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Abstract

Classic exponent-Fourier moments (EFMs) have been popularly used for image reconstruction and invariant
classification. However, EFMs lack natively the translation and scaling-invariant; in addition, they exhibit two types of
drawbacks, namely numerical instability and reconstruction error, which in turn influence their reconstruction
capability and image classification accuracy. This study considers the challenge of defining modified EFMs (MEFMs),
which are based on modified exponent polynomials. In our methods, the basis function of traditional EFMs is
appropriately modified, and these modified basis functions are used to replace the original ones. The basis function
of the proposed moments is composed of piecewise modified exponent polynomials modulated by a variable
parameter exponential envelope. Various types of optimal-order moments can be established by slightly adjusting
the bandwidth of the modified basis functions. Finally, we extend the rotation-invariant feature of previous works
and propose a new method of scaling and rotation-invariant image recognition using the proposed moments in a
log-polar coordinate domain. The translation invariance can then be achieved by an image projection operation,
which is substituted for the traditional approach based on the calculation of image geometric moments. The
experimental results demonstrate that the MEFMs perform better than traditional EFMs and other classic orthogonal
moments including the latest image moments in terms of the image reconstruction capability and the invariant
recognition accuracy of smoothing filters, in both noise-free and noisy conditions.

Keywords: Orthogonal moments, Modified exponent-Fourier moments, Image classification, Image reconstruction,
Rotation-invariant
1 Introduction
Moments and moment invariants are global descrip-
tors for image feature extraction that have become a
hot topic in the field of image analysis. In recent
years, various moments have been widely used in
image reconstruction [1, 2], image detection [3, 4],
target classification [5], digital watermarking [6, 7],
image compression [8], and other applications [9, 10].
The study of moments mainly focuses on three direc-
tions. The first one is establishing image moments in
different coordinate spaces, such as the Cartesian co-
ordinate space [11, 12], polar coordinate space [13,
14], and Radon transformation space [15, 16], among
others. The performance of moments reconstructed in
the Cartesian coordinate space is better than those in
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the polar coordinate space and Radon transformation
space. The computation complexity is lower; however,
rotation-invariant features are difficult to achieve. The
image moments are natively rotation-invariant in the
polar coordinate and Radon transformation space, and
their geometric invariance can easily be achieved.
Therefore, the existing image moments are more
greatly established in the polar coordinates. Figure 1
shows the various types of image moments in different
coordinate systems. The second direction is studying
the description ability of the image moments under dif-
ferent basis functions to search for the best basis func-
tions to construct the image moments with better
image reconstruction effect and numerical stability.
Generally speaking, traditional image moments do not
have the inherent properties of geometric invariance;
thus, they need to be restructured and designed to
satisfy the geometric invariance in pattern recognition.
In summary, the construction of rotation-invariant is
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Fig. 1 Image moments in different coordinate spaces
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becoming a hot topic in the study of image moments,
which is the third direction for research of image
moments.
As mentioned earlier, the essence of image mo-

ments is the set of image transformations based on
basis functions. The advantages and disadvantages of
its basis functions will directly affect the performance
of the constructed image moments. In light of
whether the basis set satisfies orthogonal conditions,
the image moments can be divided into orthogonal
and non-orthogonal moments (similarly known as or-
thogonal and non-orthogonal transformations, re-
spectively, for example, discrete cosine transform [17],
Fourier transform [18], Haar-wavelet transform [19],
and Walsh transform [20] belong to orthogonal trans-
formations). Non-orthogonal moments like geometric
moments [21], complex moments [22], and rotation
moments [23] have made certain achievements in the
field of moment applications. The basis functions of
non-orthogonal moments are relatively simple with an
image reconstruction that is difficult to realize. In
addition, the non-orthogonal moments generally have
information redundancy that is sensitive to noise. The
orthogonal moments can overcome the disadvantages
of the abovementioned non-orthogonal moments,
thereby becoming a main focus area in the field of
image moments in the recent years.
Orthogonal moments can be defined in different co-

ordinate spaces. The basis functions of orthogonal mo-
ments defined in polar coordinates are composed of
radial polynomials and Fourier complex exponential fac-
tors with angular variables (regarded as amplitude and
phase coefficients as well); thus, they are called radial or-
thogonal moments. The radial orthogonal moments in
Fig. 1 mainly include Zernike moments (ZMs) [13],
pseudo-Zernike moments (PZMs) [14], orthogonal Fou-
rier–Mellin moments (OFMMs) [6], Jacobi–Fourier mo-
ments (JFMs) [24], Tchebichef–Fourier moments (TFMs)
[25], radial harmonic-Fourier moments (RHFMs) [26],
Bessel–Fourier moments (BFMs) [18, 27], exponent-
Fourier moments (EFMs) [7], and radial shifted Legendre
moments (RSLMs) [28]. These radial orthogonal moments
normally have the basic ability of image reconstruction.
Moreover, their significant characteristic is that the radial
polynomials satisfy orthogonal condition in the unit circle
and natively possess a rotation-invariant feature. Thus,
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radial orthogonal moments have become the preferred de-
scriptor for geometric invariant image recognition, espe-
cially for rotation-invariant recognition. Basis functions
are regular polynomials defined in the Cartesian coordi-
nates, which can be further divided into continuous or-
thogonal moments and discrete orthogonal moments,
such as Legendre moments (LMs) [29] and Gaussian–
Hermite moments (GHMs) [2] that belong to continuous
orthogonal moments and Tchebichef moments (TMs)
[30], Krawtchouk moments (KMs) [31], Hahn moments
(HMs) [32], and Racha moments (RMs) [33] that belong
to discrete orthogonal moments. Discrete orthogonal mo-
ments do not involve any numerical approximation opera-
tions; hence, their basis functions can accurately satisfy an
orthogonal condition. Consequently, the image recon-
struction performance is better than that of trad-
itional continuous orthogonal moments. In addition,
we can construct different moments in other spaces
like Radon transform invariant moments and histo-
gram invariant moments in the Radon transform
space and histogram space, respectively.
Shortcomings still exist in the abovementioned trad-

itional orthogonal moments. On the one hand, the order
of the existing orthogonal moments can only be taken as
an integer value, which makes the development of or-
thogonal moments encounter bottlenecks caused by this
constraint. To solve this problem, Xiao et al. [34] and
Yang et al. [35] proposed fractional orthogonal mo-
ments. The integer-order can be extended to a real-
order (also known as fractional order) using their pro-
posed models. Further experimental results showed that
the fractional order orthogonal moments were better
than the traditional orthogonal moments based on the
integer order in image reconstruction, noise robustness,
and image recognition. Chen et al. [36, 37] recently ex-
tended the ZMs and PZMs to a quaternion and a frac-
tional framework for color image feature extraction. The
application of image moments has also been further im-
proved. On the other hand, for image sets with larger
distinctions, the classification effect is preferable using
the lower-order moments constructed using the basis
functions of traditional orthogonal moments. However,
for the classification effect of the image sets with smaller
discrimination, numerical instability will occur when
higher-order moments are adopted. The reason is that
the basis functions of traditional orthogonal moments
are fixed either in lower- or higher-order moments,
which can result in poor classification results in pattern
recognition. Wang et al. [38] proposed a circularly semi-
orthogonal moment that can maintain a good numerical
stability in higher-order moments and can obtain a bet-
ter visual effect in image reconstruction. This method
only performs a simple and fixed modulation on the or-
thogonal basis functions, and the basis functions of
different-order moments are still fixed; hence, the
method lacks generality.
Classic orthogonal moments (e.g., EFMs) have the de-

fects of numerical instability and poor accuracy of image
recognition in some image classifications, especially in
texture image recognition. A modified exponent-Fourier
moment (MEFM) is proposed herein based on the con-
cept proposed in [34, 38]. We mainly make attempts in
view of three aspects. First, we take on the challenge of
studying the performance of semi-orthogonal basis func-
tions at the intersections between the orthogonal and
non-orthogonal moments for image reconstruction and
pattern recognition. A general semi-orthogonal moment
model suitable for different orders can also be estab-
lished. Second, a new method of the theoretical analysis
model of the image moments in the frequency domain is
proposed, namely time–frequency correspondence ana-
lysis. Finally, a simple and useful algorithm for rotation,
scaling, and translation (RST) of invariant image recog-
nition using the proposed moments is introduced
herein.
The remainder of this paper is organized as follows: Sec-

tion 2 provides some preliminaries about the classic
exponent-Fourier moments for the 2D images; Section 3
introduces the MEFMs in the polar coordinates and dis-
cusses some properties of the MEFMs; Section 4 describes
the experiments on the computational complexities of the
image moments, image reconstruction, optimal parameter
selection, and RST invariant image recognition under both
noisy and noise-free, smoothing filter conditions; and Sec-
tion 5 presents the conclusions.

2 Preliminaries
This section briefly reviews the definition of the classic
orthogonal exponent-Fourier moments (EFMs) [39] for
an image along with some EFM properties.

2.1 Exponent-Fourier moments
The EFMs of order n with repetition m for a 2D image
function f(r, θ) in the polar coordinates is defined as

Enm ¼ 1
2π

Z 2π

0

Z 1

0
f r; θð ÞR�

n rð Þe−~jmθrdrdθ ð1Þ

where f(r, θ) denotes the 2D image function in the
polar coordinates; ~j ¼ ffiffiffiffiffiffi

−1
p

; n ¼ 0; 1; 2;Λ;m ¼ 0� 1;�2
;Λ represent the moment orders; and R�

nðrÞ is the conju-
gate function of Rn(r) defined as

R�
n rð Þ ¼ 1ffiffi

r
p e−

~j2nπr ð2Þ

Based on the principle of the orthogonal theory, a 2D
image function can be reconstructed by the infinite
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series of the orthogonal function EnmR�
nðrÞ over the unit

circle.

f r; θð Þ ≈
Xnmax

n¼1

Xmmax

m¼1

EnmRn rð Þe~jmθ ð3Þ

2.2 Properties of EFMs and other radial orthogonal
moments
For the existing radial orthogonal moments, the num-
ber of zeros of the orthogonal polynomials plays a
significant role in describing the high-spatial-
frequency components of an image. The real and im-
aginary parts of the radial polynomial of EFMs have
2n and 2n+1 zeros in the interval 0 ≤ r ≤ 1, respect-
ively [39]. Meanwhile, the Bessel polynomials and the
orthogonal Fourier–Mellion polynomials have n+2
and n zeros in the interval 0 ≤ r ≤ 1, respectively [6,
40]. Zernike polynomials only have (n −m)/2 zeros in
the interval 0 ≤ r ≤ 1. Therefore, the degree n of EFMs
required to represent an image is much lower than
that in BFMs, OFMMs, and ZMs, thereby causing the
EFMs to have a stronger capability in describing an
image compared to the other orthogonal moments
(e.g., BFMs, OFMMs, and ZMs) in the polar coordi-
nates. Additionally, classic EFMs and other radial orthog-
onal moments have the property of rotation-invariance
similar to geometric invariant recognition. The above-
mentioned properties show that the exponent-Fourier
Fig. 2 Real component of radial function Rn(r) of EMFs with n = 0, 1, 2, 3, 4
moments are potentially useful as feature descriptors
for image analysis.

3 Methods
3.1 Analysis of the numerical instability involved in classic
EFMs
Hu et al. [39] first proposed classic EFMs based on a
radial function Rn(r) shown in Eq. (2), which satisfied
the orthogonal condition over interval 0 ≤ r ≤ 1. How-
ever, the radial function Rn(r) is numerically unstable
for classic EFMs, which could cause poor image re-
construction and imprecise image classification in
practical applications. The abovementioned reasons
are mainly attributed to the following two aspects:
First, when r is equal to 0, the real component of the
radial function Rn(r) of the EFMs will tend to infinity,
and the imaginary part is not a number (i.e., not a
number (NaN) value), which are illegal in an actual
operation. Second, as shown in Fig. 2, the real com-
ponent of the radial function Rn(r) of the EFMs will
be very large when r tends to 0. This will result in
the numerical instability during computation in image
moments and will make the computed moments’
value inaccurate. Let r = Δr. When r is equal to 0,
where Δr is the minimum value close to 0 (e.g., Δr =
0.005), the first question can be avoided. However,
choosing a suitable value of Δr for the computation
in lower- or higher-order moments will be difficult.
Furthermore, the second question always exists in the
computation of the EFMs all the same.
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3.2 Definition of MEFMs
We improve the EFMs and define their modified version,
MEFMs, as follows to avoid the numerical instability of
the EFMs:

Mnm ¼ 1
2

Z 2π

0

Z 1

0
f r; θð ÞTn α; rð Þe−~jmθrdrdθ ð4Þ

where f(r, θ) is an image function in the polar coordi-
nates; n = 0, 1, 2, Λ, m = 0, ± 1, ± 2, Λ are the moments’
order; and Tn(α, r) denotes the radial basis functions of
the image moments defined as follows:

Tn α; rð Þ ¼ 16−
α1
4 re−

~j2nπr ; n∈N low

16−
α2
4 re−

~j2nπr; n∈Nhigh

(
ð5Þ

where Tn(α1, α2, r) Tn(α, r), (α1, α2) ∈ R, n = 0, 1, 2…,
Nlow, and Nhigh represents the number of lower- and
higher-order moments for the image moments, respect-
ively. The radial basis functions Tn(α, β; r) can be com-
prehended as a set of orthogonal exponent functions
R�
nðrÞ in Eq. (2) multiplied by the compound envelope

factor
ffiffi
r

p ð16−α
4rÞ . The basis function R�

nðrÞe−
~jmθ is or-

thogonal over the interior of the unit circle.Z 2π

0

Z 1

0
R�
n rð Þe−~jpθrdrdθ ¼ 2πδnmδpq

h i
ð6Þ

where 2π is the normalization coefficient and δnm or
δpq is the Kronecker delta function. Thus, the MEFMs
can also be called semi-orthogonal EFMs.

3.3 Calculation of MEFMs
In the image analysis process, all testing images are
digital images; thus, Eq. (4) must be replaced by a
discrete form. Consider a digital image f(xi, yj) of the
M ×N pixels, 0 ≤ i ≤M, 0 ≤ j ≤N. We normalize the M ×
N pixels onto the unit circle [−1, 1] × [−1, 1]. Eq. (4) can
be rewritten as

Mnm ¼ 1
2π

XM−1

i¼0

XN−1

j¼0

f xi; y j
� �

�
Z xiþΔx

2

xi−Δx
2

Z y jþΔy
2

y jþΔy
2

Tn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
e−

~jm tan−1 y=xð Þð Þdxdy

ð7Þ

where xi ¼ 2iþ1−M
M ; y j ¼ 2 jþ1−N

N and Δx ¼ Δy ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
M2þN2

p

. A zero-order approximation method (ZOA) is used to

calculate the double integration in Eq. (7) and make a
fair comparison with the classic EFMs in [39] via the fol-
lowing experiments:
Z xiþΔx
2

xi−Δx
2

Z y jþΔy
2

y jþΔy
2

Tn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
e−

~jm tan−1 y=xð Þð Þdxdy

≈ ΔxΔyTn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q� �
e−

~jm tan−1 y j=xið Þð Þ

ð8Þ
Substituting Eq. (8) into Eq. (7), the modified EFM can

be calculated by ZOA as

Mnm ¼ 2

π M2 þ N2
� �XM−1

i¼0

XN−1

j¼0

f f xi; y j
� �

Tn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q� �
e−

~jm tan−1 y j=xið Þð Þ� �
ð9Þ

Similarly, the reconstructed image can be expressed by
the following formula:

f xi; y j
� �

≈
Xbmax

n¼1

Xmmax

m¼1

~MnmTn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q� �
e
~jm tan−1 y j=xið Þð Þ

f xi; y j
� �

≈
Xnmax

n¼1

Xmmax

m¼1

~MnmTn α;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q� �
e
~jm tan−1 y j=xið Þð Þ

ð10Þ

3.4 Computation complexity and stability analysis of
MEFMs
All the computations of image moments, including the
other moments used for comparison, are implemented
by the ZOA algorithm proposed in [38] to fairly com-
pare and efficiently verify the properties of the MEFMs
without considering accurate calculation and fast algo-
rithm of image moments. Compared with the existing
classic orthogonal moments based on higher-order poly-
nomials (e.g., ZMs, LMs, OFMMs, and BFMs), the pro-
posed radial polynomial of the MEFMs is simple (i.e., it
is only composed of trigonometric and exponential func-
tions with parameter variables). In practice, it does not
involve factorial and accumulative summation opera-
tions in classic orthogonal moments; thus, the computa-
tional complexity is lower. The radial polynomial of
ZMs, OFMMs, and BFMs in lower-order moments (n =
10) [40] is basically close to the uniform distributions,
and the amplitudes are more stable (e.g., the amplitude
of the radial polynomials of ZMs and BFMs is located in
the interval of [− 1, 1], while there are only a few lower-
order moments of OFMMs, whose amplitudes exceed 2,
and the rest are located in the interval of [− 2, 2]). How-
ever, with the increase in the order of the image mo-
ments, a numerical instability will appear in the
calculation of the abovementioned classic orthogonal
moments (e.g., Fig. 3 shows the numerical distribution
curves of the classic orthogonal moments at higher-
order moments, order n = 50). Figure 3 shows that the
radial polynomial of ZMs and OFMMs is close to 0 in



Fig. 3 a–d Radial polynomials of the ZMs, OFMs, BFMs, and MEFMs in higher-order moments
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the interval [0, 0.8]. Each amplitude gradually increases
in the interval of (0.8, 1), and the numerical values tend
to be unstable (i.e., the amplitude of OFMMs is close to
1.7 × 1020, when r = 0.95). The radial polynomial of BFMs
also tends to decay in the interval [0, 1] (e.g., the ampli-
tude is attenuated to [− 0.1, 0.1] in the interval of [0.5, 1]).
However, the polynomial of MEFMs is almost uniform
when the order n = 50, and the amplitude is stable. In
addition, the classic EFMs [39] and RHFMs [26] have

introduced factor
ffiffiffiffiffiffiffi
1=r

p
into their radial basis func-

tions to satisfy orthogonal condition; however, the
polynomials’ amplitude of the EFMs and RHFMs tend
to NaN (non-number) and Inf (infinity), respectively,
when r = 0. This will result in a numerical instability
in the image moments constructed. Compared with
the other classic orthogonal moments, the proposed
image moments can avoid this phenomenon and
make the constructed moments more stable. The or-
thogonal moments constructed by the orthogonal
polynomials are better than the non-orthogonal mo-
ments in terms of the overall performance. However,
this does not mean that the orthogonal polynomials
are in a stable state at each point in the defined
domain; thus, the proper correction of its unstable
orthogonal basis functions can make the image mo-
ments reach their best performance. This is the major
purpose of the proposed image moments in this
paper.

3.5 Time–frequency analysis of MEFMs
From the time-domain point of view, the ZOA theory
can effectively explain the properties of the constructed
basis functions of the orthogonal moments (i.e., the loca-
tion of zeros of the radial function and the number of
zeros of the radial function represent the sampling pos-
ition and the sampling frequency of an image, respect-
ively). The higher the number of zeros and the more
even the distribution in a region, the better is the
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reconstructed image. For a given order n and repetition
m, the radial polynomial of BFMs and OFMMs has n +
2 and n zeros in the interior of a unit circle, respectively,
while the radial polynomial of the ZMs only has (n −m)/
2 zeros in the interval 0 ≤ r ≤ 1 [40]. Among radial poly-
nomials (or radial functions) with trigonometric func-
tions as basis functions, the real and imaginary parts of
the radial polynomial of EFMs [39] and polar harmonic
Fourier moments (PHT) [26] have 2n and 2n + 1 zeros
in the interior of the unit circle, respectively. The radial
polynomials of the polar sine transforms (PST) [41],
polar cosine transforms (PCT) [41], and circularly semi-
orthogonal moments (SOMs) similarly have n + 2 zeros.
Meanwhile, the real and imaginary parts of the radial
polynomial of MEFMs have 2n and 2n + 1 zeros in the
interior of the unit circle, respectively. As illustrated in
Fig. 4, the curve distribution of the real part of the radial
polynomial of the MEFMs is smoother at the lower-
order moments. This is then compared with the classic
orthogonal moments (i.e., ZMs, OFMs, and BFMs) and
other orthogonal moments with trigonometric functions
as basis functions (i.e., EFMs, PHT, and PCT), which are
closer to the uniform distribution and whose magnitudes
are more stable (e.g., the amplitude distribution interval
is [−1, 1]). For image recognition, most of the algorithms
use the lower-order moments of the image moments as
the feature extraction for classification. The lower-order
moments have a good robustness to noise in pattern rec-
ognition; however, the orders of image moments should
be increased to obtain more image feature points as the
classification features and make a more precise classifi-
cation for the image sets under a higher similarity condi-
tion (e.g., texture images). Therefore, we need to
deeply study the higher-order moments of the image
moments. The lower-order moments generally corres-
pond to the low-frequency components of an image
(e.g., contours or shapes of an image), while the
higher-order moments of the image moments repre-
sent the detail components of an image (i.e., high-
frequency components). The method of the time-
domain analysis can be used for the quantitative
analysis of the lower-order moments of the image
moments, but it cannot provide a more reasonable
description of the high-frequency components of an
image (corresponding higher-order moments) for
image processing or analysis. In view of the above-
mentioned reasons, a method of time–frequency cor-
respondence is proposed from the frequency domain
perspective. This method can analyze and improve
the stability of different order moments for image
recognition. The basic objective is to consider the
representation of the basis functions of the image
moments in the frequency domain as a 2D filter. We
hope that the frequency bandwidth corresponding to
the basis functions of the image moments is wider at
the lower-order moments, and the attenuation of the
cut-off frequency is as slow as possible. While the
corresponding bandwidth is narrower in the higher-
order moments, and the attenuation of the frequency
cutoff is as fast as possible, in this study, a
parameter-modulated MEFM is still proposed and
used to verify our concept (Fig. 5). The main
principle is to change the bandwidth in the frequency
domain by adjusting parameter α of the radial func-
tion of the MEFMs in the time domain. In the low-
frequency region of the image (lower-order moments),
we want to change parameter α (e.g., α = 2 in the
experiments) to make the bandwidth as wide as possible,
such that more image features of the lower-order
moments can be obtained. In the high-frequency region
(higher-order moments), the bandwidth is made as
narrow as possible by changing parameter α (e.g., α = 0.2
in the experiments), such that more high-frequency
components can be suppressed, especially noise interfer-
ence. Finally, the theoretical results are illustrated and
verified by the experimental results of image reconstruc-
tion (Section 4.2).
4 Results and discussion
In this section, the experimental results are used to
validate the theoretical framework developed in the
previous sections. This section includes four subsec-
tions. In the first subsection, we discuss the computa-
tional complexities of MEFMs as compared to those
of BFMs, ZMs, OFMs, PST, and PCT. In the second
subsection, the question of how well an image can be
represented using MEFMs is addressed, and the image
reconstruction capability of MEFMs is compared with
those of BFMs, ZMs, OFMs, SOMs, PST, and PCT.
In the third subsection, the question of optimal par-
ameter selection for image reconstruction and recog-
nition is discussed. A new method for the RST
invariant image recognition using the proposed mo-
ments and the experimental study on the RST recog-
nition accuracy of MEFMs is provided in the last
subsection.
4.1 Computational complexities
In this section, we demonstrate in terms of the compu-
tation time exactly how less complex the computation
of the radial polynomial of the MEFMs is when com-
pared to those of BFMs, ZMs, and OFMs. Table 1
shows a summary of the comparisons of the computa-
tion time for computing the radial polynomials between
MEFMs and the other radial orthogonal moments. In
the calculation, the order of the image moments is 5,
10, 15,...30. The test image is a Lena gray-level image
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(Fig. 6), while the size is 128 × 128. The average value
of the computation time by six different order moments
is taken as the time-consuming measurements for all
the image moments. The hardware configuration of the
test computer comprises a 3.2 GHz Intel(R) Core (TM)
i5 CPU and 8 GB memory. The software is MATLAB
R2013a. Table 1 shows that the time consumed by the
MEFMs is slightly higher than that of the PST and
EFMs, but its computing time is significantly lower
than that of the other classical orthogonal moments
(i.e., ZMs, OFMs, and BFMs).

4.2 Image reconstruction
In this subsection, the image representation capability
of the MEFMs is presented. For the convenience of
computing the image moments, the number of mo-
ments used in the image reconstruction and recogni-
tion experiments is limited based on nmax =mmax =N,



Fig. 5 Characteristic curves of the MEFMs under different parameters in frequency domain. a In lower-orders moments. b In
higher-orders moments
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Table 1 Basis functions computation time

Number Image moments Computation time (ms)

1 ZMs 113.9

2 OFMs 144.8

3 BFMs 158.3

4 EFMs 37.2

5 PST 30.6

6 PCT 42.9

7 MEFMs 40.3
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N ∈ Z+. In addition, we use the statistical-normalization
image reconstruction error (SNIRE) defined in [34] to
measure the performance of the image reconstruction.

ε2 ¼

XN
x¼1

XN
y¼1

f x; yð Þ− f x; yð Þ 2
����

XN
x¼1

XN
y¼1

f 2 x; yð Þ
ð11Þ

Where f(x, y) is the original image and f ðx; yÞ is the re-
constructed image.

4.2.0.1 Experiment 1 A set of binary images including
digits from 0 to 9 and the uppercase English letters
from A to J, and another set of gray-level images and
color images including Lena, cameraman, woman and
plane, baboon, and pepper, as shown in Fig. 7 are
used as test images. The size of each image is 64 ×
64. The proposed MEFMs are obtained from the
Fig. 6 Lena gray-level image
images shown in Fig. 7, and the images are recon-
structed using the maximum order of 35 and the par-
ameter α of the radial function of the MEFMs is 2.
The results are given in Fig. 8. It can be seen from
Fig. 8 that by using the proposed MEFMs, either
color, gray-level, or binary images can be recon-
structed well.

4.2.0.2 Experiment 2 To demonstrate the validity of
the theory related to the proposed method of time–
frequency correspondence in Section 3.5. A compari-
son of the proposed moments for image reconstruc-
tion ability in different parameters is performed and a
binary image of uppercase English letter E, a gray-
level image cameraman, and a color image baboon
are considered in the experiment. The reconstructed
experimental results from two types of different
methods of determining parameters (i.e., α = 0 and
α = 2) in lower-order moments (e.g., the order N = 5,
7, 9, 11, and 13) and higher-order moments (e.g., the
order N = 55, 60, 65, 70,...120) are shown in Figs. 9,
10, and 11. Incidentally, lower-order moments and
higher-order moments of image moments are related
to image reconstruction, e.g., let order N of image
moments be 10 and 100, respectively. N = 10 is con-
sidered to be a lower-order moment, while N = 100
is a higher-order moment. The comparison study of
the reconstructed images using the MEFMs in two
types of different parameters (α = 0 and α = 2) shows
that, in lower-order moments (N = 5, 7, 9, 11, and
13), the subjective vision of the reconstructed images
under parameter α = 2 is better than the recon-
structed image when α = 0, the objective evaluation
standard related to the performance of image recon-
struction has illustrated this phenomenon as well, i.e.,
the SNIRE of parameter α = 2 in the lower-order mo-
ments is generally less than that of parameter α = 0.
However, with the increase of a moment’s orders,
when the order N of the image moments exceeds 15,
the performance for image reconstruction of MEFMs
is just opposite to that of lower-order moments. As
shown in Table 2, the SNIRE of parameter α = 0in the
higher-order moments (e.g., the order N exceeds 25)
is less than parameter α = 2, when the moments’
order N = 65, the SNIRE reaches the minimum, and
the reconstructed binary image of uppercase English
letter “E” is almost close to the original image. As
can be seen from Figs. 9 and 10, the subjective vision
of reconstructed gray-level and color images under
parameter α = 0 is better than that the reconstructed
under parameter α = 2 in higher-order moments. The
above experimental results also verify the reliability
and rationality of the proposed method with respect
to time–frequency correspondence in Section 3.5, i.e.,



Fig. 7 Binary images, gray-level images, and color images used as test images, each of size 64 × 64
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the radial function (or polynomial) of the proposed
image moments (MEFMs), whose bandwidths and
cutoff frequencies in frequency domain will affect the
quality and numerical stability of image reconstruc-
tion. If lower-order moments are used to describe the
image features, the bandwidth of the radial polyno-
mial of the MEFMs can be adjusted to be slightly lar-
ger (e.g., the parameter α = 2), while to obtain more
image features (the reconstructed images using
higher-order moments), the adjustment of bandwidth
for radial polynomial of the MEFMs are as narrow as
possible (e.g., the parameter α = 0).

4.2.0.3 Experiment 3 According to the characteristic
analysis of the MEFMs’ radial function in frequency
domain, we propose a method of image projection
transformation for an original image using piecewise
function (or polynomial), when an image is recon-
structed at lower-moments and higher-moments, re-
spectively (see Eq. (5) in Section 3.2). In order to
verify the validity of the piecewise function in Eq. (5),
the proposed image moments (MEFMs) are compared
with the ZMs, OFMMs, BFMs, and EFMs in this
study, and simulation experiments are performed by
the reconstruction of the binary image of uppercase
English letter “E.” From the experimental results of
Fig. 8 Images reconstructed from the proposed modified exponent-Fourie
Fig. 11, it is known that the performance of the pro-
posed image moments constructed by the basis func-
tions, which consists of piecewise polynomials in
Section 3.2 is superior to other classical orthogonal
moments either in lower-order moments or higher-
order moments. Especially with the increase in the
order of moments, and when the order is N = 40, the
reconstructed images by OFMMs is invalid. When the
order is N = 50, the reconstructed images using ZMs
is invalid, and the reconstructed images using BFMs
and EFMs can maintain good numerical stability in
higher-order moments, but those visual effect of
image reconstruction are obviously worse than that of
the proposed image moments (MEFMs).
We choose the image moments (e.g., SOMs, PST,

and PCT) with trigonometric functions as the radial
basis functions to reconstruct images and compare
the results with the MEFMs to further verify the val-
idity of the proposed image moments. The experi-
mental results show that the SNIRE of the MEFMs
along with SOMs, PCT, and PST approximately
linearly decreases with the increase in the moments’
order at lower order moments. Moreover, the quality
of the reconstructed images is gradually improved.
The curve of Fig. 12a shows that the image recon-
struction ability of the proposed image moments is
r moments up to order 35



Fig. 9 Gray-level image cameraman are reconstructed in parameters (α = 0 and α = 2) under different order moments
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better than that of the EFMs, PCTs, and PSTs. How-
ever, with the increase of the moments’ order in
higher-order moments, Fig. 12b illustrates that the
SNIRE of the image moments with trigonometric
functions as the radial basis functions does not
linearly decrease, and numerical instability exists dur-
ing image reconstruction. On the contrary, the pro-
posed image moments (MEFMs) can keep the SNIRE
gradually decreasing with the increase of moments’
order, showing that the performance of image recon-
struction in higher-order moments is better than that
of image moments with trigonometric functions as
the radial basis functions.
4.3 Optimal parameter selection for image reconstruction
and recognition
Based on the analysis theory of the time–frequency
correspondence in Section 3.5, the selection of par-
ameter value α in Eq. (5) is crucial for the proposed
image moments (MEFMs) that will affect the image
reconstruction accuracy and the image recognition



Fig. 10 Color image baboon are reconstructed in parameters (α = 0 and α = 2) under different order moments

He et al. EURASIP Journal on Image and Video Processing         (2019) 2019:72 Page 13 of 27
rate. In other words, choosing the optimal parameter
value α to obtain a better image description ability is
a problem that needs to be solved at the present.
Therefore, a selection method of parameter α must
be selected for the proposed MEFMs, which could
lead to desirable results in image reconstruction. The
selection of parameter α is equivalent to an unconstrained

optimization problem (i.e., minfε2½ f ; f ; α;N �g ) if two
variables α and N are limited based on αmin ≤ α ≤ αmax,
Nmin ≤N ≤Nmax. For the unconstrained optimization
problems, the genetic algorithm (GA) is the most popular
and effective method in the recent years. Using GA com-
puting in the proposed image moments, more precise
values of parameters α and N can be obtained. However,
considering the complexity of the GA implementation
process, a simpler algorithm is adopted herein to realize
the optimization of parameter α. If the order N of the
proposed image moments is fixed, the unconstrained
optimization problem of double variables is transformed into
the unconstrained optimization problem of a single variable.
The specific implementation process is presented below.
First, we will employ 20 gray-level images selected

from the Coil-20 database [42] presented in Fig. 16 and
use Dg(α) to evaluate the best selection of parameter α
defined as follows to investigate the influence of param-
eter α on the performance of our introduced method:

Dg αð Þ ¼ 1
g

Xg
n¼1

ε2 f n; f n; α
� 	 ð12Þ

where g = 20 denotes the number of gray-level images
from the Coil-20 database, and fn and f n represent the
nth original and reconstructed images, respectively. A
lower value of Dg indicates a better performance of the
proposed image moments in image reconstruction or
recognition.



Fig. 11 a, b Uppercase English letter “E” are reconstructed in parameters (α = 0 and α = 2) under different moments (MEFMs, ZMs, OFMs,
and BFMs)
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Table 2 Uppercase English letter “E” are reconstructed in
parameters (α = 0 and α = 2) under different order moments

Order
N

SNIRE

MEFMs(α = 0) MEFMs (α = 2)

5 0.5419 0.5197

7 0.4752 0.4062

9 0.4247 0.3860

11 0.3682 0.3168

13 0.3380 0.3368

15 0.3330 0.3647

17 0.3609 0.4173

19 0.3478 0.3847

21 0.3488 0.3924

25 0.2900 0.4871

30 0.2856 0.4849

35 0.2808 0.5094

40 0.1760 0.5080

45 0.1076 0.5271

50 0.0638 0.5160

55 0.0374 0.5276

60 0.0311 0.5269

65 0.0244 0.5251

He et al. EURASIP Journal on Image and Video Processing         (2019) 2019:72 Page 15 of 27
Let us consider herein the influence of orthogonality
on the basis function of the proposed image moments

(e.g., Tnðα; rÞ ¼ e−
~j2nπr , which is orthogonal in the

interval [0,1]) when α = 0. Note that the search interval
is restricted to − 7

2 ≤α≤
7
2 (i.e., we empirically take a value

close to zero, and the stepping increment is 0.5) in the
experiments. While the order N of the proposed image
moments is given (N = 10 in lower-order moments and
N = 60 in higher-order moments in experiments), some
different values of Dg can be obtained in terms of the
corresponding parameter value α summed up in Table 3.
Table 3 clearly shows that {N = 10, α = 2} is optimal in
lower-order moments, and {N = 60, α = 0} is optimal in
higher-order moments, which are more appropriate for
the task of image reconstruction or recognition. Finally,
we can conclude that this experiment could considerably
help in selecting the optimal parameter value α for the
image reconstruction and classification tasks in the fu-
ture. The optimal value of parameter α given in Table 3
is also consistent with the conclusion of the time–fre-
quency correspondence method proposed in Section 3.5.
4.4 Rotation, scaling, and translation invariant image
recognition
In this section, a new RST invariant system for MEFMs
that can be implemented in two steps is proposed: for
translation invariance, the proposed image projection
approach can be considered as a new alternative of the
traditional algorithm (i.e., the method for the image
translation invariant based on calculating the image geo-
metric moments [28] and center moments [43]),
followed by extending the basis functions of the MEFMs
from the polar coordinate space to the log-polar space,
such that the MEFMs have invariant properties of scal-
ing and rotation at the same time.

4.4.1 Scaling and rotation invariance of MEFMs

4.4.1.1 Log-polar mapping In the image processing and
recognition process, the original image is usually ac-
quired in a Cartesian coordinate system. First, let fsr(x, y)
be the scaled and rotated image of an image function
f(x, y) with the scaling factor σ−1 and the rotation angle
ϕ in the Cartesian coordinates. We then have

f sr x; yð Þ ¼ f σ−1 x cosϕ þ y sinϕð Þ; σ−1 y cosϕ−x sinϕð�
ð13Þ

Using the conversion relationship from the Cartesian
coordinate system to the log-polar coordinate space: x =
eρ cos θ, y = eρ sin θ, 0 ≤ θ ≤ 2π, ρ ∈ℜ2, we can rewrite Eq.
(13) as

f sr eρ cosθ; eρ sinθð Þ ¼ f ðσ−1 eρ cosθ cosϕ þ eρ sinθ sinϕð Þ;
σ−1 eρ sinθ cosϕ−eρ cosθ sinϕð ÞÞ

¼ f σ−1eρ cos θ−ϕð Þ; σ−1eρ sin θ−ϕð Þ� �
¼ f e− lnσeρ cos θ−ϕð Þ; e− ln σeρ sin θ−ϕð Þ� �
¼ f eρ− ln σ cos θ−ϕð Þ; eρ− lnσ sin θ−ϕð Þ� �

ð14Þ
The above equation can be simply expressed as

f sr ρ; θð Þ ¼ f ρ− lnσ; θ−ϕð Þ ð15Þ
The Fourier transform (FT) of a 2D image function

f(ρ, θ) in the log-polar coordinates can be denoted as
follows:

f sr ρ; θð Þ↔F u; vð Þ ð16Þ
According to the translation characteristic of 2D

Fourier transform, for fsr(ρ, θ) we have

f ρ− lnσ; θ−ϕð Þ↔F u; vð Þe−2eπj u ln σþvϕð Þ ð17Þ

Thus, it is straightforward that jFðu; vÞe−2eπjðu lnσ þ vϕÞ
j ¼ jFðu; vÞj.
The above equations and Fig. 13 show that the geo-

metric transformation of the image scaled and rotated in
the Cartesian coordinate system will be converted into
the corresponding translation operation in the log-polar



Fig. 12 Comparison of the results of the reconstructed images under MEFMs, SOMs, PCT, and PST. a In lower-orders moments. b In higher-orders
moments
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Table 3 The search results of the Dg according to different
parameter value α
Dg

α Order N = 10 Order N = 60

− 3.5 0.6272 0.6458

− 3 0.5841 0.6012

− 2.5 0.5344 0.5283

− 2 0.4733 0.4942

− 1.5 0.4137 0.4090

− 1 0.3462 0.3126

− 0.5 0.2842 0.2081

0 0.2243 0.1431

0.5 0.1778 0.1535

1 0.1600 0.1942

1.5 0.1514 0.2575

2 0.1421 0.3302

2.5 0.2011 0.4567

3 0.2443 0.5649

3.5 0.3057 0.6529

(a)

(c) (d)
Fig. 13 The original binary image and the scaled and rotation image in Ca
binary image in Cartesian coordinates. b Original binary image in log-polar
image in log-polar domain
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coordinate space, followed by 2D Fourier transform for
fsr(ρ, θ); thus, the invariance of image scaling and rota-
tion can be achieved.

4.4.1.2 MEFMs invariant computing method in the
log-polar coordinate space Encouraged by the success
of the Log-polar mapping (LPM) approach and some re-
lated works in [44], we take on the challenge of extend-
ing the basis functions of MEFMs from the polar
coordinates to the log-polar coordinate space, such that
the scaling and rotation invariance for the proposed
MEFMs can be easily achieved. In light of Eq. (5), we
have

Tn α; rð Þ ¼ Tn α; rð Þj je−~j2nπr ð18Þ
We then let

g r; θð Þ ¼ w α; rð Þ f r; θð Þ ð19Þ
where w(α, r) = |Tn(α, r)|r can be regarded as a

weighted function, and g(r, θ) is a weighted image in the
polar coordinate system.
Thus, Eq. (4) can be rewritten as follows:
(b)

rtesian coordinates and Log-polar coordinates respectively. a Original
domain. c Scaling(0.5) and rotation(90 deg). d Scaling and Rotation
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Mnm ¼ 1
2π

Z 2π

0

Z 1

0
f r; θð ÞTn α; rð Þe−~jmθrdrdθ

¼ 1
2π

Z 2π

0

Z 1

0
f r; θð Þ Tn α; rð Þj je−~j2nπre−~jmθrdrdθ

¼ 1
2π

Z 2π

0

Z 1

0
g r; θð Þe−~j2nπre−~jmθdrdθ

ð20Þ

Similarly, by using the conversion relationship from
the polar coordinate system to the log-polar coordinate
space: ρ = ln r, θ = θ, 0 ≤ θ ≤ 2π, ρ ∈ (−∞, 0], we can
change the above Eq. (20) in the polar coordinate do-
main to the log-polar domain. The modified version of
the radial basis function of MEFMs is redefined as

Tn ρð Þ ¼ e
~j2nπp ð21Þ

which satisfies the orthogonal condition:

Z 0

−1
Tn ρð ÞT �

m ρð Þdp ¼ δnm ð22Þ

Hence, the basis function of MEFMs in the log-polar
domain can be represented as

Pnm ρ; θð Þ ¼ Tn ρð Þe~jmθ ð23Þ

Pnm also satisfies the following orthogonal condition:

Z 2π

0

Z 0

−1
Pnm ρ; θð ÞP�

lk ρ; θð Þdρdθ ¼ δnlδmk ð24Þ

In light of these conclusions, the modified version of
the MEFMs in the log-polar domain is defined as

MLPM
nm ¼

Z 2π

0

Z 0

−1
g ρ; θð ÞP�

nm ρ; θð Þdρdθ ð25Þ

Let gsr(ρ, θ) denote the scaled and rotated version of
an image g(ρ, θ) with the scaling Factor σ and rotation
angle ϕ in the log-polar coordinates. We then have

gsr ρ; θð Þ ¼ g ln σrð Þ; θ þ ϕð Þ
¼ g lnσ þ lnr; θ þ ϕð Þ
¼ g ρþ lnσ; θ þ ϕð Þ ð26Þ

Thus, according to Eqs. (24) and (25), the MEFMs of
gsr(ρ, θ) are
~M
LPM
nm ¼

Z 2

0

Z 0

−1
gsr ρ; θð ÞP�

nm ρ; θð Þdρdθ

¼
Z 2π

0

Z 0

−1
gsr ρ; θð Þe−~j2nπρe−~jmθdρdθ

¼
Z 2π

0

Z 0

−1
g ρþ lnσ; θ þ ϕð Þe−~j2nπρe−~jmθdρdθ

ð27Þ

Let ρ̂ ¼ ρþ lnσ and θ̂ ¼ θ þ ϕ , we then have ρ ¼ ρ̂−
lnσ and θ ¼ θ̂−ϕ. Eq. (27) can be rewritten as

~M
LPM
nm ¼

Z 2π

0

Z 0

−1
g ρ̂; θ̂
� �

e−
~j2nπ ρ̂− lnσð Þe−~jm θ̂−φð Þdρ̂dθ̂

¼
Z 2π

0

Z 0

−1
g ρ̂; θ̂
� �

e−
~j2nπρ̂e−

~jmθ̂dρ̂dθ̂
h i

e
~j2nπ ln σe

~jmφ

¼
Z 2π

0

Z 0

−1
g ρ̂; θ̂
� �

e−
~j2nπρ̂e−

~jm~θdρ̂dθ̂
h i

e
~j2nπ ln σe

~jmφ

MLPM
nm e

~j2nπ ln σþ~jmφ

ð28Þ

and we have

~M
LPM
nm

��� ��� ¼ MLPM
nm e

~j2nπ ln σþ~jmϕ
��� ��� ¼ MLPM

nm

�� �� ð29Þ

Equations (28) and (29) show that the scaling and ro-
tation of an image by a scaling factor of σ and an angle
of ϕ result in a shift of the MEFMs in the ρ-axis and θ-
axis, respectively. This simple property leads to the con-
clusion that the magnitudes of the MEFMs of the scaled
and rotated image function remain identical to those be-
fore scaling and rotation. Thus, the magnitudes jMLPM

nm j
of the MEFMs can be taken as a scaling and rotation in-
variant feature for image recognition. For the
discretization calculation for scaling and rotation invari-
ance of MEFMs, see Appendix.
Pnm is a complete orthogonal basis function; hence, a

2D image can be reconstructed by MLPM
nm and repre-

sented by the following formula:

g ρ; θð Þ ¼
X∞
n¼−∞

X∞
m¼−∞

MLPM
nm Pnm ρ; θð Þ

¼
X∞
n¼−∞

X∞
m¼−∞

MLPM
nm e

~j2nπρe
~jmθ ð30Þ

If we maintain the constraints n ≤ nmax and m ≤mmax,
an approximate version of the 2D image function de-
noted as ~gðρ; θÞ can be calculated as



Fig. 14 a The block diagram of traditional translation invariant
algorithm. b The block diagram of our approach
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~g ρ; θð Þ ¼
Xnmax

n¼1

Xmmax

m¼1

MLPM
nm Pnm ρ; θð Þ

¼
Xnmax

n¼1

Xmmax

m¼1

MLPM
nm e

~j2nπρe
~jmθ ð31Þ

4.4.2 Projection approach for the image translation
invariance
The existing moments-based image translation invari-
ance was mainly achieved by calculating the image geo-
metric moments or center moments [28, 43]. Its major
drawbacks include being time-consuming and a more
complex computation process in image recognition (Fig.
14a). The main reason is that if other orthogonal mo-
ments (e.g., ZMs, OFMs, and BFMs) are used to extract
the image features in the image recognition process, the
geometric moments or center moments must be calcu-
lated again to achieve the translation invariance. Consid-
ering the shortcomings of the existing methods, this
study proposes a new translation invariant algorithm,
also known as the image projection-based method. Our
basic approach is to treat translation invariance to separ-
ate the target image from the background image. The
approach for image translation can be summarized as
follows (for the chief algorithm process, see Fig. 14b):

(1) If the original image is a color image, the color
image should first be gray-scale; otherwise, this step
can be a default.

(2) Otsu’s algorithm [45] is used to determine the
thresholds of the gray-scale image in the global re-
gion and then binarize the gray-scale image accord-
ing to the thresholds.

(3) A high-quality binary image can be obtained via a
simple image pre-processing operation for binary
images (e.g., denoising, filtering, etc.).

(4) Calculating the projection image in the horizontal
direction of the binary image and obtaining the
position for the troughs of the projection image,
segmentation is performed for the whole image
according to the trough point.

(5) The projection operation in the vertical direction is
the same as that in Step 4.

(6) Finally, according to the segmentation position of
the binary image, the target image can be separated
from the background in the original image. The
experiments are performed on the selected cartoon
cat color images (Fig. 15) from the Columbia
University image library database [42]. Figure 15
shows (a) as the process of using the projection
approach for the untranslated images and (b) as the
process of using the projection approach for the
translated images.



Fig. 15 a The projection approach for untranslated color image. b The projection approach for translated color image
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4.4.3 Test of classification results for the RST invariance
This subsection presents a simulation experimental study
on the RST invariant image classification accuracy of the
MEFMs under both noisy and noise-free conditions and
in a smoothing filter. A comparison with the accuracy of
the classic radial orthogonal moments (e.g., ZMs, OFMs,
BFMs, and EFMs) and certain latest orthogonal image
moments (e.g., fractional order Legendre moments (Fr-
LMs) [2017] and SOMs [2016]) is also depicted. Accord-
ingly, 10th lower-order moments and 60th higher-order
moments were adopted and the magnitudes of these se-
lected image moments were used as features for the image
classification task. A k-nearest neighbor classifier was used
to execute the classification. To evaluate the performance
of the classification results, the expression of the correct
classification percentages (CCPs) is introduced as follows:

CCPs ¼ Number of correctly classified objects
The total number of classified objects

� 100

ð32Þ
4.4.3.1 Datasets The image classification performance
of the proposed methods was evaluated with three test
datasets: D1, D2, and D3 (Fig. 16). D1 was produced by
selecting pictures from a publicly available database,
named Coil-100, from Columbia University (the size of
each image was 128 × 128; see [42]) (Fig. 17). D2, in-
cluding 20 butterfly images, was collected from the
internet. Some of these images are shown in Fig. 18 and
available in [46]. The Brodatz texture image database
was used for D3, which included 112 texture images (the
size of each image was 640 × 640). Figure 19 shows the
typical 35 pictures in the D3 dataset.

4.4.3.2 Experiment 1 First, the training set, including
200 (100 × 2) images, was constructed by rotating each
image in the D1 dataset through angles of 0 and 180°. In
the next step, each image of the training set was arbi-
trarily translated with (Δx, Δy) ∈ [−45, 45], subsequently
letting φi = 5 ∗ i be a rotation angle vector with i being
an integer and varying from 0 to 35, rotated by ϕi, and
scaled with a scaling factor of α = 0.5 + (2.5 ∗ θi)/



Fig. 16 Samples of Coil-20 grayscale images from Columbia University

Fig. 17 Some typical color images of Coil-100 from Columbia University
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Fig. 18 Some of butterfly color images used in the image classification

Fig. 19 Some sample images in Brodatz image database
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Table 5 Comparison our approach results with the published
results in recent years for D2 dataset

The number
of moments

CCPs

EFMs [2014] Fr-LMs [2017] SOMs [2016] Ours [proposed]

5 68.7% 75.5% 76.4% 78.2%

10 71.8% 80.2% 82.2% 82.5%

60 89.3% 95.5% 97.3% 97.7%

80 91.6% 98.9% 98.4% 99.3%
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360 ∈ [0.5, 3]. Therefore, we obtained a testing set, includ-
ing 7200 (36 × 200) images in the experiment. The pro-
posed approach and the ZM-, OFM-, BFM-, and EFM-
based methods were also used to implement classification.
In the last step, each of the testing set mentioned earlier
was corrupted with the salt and pepper noise with the
noise densities varying from 5% to 20% with 5% increment
steps. The CCPs were obtained via our method and via
the ZM-, OFM-, and BFM-based methods, with the re-
sults shown in Table 4. Either in the lower-order moments
(10th order moments) or higher-order moments (60th
order moments), the image classification performance of
our approach (MEFMs) performed better than the other
classic orthogonal moments-based methods.

4.4.3.3 Experiment 2 Twenty color butterfly images in
dataset D2 with a size of 640 × 480 were used as the train-
ing set. Testing sets, including 1440 (72 × 20) images,
were achieved in the same manner as Experiment 1. The
correct CCPs were obtained via our proposed method
(MEFMs) and the latest image moments (e.g., Fr-LM-,
SOM-, and EFM-based methods). Table 5 shows the sum-
marized classification results. For the texture image classi-
fication, the proposed image moments (MEFMs) had
superior rotation and scaling invariance. Under the condi-
tion of simultaneous rotation and scaling attacks, the pro-
posed MEFMs still maintained a higher classification
accuracy compared to the latest image moments in recent
years (i.e., Fr-LMs, SOMs, and EFMs).

4.4.3.4 Experiment 3 We further evaluated the image
classification capability of the proposed method (texture
recognition task). In this experiment, the training set
was formed in the same manner as Experiment 1 by ro-
tating each image in dataset D3 through angles 0, 45, 90,
and 180°. We can obtain 448 (112 × 4) images for the
database of the training set. The testing set was com-
posed to mix the RST effect with translation (Δx, Δy)
∈ [−45, 45] and scaling factor α ∈ [0.5, 3], which includes
4032 (36 × 112) images. For the testing set, the CCPs
were obtained via our proposed method (MEFMs),
EFMs, Fr-LMs, and SOMs. Each image of the testing set
Table 4 Comparative study of the CCPs by various methods (includin
by salt and pepper noise

CCPs (%) KNN

N = 10 (lower-order moments)

Noise densities ZMs OFMs BFMs O

0% 65.8 71.6 72.2 7

5% 61.6 68.5 70.6 7

10% 58.8 62.9 67.2 6

15% 55.7 60.3 62.8 6

20% 50.3 57.2 60.7 6
was divided into two groups: the first group was cor-
rupted by salt and pepper noise with noise densities
varying from 5% to 20% with steps of 5% increments,
while the second was manipulated by a smoothing filter
with different smooth windows (Fig. 20 and Table 6). All
these image moments’ CCPs inclined to reduce as the
density of salt and pepper noise and smooth windows
increased; however, the reductions of the proposed
MEFMs were the least in these mentioned methods.
This result proves that of the four types of image mo-
ments, our proposed image moments (MEFMs) exhib-
ited the highest robustness for the salt and pepper noise
as well as the smoothing filter operations.

5 Conclusions
This study introduced a new set of moments based on
the modified exponent polynomials, called MEFMs. The
main contributions of this study are as follows:

(1) A new type of piecewise modified exponent
polynomial, also known as the semi-orthogonal
polynomial, was derived. The derived polynomial is
the transformed versions of classical exponent
polynomial.

(2) To build a series of numerically stable different-order
image moments for image reconstruction and pattern
recognition, a new method of time–frequency
correspondence is proposed herein, which can
improve the image reconstruction effect and accuracy
of image recognition.

(3) We propose a new method for RST invariant
recognition and compared it with the traditional
g classic ZMs, OFMs, BFMs, and ours) for D1 dataset contaminated

N = 60 (higher-order moments)

urs ZMs OFMs BFMs Ours

1.9 91.7 98.8 99.3 100

1.2 90.2 95.8 94.9 99.8

8.1 88.6 90.6 89.8 95.3

4.7 86.3 89.8 89.4 94.6

0.9 81.5 85.5 86.1 91.4



Fig. 20 Comparative analysis of CCPs under different noise densities in experiment 3. a In lower-order moments. b In higher-order moments
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moment invariant-based method. Our approach is
more practical and effective for geometric invariant
recognition. For the future work, we will search for
superior semi-orthogonal image moments for local
feature extraction in the image analysis because
non-moment-based methods (e.g., [47, 48]) can
effectively extract the local features of the image.
6 Appendix
6.1 Discretization calculation for scaling and rotation
invariance of MEFMs
A digital image size of N ×N is represented in the Carte-
sian coordinates, the computation of MLPM

nm of MEFMs
requires the conversion of the image between log-polar
coordinates and Cartesian coordinates. Ping’s CEM [44]



Table 6 Comparative results of the proposed approach and other published methods in recent years for D3 dataset corrupted by
smoothing filter operation

CCPs (%) KNN

N = 10 (lower-order moments) N = 60 (higher-order moments)

Smoothing windows EFMs Fr-LMs SOMs Ours EFMs Fr-LMs SOMs Ours

[3] 70.2 81.7 83.8 82.1 90.1 97.8 98.9 99.8

[5] 68.7 80.9 82.4 81.7 89.7 96.5 98.2 99.7

[7] 64.2 79.4 80.8 79.9 87.4 92.8 95.8 97.1

[9] 59.9 76.8 78.9 79.0 83.5 89.9 93.2 95.3

He et al. EURASIP Journal on Image and Video Processing         (2019) 2019:72 Page 25 of 27
computing method will be used herein. We use fLP(ρ, θ)
to denote an image in log-polar coordinates, fc(x, y) to
represent the image in Cartesian coordinates and f[i, j]
to denote the discrete coordinates. The log-polar coordi-
nates (ρ, θ) can be converted to the Cartesian coordi-
nates (x, y) using formula (33).

x ¼ eρ � Nffiffiffi
2

p � cosθ; y ¼ eρ � Nffiffiffi
2

p � sinθ ð33Þ

The Cartesian coordinates (x, y) can be changed into
discrete coordinates [i, j] with the following relationship:

i ¼ − yd e þ N
2
þ 1; j ¼ xd e þ N

2
ð34Þ

Symbol ⌈⌉ denotes the smallest integer not less than x
or y. With the help of Eqs. (33) and (34), an image func-
tion fLP(ρ, θ) in the log-polar coordinates can be
achieved as

f LP ρ; θð Þ ¼ f − eρ � Nffiffiffi
2

p � sinθ


 �
þ N

2
þ 1; eρ � Nffiffiffi

2
p � cosθ


 �
þ N

2

� 

ð35Þ

We then let Δρ ¼ ln 1
K , Δθ ¼ 2π

K , and ρu ¼ ln u
K , u = 0,

1, …K − 1; θv ¼ 2πv
K , v = 0, 1, …K − 1.

Thus,

f LP ρu; θu
� 	

≈ f − eρu � Nffiffiffi
2

p sinθv


 �
þ N

2
þ 1; eρu � Nffiffiffi

2
p � cosθv


 �
þ N

2

� 

ð36Þ

In summary, integral Eq. (24) can be approximated as

MLPM
nm ¼ 1

K 2

XK−1

u¼0

XK−1

v¼0

f LP ρu; θv
� 	

w u; v½ �e−~j2nπρue−~jmθv

¼ 1

K 2

XK−1

u¼0

XK−1

v¼0

G u; v½ �e−~j2nπ ln u
Ke−

~j2mπ v
K

ð37Þ

where, G[u, v] = fLP[u, v]w[u, v], and w½u; v� ¼ jTnðα;

½ðu−N=2
N=2 Þ2 þ ðv−N=2

N=2 Þ
2�

1
2Þjðu−N=2

N=2 Þ2 þ ðv−N=2
N=2 Þ

2�
1
2
.

Eq. (37) shows the 2D discrete Fourier transform of
G[u, v]. Therefore, the scaling and rotation invariant of
MEFMs for an image can be calculated by a 2D discrete
Fourier transform (FFT).
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