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Abstract

Video data are usually represented by high dimensional features. The performance of video semantic recognition,
however, may be deteriorated due to the irrelevant and redundant components included into the high dimensional
representations. To improve the performance of video semantic recognition, we propose a new feature selection
framework in this paper and validate it through applications of video semantic recognition. Two issues are considered
in our framework. First, while those labeled videos are precious, their relevant labeled images are abundant and
available in the WEB. Therefore, a supervised transfer learning is proposed to achieve the cross-media analysis, in
which the discriminative features are selected by evaluating feature’s correlation with the classes of videos and
relevant images. Second, the labeled videos are normally rare in real-world applications. In our framework, therefore,
an unsupervised subspace learning is added to retain the most valuable information and eliminate the feature
redundancies by leveraging both labeled and unlabeled videos. The cross-media analysis and embedded learning are
simultaneously learned in a joint framework, which enables our algorithm to utilize the common knowledge of
cross-media analysis and embedded learning as supplementary information to facilitate decision making. An efficient
iterative algorithm is proposed to optimize the proposed learning-based feature selection, in which convergence is
guaranteed. Experiments on different databases have demonstrated the effectiveness of the proposed algorithm.
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1 Introduction
Video semantics recognition [1] is a fundamental research
problem in computer vision [2, 3] and multimedia analy-
sis [4, 5]. However, video data are always represented by
high dimensional feature vectors [6], which often incur
higher computational costs. The irrelevant and redundant
features may also deteriorate the performance of video
semantic recognition. In addition, feature selection [7]
is able to reduce redundancy and noise information in
the original feature representation, thus facilitating subse-
quent analysis tasks such as video semantic recognition.
Depending on whether the class label information are

available, feature selection algorithms can be roughly
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divided into two groups [8], i.e., supervised feature
selection [9] and unsupervised feature selection [10].
Supervised feature selection is able to select discrimina-
tive features by evaluating features’ correlation with the
classes. Thus, supervised feature selection usually yields
better and more reliable performances by using the label
information. However, most of the supervised feature
selection methods require sufficient labeled training data
in order to learn reliable model [11]. Since it is difficult
to collect high-quality labeled training data in real-world
applications [12], it is normally not practical to provide
sufficient labeled videos for existing supervised feature
selection methods to achieve satisfactory performances
of feature selection. Recently, some cross-media analy-
sis methods [13, 14] have been proposed to address the
problem of insufficient number of labeled videos by trans-
ferring knowledge from other relevant types of media
(e.g., images). Therefore, this type of cross-media analysis
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method can be considered as a kind of transfer learn-
ing. Moreover, some relevant labeled images are available
and easier to collect, which can be leveraged to enhance
the feature selection for video semantic recognition. To
this end, we propose a supervised transfer learning in
our framework, in which the knowledge from images are
adapted to improve feature selection for video semantic
recognition. Specifically, we use the available images with
relevant semantics as our auxiliary resource and feature
selection is performed on the target videos. To transfer the
information from images to videos, we use the same type
of still features to represent both videos and images.
Unsupervised feature selection exploits data variance

and separability to evaluate feature relevance without
labels. A frequently used criterion is to select the features
which best preserve the data distribution or local struc-
ture derived from the whole feature set [15]. Recently,
some unsupervised feature selection methods based on
embedded learning have been proposed. The main advan-
tage of utilizing embedded learning is that it can use the
manifold structure of both labeled and unlabeled data
to enhance the performance of feature selection. Fur-
ther, most transfer learning algorithms require that the
features extracted from the source domain should have
the same type as that in the target domain. In prac-
tice, the videos and images in transfer learning usually
need to be represented by still features such as SIFT
[16]. For example, many videos are key frame-based so
they cannot be represented by motion features such as
STIP [17], which results in losing the underlying tem-
poral information. To completely represent the video
semantics and to effectively use the unlabeled videos, we
add an unsupervised embedded learning into our pro-
posed framework, based on augmented feature represen-
tations. To take full advantages of cross-media analysis
and embedded learning, we assemble them into a joint
optimization framework by introducing the joint �2,1-
norm regularization [18]. In this way, the information
from cross-media analysis and embedded learning can be
transferred from one domain to another. Moreover, the
problem of over-fitting can be alleviated, and thus, the
performance of feature selection can be improved. We
call the proposed feature selection framework as joint-
ing cross-media analysis and embedded learning (JCAEL).
We summarize the main contributions of this paper
as follows:
(1) As JCAEL can transfer the learned knowledge from

relevant images to videos for improving the video fea-
ture selection, it can directly use some labeled images
to address the problem of an insufficient label informa-
tion. Such a merit ensures that our method is able to
uncover the common discriminative features in videos
and images of the same class, which provides us with
better interpretability of the features.

(2) Our method contains unsupervised embedded
learning, which utilizes both labeled and unlabeled videos
for feature selection. This advantage guarantees that
JCAEL can exploit the variance and separability of all
training videos to find the common irrelevant or noisy fea-
tures and thus generating optimal feature subsets. Mean-
while, videos can be represented by augmented features
during the process of embedded learning, and the aug-
mented features present more complete representation of
videos, providing us the space to select the precise features
of video semantics.
(3) To take the advances of cross-media analysis and

embedded learning, we propose to ensemble them by
adding a joint �2,1-norm regularization. In this way,
our algorithm is able to evaluate the informativeness
of features jointly , where the correlation of features is
employed. In addition, our proposed also enables cross-
media analysis and embedded learning to share the com-
mon components/knowledge of features, so as to uncover
common irrelevant features, which results in improving
the performance of feature selection for video semantic
recognition.
The rest of this paper is organized as follows. The

proposed method and its corresponding optimization
approach are proposed in Section 2. In Section 3, the
experimental results are reported. The conclusion is
shown in Section 4.

2 Proposedmethod
In this section, we present the framework of JCAEL.
To construct this framework efficiently, we develop an
iterative algorithm and prove its convergence.

2.1 Notations
To adapt knowledge from images to videos, let us denote
the representations of the labeled training videos as a still
feature: Xv = [

x1v , x2v , . . . , x
nl
v

] ∈ Rds×nl where ds is the
still feature dimension and nl is the number of the labeled
training videos. Let Yv = [

y1v , y2v , . . . , y
nl
v

] ∈ {0, 1}cv×nl be
the labels for the labeled training videos, where cv indi-
cates that there are cv different classes in videos. Similarly,
we denote the representations of the images by a still fea-
ture: Xi = [

x1i , x2i , . . . , x
ni
i

] ∈ Rds×ni , where ni is the
number of the images. Yi = [

y1i , y2i , . . . , y
ni
i

] ∈ {0, 1}ci×ni

is the label matrix of images, where ci indicates that there
are ci different classes in images, ykjv and ykji denote the
jth datum of ykv and yki , y

kj
v = 1 and ykji = 1 if xkv and xki

belong to the jth class; otherwise, we have ykjv = 0 and
ykji = 0. To fully utilize labeled and unlabeled videos, we
use an augmented feature to denote n videos, which can
be represented as Zv = [

z1v , z2v , . . . , znv
] ∈ Rda×n, where da

is the dimension of the augmented feature. From the basic
idea of feature learning, we represent the original data zjv
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by its low dimensional embedding, i.e., pj ∈ Rde , where
de is the dimensionality of the embedding. As a result, the
embedding ofZv can be denoted as Pv = [

p1v , p2v , . . . , pnv
] ∈

Rde×n.

2.2 The proposed framework of JCAEL
We first demonstrate how to exploit the knowledge from
labeled videos. To achieve this objective, learning algo-
rithms usually use labeled training videos

(
xjv, y

j
v
)nl
j=1

to
learn a prediction function f that can correlate Xv with Yv.
A common approach to establish such a mechanism is to
minimize the following regularized empirical error:

min
f

loss(f (Xv),Yv) + α�(f ) (1)

where loss(.) is the loss function and α�(f ) is the regular-
ization with α as its parameter.
It has been shown in [19] that the least square loss func-

tion gains comparable or better performance to other loss
functions, such as the hinge loss, and consequently, we
use the least square loss in our algorithm. The �2,1-norm
regularized feature selection algorithms [20, 21] utilize
�2,1-norm to control classifiers’ capacity and also ensure
there are sparse in rows, making �2,1-norm particularly
suitable for feature selection. Therefore, we use the �2,1-
norm to define the regularization, and thus, Eq. (1) can be
written as

min
Wv

∥∥∥Wv
TXv − Yv

∥∥∥
2

F
+ α ‖Wv‖2,1 (2)

where Wv ∈ Rds×cv is the transformation matrix of the
labeled videos with respect to the still feature, and ‖.‖F
denotes the Frobenius norm of a matrix. α is the regular-
ization parameter. As indicated in [1, 22], the �2,1-norm

of Wv is defined as ‖Wv‖2,1 =
ds∑

j=1

√
cv∑

k=1

(
Wjk

v
)2
, where

Wjk
v is the jth row and the kth column element of Wv.

When minimizing the �2,1-norm of Wv, some rows of Wv
shrink to zero, makingWv particularly suitable for feature
selection.
Now, we show how to exploit the knowledge from

labeled images. The fundamental step is to obtain the
correlation between the images Xi and labels Yi. Simi-
lar to Eq. (2), we achieve that by the following objective
function:

min
Wi

∥∥∥Wi
TXi − Yi

∥∥∥
2

F
+ α ‖Wi‖2,1 (3)

whereWi ∈ Rds×ci is the transformation matrix of labeled
images with respect to the still feature. When the images
and videos share relevant knowledge, we can learn some
shared components. Taking the semantics “playing violin”
as an example, we may learn shared components about
the object “violin,” human action “playing,” and human

appearance from both videos and images. To adapt the
shared information of feature selection from images to
videos, we propose ‖W‖2,1 to uncover the common infor-
mation shared by Wv and Wi, where W = [Wv,Wi]. By
minimizing ‖W‖2,1, we can get sparse rows of W and
uncover the common irrelevant or noisy components in
both Wv and Wi. To this end, we propose the following
objective function:

min
Wv,Wi

∥∥∥Wv
TXv − Yv

∥∥∥
2

F
+ α ‖Wv‖2,1 +

∥∥∥Wi
TXi − Yi

∥∥∥
2

F

+ α ‖Wi‖2,1 + λ ‖W‖2,1
(4)

where λ is the regularization parameter.
To fully exploit both the labeled and the unlabeled

videos with respect to the augmented feature represen-
tation, we show how to add the unsupervised subspace
learning into Eq. (4). As it has been shown in [23] that
the graph Laplacian performs well in unsupervised fea-
ture learning, we use graph Laplacian to characterize
the manifold structure among the labeled and unlabeled
videos. We first construct the similarity matrix S, where
for the ith point ziv, its weight can be determined as: Sij =
exp

(

−
∥∥∥ziv−zjv

∥∥∥
2

2
δ

)

if and only if zjv ∈ N
(
ziv

)
or ziv ∈ N

(
zjv

)
,

where δ is the width parameter andN
(
ztv

)
is the k-nearest

neighborhood set of ztv. Otherwise, Sij = 0. As a result, the
unsupervised subspace learning can be described as:

argmin
PvPTv =Ide×de ,Wz

n∑

i=1

∥∥∥∥∥
piv −

n∑

j=1
Sijp

j
v

∥∥∥∥∥

2

2
+

n∑

i=1

∥∥WT
z ziv − piv

∥∥2
2

= argmin
PvPTv =Ide×de ,Wz

tr
(
PvLPTv

) + ∥
∥WT

z Zv − Pv
∥∥2
F

(5)

where piv ∈ Rde is the low dimensional embedding of the
original data ziv, de is the dimensionality of the embed-
ding, Ide×de is the identity matrix, Wz ∈ Rda×de is the
transformation matrix of videos with respect to the aug-
mented feature, L = (In×n − S)T (In×n − S) is the graph
Laplacian, and Pv = [

p1v , p2v , . . . , pnv
]
and tr(.) represent the

trace operator. In Eq. (5), the most valuable information
is retained and the feature redundancies are eliminated by
using the low dimensional embedding piv to represent the
original data ziv. To achieve the feature selection, we use
‖Wz‖2,1 as the regularization term of Eq. (5). Therefore,
the feature selection for unsupervised subspace learning
can be written as:

argmin
PvPTv =Ide×de ,Wz

tr
(
PvLPTv

)
+

∥∥
∥WT

z Zv − Pv
∥∥∥
2

F
+α‖Wz‖2,1

(6)
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As the augmented feature is the combination of still fea-
ture and motion feature, the still feature representation is
a part of augmented feature representation. Since the still
feature representation doesnt havemotion features, we set
Xv = [Xv; 0]∈ Rda×nl and Xi = [Xi; 0]∈ Rda×ni , so thatWv
and Wi does not affect the loss on Wz. In addition, we set
W = [Wv,Wi,Wz] and integrate the unsupervised sub-
space learning in Eq. (6) into the knowledge adaptation in
Eq. (4). Finally, we arrive at the whole framework of JCAEL
as follows:

min
PvPTv = Ide×de ,Wi ,Wv ,Wz

∥
∥∥Wv

TXv − Yv
∥
∥∥
2

F
+ α ‖Wv‖2,1

+
∥∥∥Wi

TXi − Yi
∥∥
∥
2

F
+ α ‖Wi‖2,1

+ tr
(
PvLPTv

)
+

∥∥∥WT
z Zv − Pv

∥∥∥
2

F

+ α‖Wz‖2,1 + λ ‖W‖2,1

(7)

In Eq. (7), with the term ‖W‖2,1, our algorithm is able
to evaluate the informativeness of the features jointly
for both knowledge adaptation and low dimensional
embedding. Our algorithm further enables different fea-
ture selection functions to share the common compo-
nents/knowledge across knowledge adaptation and low
dimensional embedding. In this way, the information from
knowledge adaptation and low dimensional embedding
can be transferred from one domain to the other. On the
other hand, ‖W‖2,1 enables Wv, Wi, and Wz to have the
same sparse patterns and share the common components,
which can result in an optimal W for feature selection.
Since there are four parameters (i.e., Wi, Wz, Pv, and Wv)
to be estimated in Eq. (7), the objective function in Eq. (7)
is not jointly convex with respect to the four parameters,
but it is convex with respect to one parameter when we
fix the other parameters. Thus, we propose an alternat-
ing optimization algorithm [24] to solve the optimization
problem of JCAEL.

2.3 Optimization
In this section, we introduce an optimization algorithm
for the objective function in Eq. (7). As there exist a num-
ber of variables to be estimated, we propose an alternating
optimization algorithm to solve the optimization prob-
lem in Eq. (7). Denote Wv =

[
w1
v ;w2

v ; . . .w
da
v

]
, Wi =

[
w1
i ;w2

i ; . . .w
da
i

]
, Wz =

[
w1
z ;w2

z ; . . .w
da
z

]
, and W =

[
w1;w2; . . .wda

]
, where da is the number of features.

(1) By fixing Wi,Wz, Pv, and optimizing Wv, the objec-
tive function in Eq. (7) can be rewritten as:

min
Wv

∥
∥∥Wv

TXv − Yv
∥
∥∥
2

F
+ α ‖Wv‖2,1 + λ ‖W‖2,1 (8)

According to [25], Eq. (8) is equivalent to

min
Wv

∥∥∥Wv
TXv−Yv

∥∥∥
2

F
+ αtr

(
WT

v DvWv
)

+ λtr
(
WT

v DWv
)

(9)

where Dv and D are diagonal matrices with each element
on the diagonal, i.e., dkkv and dkk (k = 1, 2, . . . , da), are
respectively defined as dkkv = 1

2
∥
∥∥wk

v
∥
∥∥
2

and dkk = 1
2‖wk‖2

. By

setting the derivative of Eq. (9) w.r.t.Wv to 0, we have

2XvXT
v Wv − 2XvYT

v + 2αDvWv + 2λDWv = 0 (10)

Therefore,Wv can be derived by:

Wv =
(
XvXT

v + αDv + λD
)−1

XvYT
v (11)

(2) Similarly, by fixing Wv,Wz, Pv, and optimizing Wi,
the objective function in Eq. (7) can be rewritten as:

min
Wi

∥∥
∥Wi

TXi − Yi
∥∥
∥
2

F
+ α ‖Wi‖2,1 + λ ‖W‖2,1 (12)

Similar to Eq. (8), we first denote Di as a diagonal
matrix with each element on the diagonal, i.e., dkki (k =
1, 2, . . . , da), is defined as dkki = 1

2
∥∥∥wk

i

∥∥∥
2

. Then, Eq. (12) can

be rewritten as

min
Wi

∥∥∥Wi
TXi − Yi

∥∥∥
2

F
+αtr

(
WT

i DiWi
)
+λtr

(
WT

i DWi
)

(13)

By setting the derivative of Eq. (13) w.r.t.Wi to 0, we have

2XiXT
i Wi − 2XiYT

i + 2αDiWi + 2λDWi = 0 (14)

Therefore,Wi can be optimally determined as:

Wi =
(
XiXT

i + αDi + λD
)−1

XiYT
i (15)

(3) By fixing Wv,Wi, Pv, and optimizing Wz, the objec-
tive function in Eq. (7) can be rewritten as:

min
Wz

∥∥∥WT
z Zv − Pv

∥∥∥
2

F
+ α‖Wz‖2,1 + λ ‖W‖2,1 (16)

Similar to Eq. (8), we first denote Dz as a diagonal
matrix with each element on the diagonal, i.e., dkkz (k =
1, 2, . . . , da), is defined as dkkz = 1

2
∥∥∥wk

z
∥∥∥
2

. Then, Eq. (16) can

be rewritten as

min
Wz

∥∥∥Wz
TZv−Pv

∥∥∥
2

F
+αtr

(
WT

z DzWz
)

+ λtr
(
WT

z DWz
)

(17)

By setting the derivative of Eq. (17) w.r.t.Wz to 0, we have

2ZvZT
v Wz − 2ZvPTv + 2αDzWz + 2λDWz = 0 (18)

Therefore, we haveWz to be optimally determined as:

Wz =
(
ZvZT

v + αDz + λD
)−1

ZvPTv (19)
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(4) By fixing Wv,Wi and substituting above Wz of
Eq. (19) into Eq. (7), we will optimize Pz. Denote
A = ZvZT

v + αDz + λD, the objective function in Eq. (7)
can be rewritten as:

min
PvPTv =Ide×de

tr
(
Pv

(
L + In×n − ZT

v A
−1Zv

)
PTv

)
(20)

Considering the objective function in Eq. (20) and the con-
straint PvPTv = Ide×de , the optimization problem becomes

min
Pv

tr
(
Pv

(
L + In×n − ZT

v A
−1Zv

)
PTv

)

s.t. PvPTv = Ide×de

(21)

If A and L are fixed, the optimization problem in Eq. (21)
can be solved by Eigen-decomposition of the matrix(
L + In×n − ZT

v A−1Zv
)
. We pick up the eigenvectors cor-

responding to the de smallest eigenvalues.
Based on the above mathematical deduction, we pro-

pose an alternating algorithm to optimize the objective
function in Eq. (7), which is summarized in Algorithm 1.
Once W is obtained, we sort the da features according to∥∥wk∥∥

F (k = 1, 2, . . . , da) in a descending order and select
the top ranked ones.

Algorithm 1 Jointing Cross-media Analysis and Embed-
ded Learning
Input: The labeled training videos with respect to the still

feature and label information: Xv = [
x1v , x2v , . . . , x

nl
v

] ∈
Rds×nl and Yv = [

y1v , y2v , . . . , y
nl
v

] ∈ {0, 1}cv×nl . The
labeled training images with respect to the still feature
and label information: Xi = [

x1i , x2i , . . . , x
ni
i

] ∈ Rds×ni

and Yi = [
y1i , y2i , . . . , y

ni
i

] ∈ {0, 1}ci×ni . The labeled and
unlabeled videos with respect to the augmented fea-
ture: Zv = [

z1v , z2v , . . . , znv
] ∈ Rda×n Parameters: α, λ,

de.
Output: Optimized Wv ∈ Rda×cv ,Wi ∈ Rda×ci and Wz ∈

Rda×de

1: InitializeWv,Wi andWz randomly.
2: ComputeW according toW =[Wv,Wi,Wz].
3: Construct the graph Laplacian matrix L ∈ Rn×n.
4: repeat
5: Compute diagonal matrices Dv, Di, Dz and D

respectively.
6: ComputeWv according to Eq. (11).
7: ComputeWi according to Eq. (15).
8: Compute Pv according to Eq. (21).
9: ComputeWz according to Eq. (19).

10: ComputeW according toW = [Wv,Wi,Wz].
11: until Convergence
12: return Wv,Wi,Wz andW

2.4 Convergence and computational complexity
2.4.1 Convergence
In this section, we theoretically show that Algorithm 1
proposed in this paper converges. We begin with the
following lemma [22].

Lemma 1 For any nonzero vectors w and ŵ, the following
inequality holds:

‖w‖2 − ‖w‖22
2‖ŵ‖2 ≤ ‖ŵ‖2 − ‖ŵ‖22

2‖ŵ‖2 (22)

As a result, the second lemma can be derived as described
below.

Lemma 2 By fixing Wi and Wv, we obtain the global
solutions for Wz and Pv in Eq. (7). Yet, by fixing Wi, Wz,
and Pv, we obtain the global solutions for Wv in Eq. (7). In
the same manner, by fixing Wv, Wz, and Pv, we obtain the
global solutions for Wi in Eq. (7).

Proof When Wi and Wv are fixed, the optimization
problem in Eq. (7) is equivalent to the problem described
in Eq. (17) and Eq. (21).We can solve the convex optimiza-
tion problem with respect to Wz by setting the derivative
of (17) to zero. Further, we can derive the global solution
for Pv by solving the Eigen-decomposition problem with
respect to Pv. When Wz, Pv, and Wi are fixed, the opti-
mization problem in Eq. (7) is equivalent to the problem
described in Eq. (9). We can solve the convex optimiza-
tion problem with respect to Wv by setting the derivative
of Eq. (9) to zero. Thus, we derive the global solution for
Wv in Eq. (7), provided thatWz, Pv, andWi are fixed. Sim-
ilarly, we can also derive the same conclusion when Wi is
fixed.

Theorem 1 The proposed algorithm monotonically
decreases the objective function value of Eq. (7) in each
iteration. Next, we prove Theorem 1 as follows.

Proof Let Ŵv, Ŵi, P̂v, and Ŵz denote the updated Wv,
Wi, Pv, and Wz, respectively. The loop to update Wv, Wi,
Pv, and Wz in the proposed algorithm corresponds to the
optimalWv,Wi, Pv, andWz of the following problem:

min
PvPTv = Ide×de ,Wi,Wv,Wz

∥∥∥Wv
TXv − Yv

∥∥∥
2

F
+α ‖Wv‖2,1

+
∥∥
∥Wi

TXi − Yi
∥∥∥
2

F
+ α ‖Wi‖2,1

+ tr
(
PvLPTv

)
+

∥∥∥WT
z Zv − Pv

∥∥∥
2

F
+ α‖Wz‖2,1 + λ ‖W‖2,1

(23)

Since ‖W‖2,1 = ∑da
k=1

∥∥wk∥∥
2 [26], according to Lemma 2,

we can obtain:
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∥
∥∥ŴT

v Xv−Yv
∥
∥∥
2

F
+α

∥∥Ŵv
∥∥
2,1 +

∥
∥∥ŴT

i Xi − Yi
∥
∥∥
2

F
+ α

∥∥Ŵi
∥∥
2,1 + tr

(
P̂vLP̂Tv

)

+
∥
∥∥ŴT

z Zv − P̂v
∥
∥∥
2

F
+ α

∥∥Ŵz
∥∥
2,1 + λ

∑

k

∥
∥ŵk∥∥2

2
2
∥∥wk

∥∥
2

≤
∥∥∥Wv

TXv−Yv
∥∥∥
2

F
+α‖Wv‖2,1+

∥∥∥Wi
TXi − Yi

∥∥∥
2

F
+α‖Wi‖2,1

+ tr
(
PvLPTv

)
+
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Then, we have the following inequality:
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According to Lemma 1, another inequality can be estab-
lished as follows:
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This indicates that, with the updating rule in the pro-
posed algorithm, the objective function value for Eq. (7)
monotonically decreases until a convergence is reached.

2.4.2 Computational complexity
For the computational complexity of Algorithm 1, com-
puting the graph Laplacian matrix L is O

(
n2

)
. During

the training, learning Wv, Wi, and Wz involves cal-
culating the inverse of a number of matrices, among
which the most complex part is O

(
d3a

)
. To opti-

mize the Pv, the most time-consuming operation is
to perform eigen-decomposition of the matrix ED =(
L + In×n − ZT

v A−1Zv
)
. Note that ED ∈ Rn×n. The time

complexity of this operation is O
(
n3

)
approximately.

Thus, the computational complexity of JCAEL can be

worked out as max
{
O

(
t × n3

)
,O

(
t × d3a

)}
, where t is

the number of iterations required for convergence. From
the experiments, we observe that the algorithm converges
within 10 ∼ 15 iterations, which indicates that our pro-
posed algorithm is efficient in feature selection for video
semantics recognition.

3 Experimental results and discussion
In this section, we propose the video semantic recognition
experiments which evaluate the performance of our joint-
ing cross-media analysis and embedded learning (JCAEL)
for feature selection.

3.1 Experimental datasets
In order to evaluate the contribution from cross-
media analysis, we construct three couples of
video and image datasets, which include HMDB13
(video dataset)←“Extensive Images Databases” (EID,
image dataset), UCF10 (video dataset)← Actions
Images Databases (AID, image dataset), UCF (video
dataset)←PPMI4 (image dataset), where “←” denotes
the direction of adaptation from images to videos. The
videos and images of HMDB13←EID and UCF10←AID
have the same semantic classes, and UCF←PPMI4 has
different semantic classes for videos and images.

3.1.1 HMDB13←EID
The HMDB51 dataset [27] is collected from a variety of
sources ranging from digitized movies to YouTube videos.
It contains 6766 video sequences that are categorized into
51 classes. This dataset contains simple facial actions, gen-
eral bodymovements, and human interactions. In order to
increase the number of overlapping classes, we select 13
overlapping classes between HMDB51 and another image
datasets as Extensive Images Databases (EID), which
includes two open benchmark datasets (i.e., Stanford40
[28] and Still DB [29]). As a result, we call the video
dataset as “HMDB13.” Table 1 provides the details of the
overlapping classes from EAD to HMDB51.

Table 1 The classes of HMDB13 ← EID

Datasets HMDB13 (video dataset) EID (image dataset)

The overlapping
classes

Catch Catching (Still DB)

Clap Applauding (Stanford40)
Drink Drinking (Stanford40)
Jump Jumping (Stanford40)
Pour Pouring liquid (Stanford40)
Pushing Pushing a cart (Stanford40)
Run Running (Stanford40)
Smoke Smoking (Stanford40)
Wave Waving hands (Stanford40)
Kick Kicking (Still DB)
Throw Throwing (Still DB)
Walk Walk (Still DB)
Climbing Climbing (Stanford40)
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3.1.2 UCF10←AID
The UCF101 [30] is a dataset of realistic action videos
collected from YouTube, which has 101 action categories.
It gives the largest diversity in terms of actions with
the presence of large variation in subject appearances,
including scale and pose, related objects, cluttered back-
ground, and illumination conditions. Such a challenging
diversity is suitable for verifying the effect of informa-
tion learned from images on video semantics recognition.
To further evaluate whether images coming from vari-
ous sources contribute to the feature selection or not,
we select ten overlapping classes between UCF101 and
the action image dataset, referred to as Actions Images
Databases (AID), which includes four open benchmarking
datasets (i.e., action DB [31], PPMI [32], willow-actions
[33], and still DB). For the convenience of our experi-
ments design and description, we call the video dataset
as UCF10. In Table 2, we show the chosen categories of
UCF10←AID, which are taken as video dataset and image
dataset, respectively.

3.1.3 UCF←PPMI4
The PPMI dataset [32] consists of 7 different musical
instruments: bassoon, erhu, flute, French horn, guitar,
saxophone, and violin. In order to assess the performance
of the proposed algorithmwhen the image dataset has dif-
ferent classes from that in the video dataset, we choose
ten classes from UCF101 and then select four overlap-
ping image categories from PPMI. To this end, we call the
video dataset as UCF and image dataset as PPMI4. Table 3
summarizes the selected classes of UCF←PPMI4.

3.2 Experiment setup
For all the datasets, we select 30 images from each over-
lapping categories for knowledge adaption as the number
of images is relatively small. We sample videos for labeled
training data and take the remaining videos as the test-
ing data. To evaluate the contribution from unsupervised

Table 2 The classes of UCF10←AID

Datasets UCF10 (video dataset) AID (image dataset)

The overlapping
classes

Biking Riding bike (willow-actions)

Cricket bowling Cricket bowling (action DB)

Cricket shot Cricket batting (action DB)

Horse riding Riding horse (willow-actions)

Playing cello Playing cello (PPMI)

Playing flute Playing flute (PPMI)

Playing violin Playing violin (PPMI)

Tennis swing Tennis forehand (action DB)

Volleyball spiking Volleyball smash (action DB)

Base ball pitch Throwing (still DB)

Table 3 The classes of UCF←PPMI4

Datasets UCF (video dataset) PPMI4 (image dataset)

The overlapping classes Playing cello Playing cello (PPMI)

Playing flute Playing flute (PPMI)

Playing guitar Playing guitar (PPMI)

Playing violin Playing violin (PPMI)

Rock climbing in door NULL

Rowing NULL

Tennis swing NULL

Volleyball spiking NULL

Walking with dog NULL

Writing on board NULL

subspace learning, we conduct experiments to study the
performance variance when only a few labeled training
samples are provided, and the ratios of labeled video data
are set to 5%. For each dataset, we repeat the sampling for
10 times and report the average results. We extract SIFT
features [16, 34] from the key frames of videos and images.
The STIP features [17] are extracted from videos. We
use the standard Bag-of-Words (BoW) method [35, 36]
to generate the BoW representation of SIFT and STIP fea-
tures, where the number of visual words of Bag-of-Words
is set to 600. For videos, we obtain a still feature with 600
dimensions and an augmented feature with 1200 dimen-
sions, and for images, we obtain a still feature with 600
dimensions.

3.3 Comparison algorithms
To benchmark our proposed jointing cross-media analysis
and embedded learning (JCAEL), we select a number of
representative existing state of the arts for performance
comparisons, details of which are highlighted below:

– Full features (FF) which adopts all the features for
classification. It is used as baseline method in this
paper.

– Fisher score feature selection (FSFS) [37]: a
supervised feature selection method built by
depending on fully labeled training data to select
features with the best discriminating ability.

– Feature selection via joint �2,1-norms minimization
(FSNM) [22]: a supervised feature selection method
built by employing joint �2,1-norms minimization on
both loss function and regularization to realize
feature selection across all data points.

– �2,1-norm least square regression (LSR21) [22]: a
supervised feature selection method built upon least
square regression by using the �2,1-norm as the
regularization term.

– Multi-class �2,1-norm support vector machine
(SVM21) [20]: a supervised feature selection method
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built upon SVM by using the �2,1-norm as the
regularization term.

– Ensemble feature selection (EnFS) [25]: a supervised
feature selection method based on transfer learning,
which transfer the shared information between
different classifiers by adding a joint �2,1-norm on
multiple feature selection matrices.

– Joint embedding learning and sparse regression
(JELSR) [26]: a unsupervised feature selection
method built by using the local linear approximation
weights and �2,1-norm regularization.

– Jointing cross-media analysis and embedded learning
(JCAEL): our proposed method which is designed for
feature selection by adapting knowledge from images
based on still feature and utilizing both labeled and
unlabeled videos based on augmented feature.

During the process of training and predicting, we use
the augmented feature to represent the videos for the
baseline methods, including FSFS, FSNM, LSR21, SVM21,
and JELSR as these methods cannot use the information
adapted from images. For EnFS and JCAEL, we use the
still features to represent the image data and use the aug-
mented feature to represent the videos. To fairly compare
different feature selection algorithms, we use a “grid-
research” strategy from

{
10−6, 10−5, . . . , 105, 106

}
to tune

the parameters for all the compared algorithms. By setting
the number of selected features as {120, 240, . . . , 1200}, we
report the best results obtained from different parame-
ters. For the K-nearest neighbors of Laplacian matrix L,
the parameter is set to k = 10. In our experiment, each
feature selection algorithm is first performed to select fea-
tures. Then, three classifiers, i.e., linear multi-class SVM
(LMCSVM), least square regression (LSR), and multi-
class kNN(MCkNN), are performed based on the selected
features respectively to assess the performance of feature
selection. For the classifier of least square regression, we
learn a threshold from the labeled training data to quan-
tize the continuous label prediction scores to binary. To
measure the feature selection performances, we use the
average accuracy (AA) over all semantic classes as the
evaluation metric, which is defined as:

AA =

cv∑

k=1
acck

cv
(27)

where cv is the number of action classes. acck is the
accuracy for the kth class.

3.4 Experimental results
In order to evaluate the effectiveness of JCAEL, we com-
pare JCAEL with FF, FSFS, FSNM, LSR21, SVM21, EnFS,
and JELSR on both HMDB13←EID and UCF10←AID
dataset. The comparison results are summarized in
Tables 4 and 5, where the best and the second best results
are highlighted in bold and italic, correspondingly. We
also conduct a number of experiments to study the per-
formance variance when the ratios of labeled video data
are set to 5%, 10%, 20%, 30%, and 40%, and the results are
displayed in Figs. 1 and 2.
From the experimental results in Tables 4–5 and

Figs. 1–2, we can make the following observations:
(1) The results of feature selection algorithms are

generally better than that of full features (FF). As the
classification could be much faster by reducing the
feature number, feature selection proves to be more
crucial in practical applications.

(2) As the number of labeled training videos increases,
the performance of all methods is improved. This is
consistent with the general principle as more
information is made available for training.

(3) The classification using multi-class SVM and
multi-class kNN achieve better performance than the
least square regression when the ratio of labeled
video data are set to 5%. The main reason is that the
threshold learned from the small size of training data
leads to a bias in the quantization of continuous label
prediction scores.

(4) When the ratio of labeled video data are set to 5%,
JELSR is generally the second most competitive
algorithm. This indicates that incorporating the
additional information contained in the unlabeled
training data through unsupervised embedded
learning is indeed useful.

(5) As shown in Figs. 1–2, supervised methods based on
transfer learning (EnFS) always achieve better
performances than other compared methods when
the number of labeled training videos is enough (e.g.,
the ratio of labeled video data are set to 40%), since
EnFS can uncover common irrelevant features by
transferring the relative information between
different classifiers.

Table 4 Comparisons of feature selection algorithms on HMDB13←EID in terms of average accuracy using three classifiers when the
ratio of labeled video data are set to 5%

Classifiers FF FSFS FSNM LSR21 SVM21 EnFS JELSR JCAEL

LMCSVM 0.3032 0.3187 0.3137 0.3117 0.3137 0.3182 0.3387 0.3526

LSR 0.1763 0.2138 0.1898 0.1903 0.1873 0.2003 0.2233 0.2318

MCkNN 0.1898 0.2647 0.2517 0.2582 0.2093 0.2697 0.2737 0.2877
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Table 5 Comparisons of feature selection algorithms on UCF10←AID in terms of average accuracy using three classifiers when the
ratio of labeled video data are set to 5%

Classifiers FF FSFS FSNM LSR21 SVM21 EnFS JELSR JCAEL

LMCSVM 0.4340 0.4448 0.4715 0.4355 0.4340 0.4348 0.5061 0.5299

LSR 0.2906 0.3136 0.3043 0.3057 0.3028 0.3064 0.3180 0.3302

MCkNN 0.3360 0.3684 0.3670 0.3360 0.3360 0.3381 0.3756 0.4001

(6) As shown in Figs. 1–2, our proposed JCAEL remains
to be the best performing algorithm among different
methods and different cases. The main reason is that
our method can take advantages of both transfer
learning and embedded learning. We can also see
from Tables 4–5 that JCAEL algorithm achieves the
best results when only a small number of labeled
training videos are available. This advantage is
especially desirable for real-world problems since
precisely annotated videos are often rare.

3.5 Experiment on convergence
In this section, we study the convergence of the pro-
posed JCAEL as described in Algorithm 1. Due to the
fact that we solve our objective function using an alternat-
ing approach, how fast our algorithm converges is crucial
for the whole computational efficiency in practice. Hence,
we conduct an experiment to test the convergence of
the proposed JCAEL algorithm according to the objec-
tive function value in Eq. (7) on both HMDB13←EID and
UCF10←AID datasets, where the ratio of labeled video

(a) (b)

(c)
Fig. 1 Classification results of different methods on HMDB13←EID when the ratios of labeled video data are different. a LMCSVM as classifier. b LSR
as classifier. cMCkNN as classifier
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(a) (b)

(c)
Fig. 2 Classification results of different methods on UCF10←AID when the ratios of labeled video data are different. a LMCSVM as classifier. b LSR as
classifier. cMCkNN as classifier

data are set to 5%. All the results are illustrated as conver-
gence curves, and when the ratio of labeled video data are
set to 40%, all the results are summarized in Fig. 3, where
all the parameters involved are fixed at their optimal val-
ues. From the results shown in Fig. 3, it can be seen that
our algorithm converges within a few iterations. For exam-
ple, it takes no more than 10 iterations for UCF10←AID
and no more than 15 iterations for HMDB13←EID.

3.6 Experiment on parameter sensitivity
There are two regularization parameters α and λ in Eq. (7).
To learn how they affect the performances, we conduct
an experiment to test the parameter sensitivity, where
LMCSVM is used to classify the videos. We show the
results on both HMDB13←EID and UCF10←AID in
Fig. 4, where the ratio of labeled video data are set to 5%.
It can be seen that, for HMDB13←EID, the performance
is sensitive to the two parameters. For UCF10←AID
the performance does not change much. In general, our
proposed can perform well for these datasets when α

and λ are comparable. For example, good performance
is obtained when α = 0.0001 and λ = 100 for
HMDB13←EID and α = 0.001 and λ = 10000 for
UCF10←AID.

3.7 Experiment on selected features
As feature selection is aimed at both accuracy and
computational efficiency, we perform an experiment to
study how the number of selected features can affect
the performance. We construct the experiments on both
HMDB13←EID and UCF10←AID when the ratio of
labeled video data is set to 5%. Again, LMCSVM is used
to classify the videos, and Fig. 5 shows the performance
variation w.r.t the number of selected features. From the
results illustrated in Fig. 5, the following observations can
be made: (1) When the number of selected features is too
small, the result is not competitive with using all features
for video semantic recognition, which could be attributed
to the fact that too much information is lost in this
case. For instance, when using less than 360 features of
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(a) (b)
Fig. 3 Convergence curves of the objective function value in Eq. (7) using Algorithm 1. a HMDB13←EID. b UCF10←AID

HMDB13←EID, the result is worse than using all features.
(2) The results arrive at the peak level when using 720
features for HMDB13←EID and using 840 features for
UCF10←AID. The variance shown on the two datasets
are related to the properties of the datasets. (3) After all
the features are selected, the results are lower than select-
ing 720 features for HMDB13←EID and 840 features for
UCF10←AID. In conclusion, our method reduces noises,
as the results improve on both databases.

3.8 Experiment on embedding features
In this section, we would like to investigate the influ-
ence of embedding features with different dimensions.
We conduct the experiment on both HMDB13←EID and

UCF10←AID when the ratio of labeled video data is set
to 5%. With videos being classified by LMCSVM, Fig. 6
shows the performance variation w.r.t the number of
selected features. From the illustrated results, two obser-
vations can be made: (1) the result arrives at the peak level
when using 390 embedding features for HMDB13←EID
and 10 embedding features for UCF10←AID. The vari-
ance shown on the two datasets are seen to be related
to the properties of the datasets. (2) Without embedded
learning, the results is lower than using 390 embedding
features for HMDB13←EID and 10 embedding features
for UCF10←AID, even when all the features are used. In
conclusion, our proposed JCAEL can achieve good perfor-
mance due to the fact that the most valuable information

(a) (b)
Fig. 4 The performance variance w.r.t. α and λ. a HMDB13←EID. b UCF10←AID
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(a) (b)
Fig. 5 The performance variation w.r.t the number of selected features using our feature selection algorithm. a HMDB13←EID. b UCF10←AID

is retained and the feature redundancies are eliminated in
embedded learning.

3.9 Influence of cross-media analysis and embedded
learning

To further investigate the effectiveness of the integrated
cross-media analysis and embedded learning, we con-
struct three new algorithms: (1) embedded learning part
(ELP), which is the unsupervised embedded learning part
of JCAEL (i.e., Eq. (6)). ELP utilizes both labeled and unla-
beled videos as the training dataset, and the augmented
feature is used to represent each video by ELP. (2) Cross-
media analysis part (CAP), which is the transfer learning

part of JCAEL (i.e., Eq. (4)). CAP transfers the knowledge
from images to labeled videos, and only the still feature is
used to transfer the knowledge by CAP.
We construct a new experiment to compare JCAEL with

ELP and CAP on UCF←PPMI4 dataset. Other experi-
ment setup is similar to those described in Section 3.2,
and the comparison results are shown in Table 6
and Fig. 7.
From the results presented in Table 6 and Fig. 7, we

can make the following observations: (1) Among differ-
ent methods and different labeled ratios, JCAEL per-
form best. It achieves the highest accuracy in most
cases, especially when only few labeled training videos

(a) (b)
Fig. 6 The performance variation w.r.t the number of embedding features using our feature selection algorithm. a HMDB13←EID. b UCF10←AID
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Table 6 Comparisons of feature selection algorithms on
UCF←PPMI4 in terms of average accuracy using three classifiers
when the ratio of labeled video data are set to 5%

classifiers ELP CAP JCAEL

LMCSVM 0.5537 0.5456 0.5804

LSR 0.3958 0.3944 0.4085

MCkNN 0.4085 0.3988 0.4433

are provided. This is mainly due to the fact that (1)
JCAEL benefits from the unsupervised embedded learn-
ing which can utilize both labeled and unlabeled data, (2)
JCAEL leverages the knowledge from images to boost its
performances, and (3) JCAEL integrates transfer learn-
ing and embedded learning into a joint optimization
framework. In this way, gains from optimization are
augmented. (2) The performance of JCAEL is generally
better than that of ELP for all the labeled ratios, indicat-
ing that the JCAEL is able to use the extra knowledge

from images to achieve higher accuracy. (3) JCAEL
generally outperforms CAP, indicating that it is beneficial
to utilize unlabeled videos for video semantic recogni-
tion, especially when the number of labeled data is not
sufficient.
To show the influence of the knowledge transferred

from images, we shown the confusion matrices of ELP,
CAP, and JCAEL when the ratio of labeled video data are
set to 5%. The confusion matrices are shown in Fig. 8.
Compared with ELP and CAP, JCAEL obtains better
results on “playing cello,” “playing flute,” “playing guitar,”
and “playing violin.” The main reasons can be highlighted
as follows: (1) the extra-related semantic knowledge is
adapted from images to videos and used to obtain the
coherent semantics in videos. (2) The unlabeled videos
also include more relevant information, which plays pos-
itive roles in improving the performance of semantics
recognition.

(a) (b)

(c)
Fig. 7 Classification results of different methods on UCF←PPMI4 when the ratios of labeled video data are different. a LMCSVM as classifier. b LSR as
classifier. cMCkNN as classifier
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(a) (b)

(c)
Fig. 8 Confusion matrices of ELP, CAP, and JCAEL on UCF←PPMI4 when the ratio of labeled video data are set to 5%. a Confusion matrices of ELP.
b Confusion matrices of CAP. c Confusion matrices of JCAEL

4 Conclusions
There are many labeled images and unlabeled videos in
real world. To achieve good performance for video seman-
tic recognition, we propose a new feature selection frame-
work, which can borrow the knowledge transferred from
images to achieve its performance improvements. Mean-
while, it can utilize both labeled and unlabeled videos
to enhance the performance of semantic recognition in
videos. Extensive experiments validate that the knowledge
transferred from images and the information contained
in unlabeled videos can be used indeed to select more
discriminative features, leading to the enhancement of
recognition accuracies of semantics inside videos. In com-
parisonwith the existing state of the arts, the experimental
results show that the proposed JCAEL has better perfor-
mances in video semantics recognition. Even under the
circumstance that only a few labeled training videos are
available, our proposed JCAEL still performs competitive
among all the compared existing state of the arts, lead-
ing to a high level of flexibility for its applications in real
world.
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