is adopted to model the label y;.
When x; is the centered target, y; is set to 1. For the
other cyclic shifted version of x; around the center
target, their labels smoothly decay to 0. The solution
w can be easily obtained by w= (XX +AI)"'X"y. In
order to get a powerful model, kernel trick is intro-
duced into Eq. (2). The new model is rewritten as

min || Ka-y]|; + aKa (3)

where K is a # x n kernel matrix and one of its elements
is K; = k(x; x;). Matrix K has a circulant structure and
can be diagonalized as

K = F! diag (k) F (4)

Here, k is the first row of matrix K. The solution «a in
the dual space can be given by

a=(K+A)y (5)

where I is an identity matrix. Just as the data matrix
X, kernel matrix K is also circulant. So, the solution
of Eq. (3) can be efficiently computed in the fre-
quency domain.

. y

TR ©)

In the next frame, a great deal of candidates, denoted

as X, are extracted at the same position as the current
frame. Actually, all these candidates’ x are obtained from
the cyclic shift of the base image x. The response of
these candidates can be computed from

(2019) 2019:73
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f(x’) — 7 (12 »at) (7)
Here, # ! stands for the inverse discrete Fourier trans-

form (IDFT). k means the kernel correlation of candi-
dates x and base image x in the frequency domain. -
denotes element by element multiplication. The candi-
date with the largest response is chosen as the final tar-
get object in the next frame.

3 Methods

Though the KCF method has obtained promising tracking
performance, only one discriminative classifier is used in
this model, which makes the KCF method not able to deal
with complex sciences. In order to overcome these prob-
lems, inspired by ensemble tracking methods, we pro-
posed mutual kernelized correlation filters with elastic net
constraint for visual tracking. Extensive experiments show
that our method can perform better than the state-of-the-
art methods. The flowchart of our proposed tracking
framework is demonstrated in Fig. 3.

3.1 Problem statement
In order to find the best target object from a great deal
of candidates, we introduce a linear regressor model in
the proposed method.

min [[y-Xwlf; (8)

Here, X has the same definition as KCF. y means re-
gression label value of X. w represents the correspond-
ing coefficient. In order to promote the performance of
Eq. (8), just as least absolute shrinkage and selection op-
erator (LASSO) model, ¢; norm is adopted to regularize
the coefficients w.

: 2
min [[y-Xwl[; + zf[wl|, ©)

where 7 is a constant weight parameter. In Eq. (9),
some values of w are set to zero which can make
some occluded pixels excluded in this new model. So,
the occluded pixels have less effect on the final
decision of regression values. However, we find that
the occluded pixels often assemble in one position
together. Eq. (9) cannot group these pixels with the
same features. So, in order to overcome the limita-

tions of the LASSO model, an elastic net
regularization [39] is introduced in Eq. (9).
. 2
min [[y-Xwl[; + Af[wl], + z[wl|, (10)

Here, A is a constant weight parameter. [lwll, is used
to group pixels with the similar property. In order to
promote the tracking performance of our method,
kernel trick is exploited in Eq. (10). The candidates
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Table 2 Tracking pipeline of MKCF_CNN method
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Proposed tracking method.

Input:The ¢ -th frame, position of target at the
QOutput:Position of target at the £ -th frame.
Repeat:

(t —1) -th frame.

1: obtain two training features of conv5—4 convolution layer and conv4—4 convolution layer

atthe (¢ —1)-th frame, respectively;

2: get a great deal of features X'1 and x'2 of candidates from conv5—4 convolution layer and

conv4d—4 convolution layer, respectively;

3: compute responsel and response2 by equation (30) and (31), respectively;
4: estimate the new position of target by finding the maximum value response between

responsel and response2;

5: if responsel < T, conduct target re-detection scheme using (32) and obtain new position
(x,,y,) of target; Estimate the size of target (Wt , ht) using (33).

Until: End of video sequences.

are mapped to a high-dimensional feature space ¢(x).
Then, in the dual space, the solution w is given by a
linear combination of mapped candidates.

W= ap(x) (11)

Equation (10) in the dual space can be described as

min |Jy-Ka|5 + 1a"Ka + 7/ja|, (12)
a

where K represents kernel matrix. The solution of a in-
volves square norm and €; norm simultaneously. In
order to compute a efficiently, another variable g is in-
troduced in Eq. (12).

min |[y-Kal; +Aa’Ka + 7], +pulla-pl;  (13)

Here, y is a constant weight parameter.

3.2 Mutual kernelized correlation filters

In this part, we introduce mutual kernelized correlation
filters based on Eq. (13). Then, the proposed mutual ker-
nelized correlation filters will solve this following problem

T(a1,a) = ;ln‘gl ||y—I(1cx1||§ + ||y—K2cx2||§ +/1a1TK1a1
+hag Kots + 7[[B ], + 7(|Bo ], + el

+/4||0!2—,82H§ + 2PHI<10!1—K20£2||§
(14)

The first two parts of Eq. (14) force each kernelized
correlation filter model to have the minimum squared
error with respect to the desired output regression

label . AalT Kia —|—/1042T Kya, denote the elastic net
regularization on two models respectively. 7B, + 7
||/)’||2—|—/4||a1—/)’1||§+uHa2—/32||§ are introduced to ex-
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clude the occluded pixels in the target object. 2p
[ K a1 -Kaaz |3 is used to weight the influence of the
two kernelized correlation filter models.

It is obvious that Eq. (14) is convex with respect to a;,
ay if By, Bo are fixed, and vice versa. So, we propose an
iterative algorithm to compute the solution a;, a,. Thus,
four subproblems with respect to a;, as, 51, 52 are given
as follows

Th(a) = min ly-Kia1|f5 + Ao Kiay + 7|3y,
+//l||a1—ﬁ1H§ -+ 2p||K1¢x1—K20c2||§

(15)
T(B,) = min [l + ul|as -5, | (16)
T3(ay) = min [ly-Kaas|; + Aal Koay
+7]1Boll, + ullar-ll;
+ 20| [ Ky - Ko 5 (17)
T4(B,) = r?in TH/’)2H1 +P‘H“2_ﬁ2”§ (18)

Set the derivation of T with respect to a; to be zero;

Eq. (15) can be rewritten as follows:
T,

Foake 2K (y-Kiap) + 24K oy + 4pK; (Kyay -Koaz) + 2u(a1-5,)
1

= 2Ky + 2K Ky a1 + 20K a1 + 4pK; K o -4pK Kooy + 2pa, -2uf3,
=0
(19)

Change the order of formula (19), we obtain

KlKlal +/1K10[1 + 2pKII(10(1 + Ha, = I(ly + 2pK11(26l€2 -+ /4/)’1
>(Ki Ky + MKy + 20K Ky + pul)ay = Kyy + 2pK Koy + pf3;
(20)

Then, we obtain the solution a;

a; = (K K; 4+ 2K, + 20K Ky + pl) ™ (Kyy + 20K Koy + pf;)
(21)

Set the derivation of T3 with respect to a, to be zero; a
similar solution a, is given as follows:

Ay = (1(21(2 + A,Kz -+ 2pK21(2 + /ll)il(l(zy + 2p1(21(1t)(1 + //lﬁz)
(22)

It is straightforward that Eqgs. (16) and (18) are least
squared by €; norm regularization. Thus, the solution f5;
and f3, have closed form which can be easily achieved by
a soft shrinkage function

(2019) 2019:73
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B, = sign(a;) max (0, |a1|—i> (23)

B, = sign(ay) max <07 |a2|—i> (24)

By introducing Eqgs. (4), (21) can be reformulated as
follows:

a) = (K Ky 4+ AK; + 20K K + p0) ™ (Kpy + 20K Koay + )
A~ ~ -1
- ((1 +2p)FH diag<k1 okl) F+AF" diag(k1> F+ ,41)
X (FH diag (fq) Fy +2pF" diag <R10R2> Fay + /4,81)

1
(1 + Zp)f(l °R2 +/1f(1 +u

1 PN
— ~ diag( k; -k, | Fa:
(1+2p)k1°k2+/1k1+/4> g( ! 2) :

= F diag

diag (1}1) Fy

+2pF™ diag (

1
+uF? dia — - F
“ g((1+2p)k1°k2+/1k1+/4> A

(25)
Then, the DFT of a; is found by

ki

(14 2p)k; ky + Ak + p

ki ko

(1 + 2p)ky ky + Ak +
1

(1 + 2p)k; ok + Ak + p

a; = diag

y+2p

diag a +p

diag B

ki-y + 2pkikooar + P,
(1 + 2/))1(1 ok +Ak; + U

(26)
In the same way, the DFT of a5 is obtained from

& = kyoy + 2el(zjk1 o A—i— up, (27)
(14 2p)ky-ky + Aky + p

Here, k, is the first row of matrix K.

3.3 Model update

To update the proposed MKCF_CNN method for robust
visual tracking, an incremental scheme is adopted to up-
date the proposed model,

are = (1-n)ar,1 + &y (A2 = (1-m)aze1 + yCoy
(28)

X1 = (1-9)X1 1 + yX1Xo = (1-9)Xo o1 + 1Xoy
(29)
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where # is a constant parameter which controls the
learning rate. The subscript ¢ denotes the tth frame. The
incremental update strategy can deal with the abrupt

(2019) 2019:73
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tracted around the base image x;, ,_ ;. The base image x;,
._1 locates at the position of the target at the (£-1)th
frame. The candidates x’lvt have a circulant structure.

change in successive frame.

34

For kernel correlation filter K, in the tth frame sequence,
a great deal of circulant candidates, denoted as X;,t’ are ex-

Target detection

Thus, the responses of these candidates are given by

responsel = 7! (RI °a17t)
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Fig. 5 Precision plots of OPE with different attributes on OTB-2013
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In the same way, the responses of these candidates X,Z,t
with respect to kernel correlation filter K, are obtained by

N

response2 = 7 ! (k2 ozxz,t)

The maximum values of responsel and response2
are easily achieved by max(responsel(:)) and max

(response2(:)), if max(responsel(:)) >

respectively.
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max(response2(:)), the final response is equal to max(-
responsel(:)). Otherwise, the final response is equal to

max(response2(:)). The best position of the target is
obtained according to the final response.

(31)

3.5 Convolutional neural network (CNN) features

gradient

(HOG),

SIFT,

extracted from MatConvNet
Traditional features, such as histogram of oriented
achieved

and CN, have
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Fig. 6 Success plots of OPE with different attributes on OTB-2013

Success rate

Success rate

Success rate

Success plots of OPE - fast motion (17)

\

= DeepSRDCF [0.608]

s Quirs [0.587]

s HCF T [0.578]

s HDT [0.574]

e SRDCF [0.569]
MEEM [0.553]

s CNN-SVM [0.545]

s Staple [0.508]

e SAMF [0.483]

= DSST [0.428]

01 02 03 04 05 06 07

Overlap threshold
Success plots of OPE - low resolution (4)

08 09

1

| === HCF T [0.557]

e Ours [0.624]

e HDT [0.551]

e CNN-SVM [0.461]

s Staple [0.438]
SRDCF [0.426]

e DSST [0.408]
— SAMF [0.388]
s MEEM [0.360] A\
= DeepSRDCF [0.352]

0

01 02 03 04 05 06 07 08

Overlap threshold

S‘uccess plots of OPE - out-of-plane rotation

09

08

39)

e DeepSRDCF [0.630]

s Ours [0.613]

e SRDCF [0.599]

s HCFT [0.587]

e HDT [0.584]
CNN-SVM [0.582)

e Staple [0.575]

e SAMF [0.559]

s MEEM [0.558]

e DSST [0.536]

0.1 02 03 04 05 06 07 08 09
Overlap threshold

1




Wang and Zhang EURASIP Journal on Image and Video Processing

promising tracking performance in the past decade.
However, these handcrafted features are out-of-date
along with the rise of CNN features. In [40], the
properties of CNN-based representation have gained
impressive results on image recognition and object
detection. In [35], three convolutional layers, conv3 -
4, conv4 -4, conv5 -4, utilizing VGG-19 model are
introduced to the field of visual tracking and demon-
strate powerful representation ability. Inspired by [41],
we used the conv5 -4 convolution layer and conv4 -
4 convolution layer of VGG-19 to model the appear-
ance of the target. Features from conv5 -4 convolu-
tion layer with more semantic information can
discriminate the target from the dramatically changing
background. Features from conv4 -4 convolution
layer with more spatial details can locate the position
of target precisely.

3.6 Target recovery

We adopt the EdgeBox method [42] to re-detect the
target from the failures of tracking. A great deal of
object bounding box detection proposals P, are gen-
erated by the EdgeBox method, and these proposals
are evaluated under the framework of correlation fil-
ter to decide the final tracking position. Given the
position (x;_1,7,_1) of the target in the (£-1)th
frame, a set of bounding box proposals are extracted
around the position of the target in the current
frame. The position of each bounding box proposal p;
is set to (xi,»!) in the tth frame. The maximum re-
sponse score of each bounding box proposal p; is
given by r(p;), which is computed by Eq. (7) using the
HOG feature. If the score of tracking results in the
tth frame is smaller than the threshold T, it can be
believed that the tracker loses the target and the
scheme of re-detection should be triggered. The
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optimal bounding box proposal in the tth frame is
obtained by minimizing the following expression:

arg minr(p}) + aL(p,p, ;)

i , (32)
sit. r(p}) > 15T,
L(phpes) = expl- gk | () ~(xer, ) )
The formula L(pi,p, ;) is motion constraint between
two successive frames. a is a constant parameter
which controls the balance between the response
score and the motion constraint. ¢ means the diag-
onal length of the initial target size.

where

3.7 Scale estimation

Scale estimation is very important for robust tracking.
Motivated by [42], we use the EdgeBox method to
deal with scale variation appeared in sequences. Given
the size (w,_1,h,_1) of the target in the (£-1)th
frame, we use the EdgeBox method to conduct on
the multi-scale bounding box proposals P; with the
size of sw,_;xsh,_; in the current frame and reject
the proposals whose intersection over union (IoU) is
lower than 0.6 or higher than 0.9. For each accepted
scale proposal, we compute the response score under
the framework of correlation filter. If the maximum
response score {r(p;)|p;€P,} is smaller than response
obtained in Section 3.4, we keep the size of the target
in the (£-1)th frame. Otherwise, we update the size
of the target by the following equation:

we, hy) =y (wi i) + (1-y) (Weer, hs 33
whege t(wi‘), ht*)yl( the ts)ize E)f t )e( p;olpostai)with the n(lax—

imum response score. y is a constant parameter which
controls the update rate.
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4 Results and discussion

In this section, we evaluate our proposed method on
three public datasets: OTB-2013

[44],

and DTB70

and robustness.

[43], TColor-128
[45]. Matlab pseudo-codes and
tracking pipeline of our MKCF_CNN method are
given in Tables 1 and 2, separately. Extensive experi-
ments demonstrate that our method is able to achieve
a very appealing performance in terms of effectiveness

(2019) 2019:73
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The proposed MKCF_CNN method is implemented in
MATLAB on a PC equipped with an Intel Xeon CPU
E5-2640 v4 with 128G RAM and a single NVIDIA
GeForce GTX 1080Ti. We adopt the pretrained VGGNet-
19 as our feature extractor and utilize matcovnet for fea-
ture generation. We train two correlation filters utilizing
outputs from the conv4 — 4 and conv5 - 4 layers. The lin-

ear kernel is adopted in this paper. The parameters A, 7, g4,

p
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p in (14) are empirically set to 107% 107, 107, and 107°
separately. We set the update rate # in (28) and (29) to
0.01 and the weight parameter y in (33) to 0.6. The track-

ing failure threshold Tj is set to 0.2.

4.2 Evaluation metrics

We use two measurements, precision plots and suc-
cess plots [46], to quantitatively assess the tracking
results of our method. Precision plots illustrate the

(2019) 2019:73
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percentage of frames in which the center location
error is within a given threshold. The threshold is set
to 20 pixels. The center location error means the Eu-

clidean distance between the tracked location and the
ground truth. The success plots are the percentage of
frames where the overlap rate S is larger than a fixed

threshold 7;. The overlap rate S is defined as g

__ Aera(BgnBg)
" Aera(BgUBg)"

n and U are intersection and union oper-
ators, respectively. BE denotes the estimated bounding

o
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Fig. 9 Success plots of OPE with different attributes on TColor-128
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Table 3 The success rates of 8 trackers with 11 challenging attributes on TColor-128 dataset. The best, second best, and third best

tracking results are represented in red, blue, and green, respectively

Attribute  Ours HCFT COCF MUSTER SRDCF KCF SAMF DSSF
BC 0.686 0.650 0.633 0.629 0.629 0.540 0.537 0.473
DEF 0.713 0.653 0.651 0.628 0.654 0.545 0.672 0.395
FM 0.583 0.580 0.574 0.476 0.540 0.443 0.559 0.386
IPR 0.576 0.564 0.553 0.488 0.538 0.421 0.484 0.423
v 0.646 0.585 0.586 0.631 0.619 0.469 0.563 0.460
LR 0.510 0.335 0.340 0.382 0414 0.268 0.346 0.312
MB 0.557 0.540 0.541 0.424 0.529 0.410 0.512 0.380
oC 0.580 0.546 0.541 0.527 0.577 0.399 0.551 0.400
OPR 0.613 0.566 0.567 0.499 0.541 0.428 0.551 0.413
ov 0.502 0.472 0.481 0.387 0.499 0.338 0.434 0.334
SV 0.545 0.494 0.498 0.498 0.572 0.377 0.528 0.386

box and Bc is the ground-truth bounding box. 71 is
set to 0.5 in this paper.
To evaluate the tracking performance of our

method comprehensively, the challenging videos from
OTB-2013 and TColor-128 are categorized with 11
attributes including background clutter (BC), deform-
ation (DEF), fast motion (FM),
(IPR), illumination variation (IV), low resolution (LR),
(MB), (OCC), out-of-plane
rotation (OPR), out of view (OV), and scale variation
(SV).

in-plane rotation

motion blur occlusion

4.3 Comparison of tracking performance on OTB-2013

OTB-2013 benchmark dataset contains 51 sequences
with 11 challenging attributes. We compare our
method with 9 state-of-the-art algorithms which con-
tain deep learning tracking methods (HCFT [35], HDT
[47], CNN-SVM [48], DeepSRDCEF [49]) and correlation
filter tracking methods (MEEM [50], Staple [51],
SAMEF [52], DSST [28]). Figure 4 gives the precision
plots and success plots of OPE of our proposed method
against other state-of-the-state methods on OTB-2013.
According to Fig. 4, our MKCF_CNN tracker outperforms
most of the other trackers, demonstrating the effectiveness

Fig. 10 Tracking results of ten trackers on sequences Lemming and skating2, in which the targets undergo occlusion. The tracking results of
ASLA, IVT, CSK, SAMF, OAB, Struck, HCFT, COCF, and our tracker are shown by red, green, blue, black, magenta, cyan, gray, dark red, and orange
rectangles, respectively




Wang and Zhang EURASIP Journal on Image and Video Processing

(2019) 2019:73

Page 14 of 22

rectangles, respectively

Fig. 11 Tracking results of nine trackers on sequences Soccer and Biker, in which the targets undergo fast motion. The tracking results of ASLA,
IVT, CSK, SAMF, OAB, Struck, HCFT, COCF, and our tracker are shown by red, green, blue, black, magenta, cyan, gray, dark red, and orange

of MKCF_CNN. The proposed MKCF_CNN method
achieves 2.3% performance gains in precision against
HCFT, which is the most related tracking method with us.
Meanwhile, MKCF_CNN and DeepSRDCF rank first on
the success score.

In order to comprehensively assess the tracking per-
formance of our proposed MKCF_CNN tracker, we
present tracking results under OPE regarding 11 attri-
butes in Figs. 5 and 6. We can observe that on the
51 videos with all the 11 challenging attributes, our
method ranks first among the 10 evaluated trackers
on precision plots. On the videos with attributes such
as background clutter, deformation, in-plane rotation,

illumination variation, low resolution, and out of
view, MKCF_CNN ranks first among all the evaluated
trackers on success plots. In the HCFT method, the
outputs of the conv3 -4, conv4d -4, and conv5-4
layers are used as the deep features. In the HDT
method, the outputs of six convolutional layers
(10th—12th, 14th-16th) from VGGNet-19 are adopted
as feature maps. However, only two layers (conv4 -4,
conv5 - 4) from VGGNet-19 are used in our proposed
method, and two mutual kernelized correlation filters
are trained to interact each other through all the
tracking process without definite parameters as HCFT
and definite initial parameters as HDT. From Figs. 5

orange rectangles, respectively

Fig. 12 Tracking results of nine trackers on sequences Surfing and Bikeshow, in which the targets undergo appearance variation. The tracking
results of ASLA, IVT, CSK, SAMF, OAB, Struck, HCFT, COCF, and our tracker are shown by red, green, blue, black, magenta, cyan, gray, dark red, and
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rectangles, respectively

Fig. 13 Tracking results of nine trackers on sequences Board and Torus, in which the targets undergo background clutter. The tracking results of
ASLA, IVT, CSK, SAMF, OAB, Struck, HCFT, COCF and our tracker are shown by red, green, blue, black, magenta, cyan, gray, dark red and orange

and 6, it is clear that our method performs better
than those most relevant methods.

The tracking speed is very important for visual tracking.
Correlation filter-based trackers obtained beyond real-
time speed using handcrafted features. Except for DFT
and inverse DFT, the computational complexity of
trackers with a single correlation filter is O(nlogn). n is
the dimensionality of the features. Thus, the whole com-
putational load of single correlation filter-based trackers is
O(Mnlogn). M is the number of base trackers. M =2 in
our method and M =3 in HCFT. For trackers under the
correlation filter framework with deep features, the com-
putational burden mainly comes from the features extrac-
tion process. Thus, the tracking speed of our proposed

method is 1.3 fps, which is a little faster than HCFT with a
speed of 1.1 fps.

4.4 Comparison of tracking performance on TColor-128

The TColor-128 dataset consists of 128 challenging
color videos and is designed to assess the tracking
performance on color sequences. Similarly, we evaluated
our proposed MKCF_CNN method with 9 state-of-the-art
trackers, including HCFT ([35], COCF [41], KCF_Gaus-
sianHog [27], SRDCF [29], MUSTER [53], SAMF [52],
DSST [28], Struck [54], and ASLA [55]. Figure 7 shows
precision plots and success plots of OPE of our proposed
method against other state-of-the-art methods on TColor-
128. Figures 8 and 9 present precision plots and success

orange rectangles, respectively

Fig. 14 Tracking results of nine trackers on sequences Shaking and Singer2, in which the targets undergo illumination change. The tracking
results of ASLA, IVT, CSK, SAMF, OAB, Struck, HCFT, COCF, and our tracker are shown by red, green, blue, black, magenta, cyan, gray, dark red, and
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Fig. 15 Precision plots and success plots of OPE of our proposed method against other state-of-the-art methods on DTB

plots of OPE with different attributes on TColor-128, re-
spectively. It is obvious that our method is the best one
among the ten trackers on dataset TColor-128, following
HCFT method. Our method obtains a precision rate of
73.5% and a success rate of 63.1%. HCFT and COCF rank
second and third, respectively. Although HCFT utilizes
deep features from three layers, its performance is not bet-
ter than our method. COCF uses the same outputs as our
method from two layers of VGGNet-19, and it performs
worse than our MKCF_CNN tracker. This is because the
scale estimation and re-detection scheme are able to lo-
cate the target precisely in our method. Figures 8 and 9
demonstrate the effectiveness of our method on TColor-
128 with 11 challenging attributes. It can be seen that our
method performs best against 9 other methods. Table 3
gives the data comparison of success rates of 8 trackers.
The experimental results show that our method achieves
the best performance under all challenging attributes ex-
cept for scale variation.

Figure 10 shows some tracking results of two sequences
with severe occlusion. In the Lemming video, the toy
Lemming is severely occluded by a triangular rule when it
is moving (e.g., #320, #340). It is obvious that the pro-
posed method, SAME, Struck, and OAB are robust to se-
vere occlusion and can track the Lemming target steadily.
In the skating2 sequence, the target woman dancer has
obvious appearance variation and is totally occluded by
the man dancer occasionally when they are skating (e.g.,
#150, #250). We can observe that the proposed method,
HCFT and COCF with deep features, are able to deal with
the severe occlusion and appearance variation effectively.

Figure 11 demonstrates some screenshots of two videos
with fast motion. In the Soccer sequence, the player target
keeps jumping and undergoes fast motion, background
clutter, and occlusion when celebrating the victory (e.g.,
#36, #76, #170). IVT, Struck, CSK, ASLA, and OAB lose
the target completely because of the challenging interfer-
ence factors. The target in the Biker sequence undergoes
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fast motion and scale variation because of fast riding (e.g.,
#10, #100, #200). It can be easily seen that our method
performs well in the entire sequence and is able to deal
with motion blur and scale variation effectively.

Figure 12 illustrates some sampled tracking results
of two sequences with appearance variation. The ap-
pearance of the target in the Surfing sequence
changes severely when the player is going surfing
(e.g., #100, #125). From the tracking results, we can
see that most of the trackers are able to locate the
target coarsely. However, only our method has the
ability to track the target more precisely. In the
Bikeshow sequence, the biker cycles in the square
with severe appearance variation and scale change
(e.g., #20, #120, #361). The proposed method, HCFT
and COCEF utilizing deep features, handle appearance
change better than the other methods with hand-
crafted features.

Figure 13 demonstrates some tracking results of two se-
quences with background clutter. The target in the Board
sequence moves in the complex scenes with severe back-
ground clutter (e.g., #160, #300, #400). It can be seen that
our method can track the target successfully through the
sequence. In the Torus sequence, the target moves in a
cluttered room with slight appearance variation (e.g.,

(2019) 2019:73
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#100, #200, #220). We can observe that trackers with
handcrafted features can not deal with this situation and
drift away to other objects.

Figure 14 shows some screenshots of tracking re-
sults in two sequences with illumination variation. In
the Shaking video, a guitarist is playing on the stage
with dim lights (e.g., #100, #200, #300). Although the
target undergoes severe illumination variation, our
method locates the target more precisely than other
trackers. In the Singer2 sequence, the singer in dark
clothes performing on the stage undergoes drastic il-
lumination variation (e.g., #110, #210, #320). We can
observe that HCFT and COCF with deep features
move away from the target resulting in drastic illu-
mination variation. Only our method is able to per-
sistently track the target in the whole sequence.

4.5 Comparison of tracking performance on DTB

DTB dataset consists of 70 challenging videos cap-
tured by a camera mounted on an unmanned aerial
vehicle (UAV). All of the 70 challenging sequences in
the DTB dataset were manually annotated with 11
challenging attributes, including motion blur (MB),
scale variation (SV), similar objects around (SOA), as-
pect ratio variation (ARV), background cluttered

09 T T T T T

o o o o © o
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Feature Challenges

Fig. 17 Average precision score of our proposed method with mutual kernelized correlation filters and our method without mutual kernelized
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Fig. 18 Average success rate of our proposed method with mutual kernelized correlation filters and our method without mutual kernelized
correlation filters in terms of 11 challenging attributes on OTB-2013

(BQC), occlusion (OCC), out-of-view (OV), deformation
(DEF), out-of-plane rotation (OPR), fast camera mo-
tion (FCM), and in-plane rotation (IPR). We compare
our method with 9 representative trackers including
HCFT ([35], HDT [47], COCF [41], MEEM [50], SO-
DLT [56], SRDCF [29], KCF [27], DAT [57], and
DSST [28]. Figure 15 shows the overall tracking per-
formance of OPE based on precision score and suc-
cess score on DTB dataset. We can see that the

proposed tracker can achieve the best tracking per-
formance against 9 other trackers.

4.6 Ablation study

4.6.1 Effect of mutual kernelized correlation filters

In order to demonstrate the effectiveness of mutual cor-
relation filters, we investigate the tracking performance
of our proposed method with mutual correlation filters
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Fig. 19 Precision plots and success plots of OPE by our proposed method with elastic net constraint and our method without elastic net
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Table 4 The success rates of our method with elastic net constraint and our method without elastic net constraint on OTB-2013.
The best tracking results are represented in red. ENC denotes elastic net constraint

LR BC oV IPR FM MB DE oC SV OPR v
ZV}‘IZ‘ 0624 0668 0628 0608 0587 0612 0666 0626 0564 0613 0627
;ﬁ?"“‘ 0.624 0668 0628 0606 0587 0612 0666 0624 0562 0612 0626

and without mutual correlation filters on OTB-2013.
Figure 16 gives the precision plots and success plots of
OPE by different settings. Our method with mutual cor-
relation filters achieves a score of 0.914 in terms of pre-
cision and the precision performance is improved by
0.9% compared with the method without mutual correl-
ation filters. In success plots, owing to the interaction of
mutual correlation filters, the tracking performance is
improved by 2.0%. Figures 17 and 18 show the tracking
results on OTB-2013 with 11 challenging attributes. It is
obvious that our method with mutual correlation filters
achieves better tracking performance in all the 11 attri-
butes in both the average precision score and average suc-
cess rate.

4.6.2 Effect of elastic net constraint

Figure 19 gives the tracking results on OTB-2013 by
our method with elastic net constraint and our
method without elastic net constraint in terms of
precision and success rate. We can observe that the
proposed method with elastic net constraint achieves
slightly better than method without elastic net con-
straint. Table 4 demonstrates the tracking results on
OTB-2013 with 11 challenging attributes. It is clear
that our proposed method with elastic net constraint
obtains better performance than method without

elastic net constraint in terms of IPR, OC, SV, OPR,
and IV.

4.6.3 Effect of scale estimation

In this section, we investigate the tracking perform-
ance with scale estimation scheme and without scale
estimation scheme. Experimental results conducted on
OTB-2013 are demonstrated in Figs. 20 and 21. The
first picture in Fig. 20 shows the comparison of success
plots of OPE on OTB-2013 and the second picture in
Fig. 20 gives the success plots of OPE in terms of scale
variation. Figure 21 shows the average success rate of our
proposed method with scale estimation scheme and our
method without scale estimation scheme in terms of 11
challenging attributes on OTB-2013. It can be seen that
the scale estimation mechanism is able to improve the
tracking performance greatly.

4.6.4 Effect of re-detection module

In this section, we compare the tracking performance
with re-detection module and without re-detection
module on OTB-2013. The first picture in Fig. 22
shows the comparison of success plots of OPE on
OTB-2013 and the second picture in Fig. 22 gives the
success plots of OPE in terms of occlusion. It is obvi-
ous that the re-detection module is able to recover
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Fig. 20 The comparison of our method with scale estimation scheme and our method without scale estimation scheme on OTB-2013. The first
figure demonstrates the success plots of OPE and the second one gives the success plots of OPE in terms of scale variation
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Fig. 21 Average success rate of our proposed method with scale estimation scheme and our method without scale estimation scheme in terms

target in case of tracking failures. Table 5 gives the
tracking results on OTB-2013 in terms of 11 challen-
ging attributes. The best tracking results are shown in
red. It is clear that our method with re-detection
module achieves better tracking results in almost all
the 11 attributes except for the LR and DE.

5 Summary and conclusion

In this paper, we propose a novel visual tracking method
based on mutual kernelized correlation filters with elas-
tic net constraint. The proposed algorithm is able to
train two interactive discriminative classifiers to cope
with the challenging environment and severe appearance
variation. The elastic net constraint is imposed on the
mutual kernelized correlation filters to group the similar
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Fig. 22 Comparison of our method with re-detection module and our method without re-detection module on OTB-2013. The first picture
demonstrates the success plots of OPE and the second one gives the success plots of OPE in terms of occlusion
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Table 5 The success rates of our method with re-detection module and our method without re-detection module on OTB-2013.
The best tracking results are represented in red. RD denotes re-detection

LR BC OV IPR FM MB DE OoC SV OPR v

WithRD 0.624  0.668 0.628 0.608 0.587 0.612 0.666 0.626 0.564 0.613 0.627

ngll)out 0.626  0.668 0.581 0.607 0.571 0.612 0.667 0.619 0.556 0.605 0.614
features and to alleviate the impact of outliers. Scale 2 P.Li D.Wang, L Wang, H. Lu, Deep visual tracking: review and

adaption and re-detection scheme are applied in our
method to promote tracking performance. Extensive ex-
perimental results demonstrate that our proposed
method is able to obtain appealing tracking performance
by using the interacted kernelized correlation filters with
elastic net constraint. Quantitative and qualitative results
show the superiority of our method in terms of effective-
ness and robustness, compared with other tracking
algorithms.
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