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Abstract

results show that the proposed method is feasible.

The accurate description of hand posture plays an important role in the man-machine interaction involved in
coordinated assembly. Knuckle image extraction and recognition are of great significance to refine and enrich
hand-pose information. These are based on nonparametric density kernel estimation observation sets
corresponding to unilateral and bilateral excursion of the hand knuckle gray image. In this paper, sets of pixel
positions belonging to the upper- and middle-density intervals are used as two types of image targets. Random
clustering and random field multi-classification target modeling are used to learn and estimate the two target
distributions of the image. The discriminant field classification learning method is used to fuse the two kinds of
target models. A comprehensive representation of the image offset features is obtained. Finally, the knuckle image
sample set is used to train the model, and the adaptive threshold is used to identify the hand knuckle image. The
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1 Introduction

In intelligent manufacturing systems, the development of
detection technology with high intelligence and strong en-
vironmental adaptability is of great significance to improve
production efficiency and enhance the flexibility of manu-
facturing systems and product quality [1, 2]. Machine
vision-based human-computer interaction coordination
assembly technology uses human assembly gestures ob-
tained from image analysis as input information for robot
task planning [3] to realize an efficient and flexible coordi-
nated assembly process [4]. The overall information, in-
cluding the biological structure of the human hand image
and associated hand assembly posture [5], is the basis for
inferring the gesture intention.

Gesture-recognition research has two main directions.
One uses sensors, detectors, and other peripheral tools to
achieve gesture recognition. Lee and You [6] identified
complex static gestures using wrist band-based contour fea-
tures (WBCFs). The user must wear black wristbands to ac-
curately segment the hand area. Moschetti et al. [7]
recognized nine gestures with inertial sensors placed on the
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index finger and wrist. This kind of method, which uses
external equipment to extract the hand position and pos-
ture to achieve more accurate gesture recognition, lacks
convenience. Another research direction is unmarked ges-
ture recognition with captured images. Bao et al. [8] classi-
fied images of gestures using deep convolutional neural
networks. This method requires no segmentation or detec-
tion to distinguish irrelevant non-hand regions. Dehankar
et al. [9] used accurate end-point identification (AEPI) to
recognize hand-gesture images against varying backgrounds
and blurred images. However, the above unmarked
gesture-recognition methods are not sufficiently accurate.
Their robustness and stability are insufficient, and the pose
cannot be completely extracted. Further research is needed
to improve their ability to accurately extract hand positions.

Many new identification technologies have emerged in the
field of image-feature detection. These methods are used in
different fields and vary in their focus. Some focus on
feature-extraction techniques. Ding et al. [10] used double
local binary patterns (DLBPs) to detect frame peaks in video.
Yao et al. [11] presented a feature-selection method based on
filters. Some have focused on model building, such as Wang
and Wang [12], who modeled an action class of body space
configuration with flexible quantities. A hierarchical spatial
SPN method was developed to simulate the spatial
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relationships among sub-images, and sub-image correlation
was modeled by additional layers of the SPN. Panda et al
[13] proposed a feature-driven selection classification algo-
rithm (FALCON) to optimize the energy efficiency of
machine-learning classifiers. The study of feature clustering is
helpful for image-feature classification. Li et al. [14] used an
unsupervised principal component analysis (PCA)-based fea-
ture clustering algorithm to automatically select the optimal
number of clusters to solve the problem of automatic anom-
aly detection in monitoring applications. Jiang et al. [15] pro-
posed a self-organizing feature clustering algorithm based on
fuzzy similarity to extract text features. This method is fast
and can extract features better than other methods. Rahmani
and Akbarizadeh [16] proposed a spectral clustering method
using unsupervised feature learning (UFL).

There is a strong correlation between the structured in-
formation of the hand image and the biological structure
of the hand. The specific structural information varies
with the gesture model, depending on the simplified bio-
logical structure. Under static conditions, vision-based
gesture-structure modeling is mainly classified as either
feature template representation based on two-dimensional
models or hand geometry representation based on
three-dimensional models, depending on the dimension
of the investigated spatial domain [17, 18]. The latter is di-
vided into a volumetric model that considers the surface
structure of the hand [19] and a joint-linking model that
considers the anatomy of the hand, according to the estab-
lished differences in the geometric characteristics [20].
The template-based modeling is characterized by
gesture-contour information, which makes it difficult to
provide detailed kinematic parameter information, and is
suitable for scenes where the gesture is simple and the se-
mantic features are clear. For complex situations in which
the hand posture is variable, semantic features and time
are related, and the structural parameters of the “join-
t-link” model of the hand are modeled. The overall kine-
matic representation of the hand can be obtained through
structural parameter detection.

The biometric identification of the hand includes
skin-color location, fingertip root detection [21], knuckle
recognition, finger positioning, and kinematic correlation
between features. The knuckle position feature has an im-
portant influence on the accuracy of the opponent-pose
inference. Knuckle image detection methods are mainly
classified as geometric analysis or texture recognition
[22-24]. Current research of knuckle images focuses on
the use of knuckles for identification, sometimes com-
bined with fingerprints. The way and purpose of its re-
search is similar to fingerprint detection [25]. Usha and
Ezhilarasan [26] used feature-extraction methods based
on angle geometry analysis (AGFEM) and contourlet
transform (CTFEM) to authenticate the finger back sur-
face (FBKS) [27], and pointed out that the distal
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phalangeal region of FBKS, the finger joint area near the
tip of the finger, has great potential for recognition. Recog-
nition performance is improved through extraction and
integration of knuckle geometry and texture features sim-
ultaneously with fractional fusion. Lin et al. [28] provided
a practical solution for biometric systems based on the
back of the finger through the FKP recognition algorithm.
Gao et al. [29] used an adaptive binary fusion rule to adap-
tively fuse the matching distances before and after recon-
struction, reducing false-rejection rate. Kumar and Xu
[30] used an automatic finger-recognition study of the
lowest finger joint pattern formed between the metacarpal
and the proximal phalange.

Image segmentation based on a skin-color model can ini-
tially solve the problem of image-positioning in the hand.
The important image features that characterize the biological
structure of the hand, such as finger posture and knuckle
position, still must be further identified. The human finger
section is the important positioning point for the human
hand posture. Gesture recognition requires accurate knuckle
position information for three-dimensional reconstruction to
restore the hand biostructure. In the half- and full-grip pos-
tures of the hand, corresponding to the joint structure at the
joint position of the hand, the grayscale distribution of the
knuckle image presents an irregular convex-hull structure
near the local position of the finger. A non-deterministic ir-
regular convex hull can be used as a kind of random hidden
structure of knuckle images. In a previous article [31], the
author took a finger joint image as an example. The exam-
ples are directed to a random image with the above gray
structure ambiguity, feature ambiguity, and difficulty in
extraction. The hidden feature observation of the image is
obtained by the density estimation of the gray distribution.
This observation is used to establish the framework of learn-
ing and estimating algorithms for imagery-implicit feature
patterns. The extraction and analysis methods of the offset
features on random images are given.

In this paper, the human-computer interaction is coor-
dinated and assembled in an indoor environment where
the light intensity is relatively stable and the camera
angle is relatively fixed. The research in this paper is
based on the image offset density distribution. First, the
image upper level density feature is modeled and ana-
lyzed with an infinite Dirichlet process model. Then, the
image middle-density feature is modeled and analyzed
with a Gaussian process classifying model. Finally, the
two-level density features are fused by a binary Gaussian
process classification. Experiments are carried out to
verify the feasibility of the process.

2 Infinite Dirichlet process knuckle image
high-level data hybrid model

According to the extraction of the offset feature in a pre-
vious article [31], the likelihood representation of the
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test image A in the random image grayscale distribution
model is

P }1))([4@1‘? 8 ey '5(;,:",621.022))7 (1)
where /& is the approximation form of the offset meas-
ure, D is the fusion structure between different offset set

models under different offset parameters, ﬂGl‘?/ is the

high-level offset set probability measure, and /ZGZ‘;, is the
middle offset set probability measure.

For ease of calculation and presentation, the condi-
tional random measure is expressed as

PO)hg, (), (2)

where p(-) is the non-negative two-dimensional dens-
ity function corresponding to the target distribution.

For the learning problem of unilateral offset density in
image stochastic models, this section uses an infinite
Dirichlet process hybrid model. Based on the gray-level
position data extracted from the nonparametric density
kernel estimation results, the probability measure /:’G1IP,
of the offset set belonging to the fixed threshold ¢ in the
image domain is learned. The number of clusters is de-
scribed as a random state, and the Gibbs sampling
method is used to iteratively study the density structure
of the hierarchical probability form under the assump-
tion of the Markov neighborhood. Through learning and
modeling the offset set distribution, the unilateral esti-
mation of the gray particle random model is realized.

2.1 Horizontal density clustering and Markov assumptions
for discrete observations

In the layered observations of the density estimate fx,
the process of determining the positions of the unilat-
erally offset grid points that belong to the horizontal
parameter c is equivalent to the marking process on the
discrete grid points of the image:

v = {nezlrawrien)/ (maxsc)zee> o0}
®)
Z =Vu(Z\V). (z)

Among them, the marker amount constitutes a hidden
variable at the observation grid Z. To learn the distribu-
tion model of the observations by using observations,
the relationship between observations, label classes, and
offset measures on grid Z must be established. On Vand
Z\V; respectively, the position in the observed set V has
a definite marker class 1 on the image. However, the la-
beling category Z\V on the unobserved position set is
uncertain. Under the assumption of the continuity of the
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distribution model, the position where the marker cat-
egory is indefinite should be understood as not observed,
and the 0 marker cannot directly determine the corre-
sponding observation result. The label category indicates
whether the observation position belongs to the offset
set under the level c. However, when estimating the
overall offset measure using the observation data, it is
necessary to further specify the mark relationship be-
tween the elements of the sets V and Z\V to integrate
the mark relationships on the entire grid point Z. In
connection with the data-extraction process in the previ-
ous article [30], the dependency relationship between
grid observations can be established on Z using the mix-
ture graph structure as a basis for subsequent inference
learning using observation data. The relationship be-
tween marker categories and grid positions is established
through a directed graph structure. At the same time,
pairwise Markov random fields are used to establish a
dependency relationship between the discrete grid points
on the imaging domain, i.e., the distribution of p(-) on Z.
Thus, the hidden Markov model with observation
markers is constructed on the grid point Z, as shown in
Fig. 1. Among them, the hidden variable is the mark type,
and the correlation factor is the local dependency on the
offset set. The observations extracted based on the density
estimate have neighborhood structures similar to those
observed in the original grayscale image. Therefore, the
corresponding semantic p(-) on the grid point Z not only
forms a meaning on the image as a whole but also has a
dependency in the local area and is a local Markov hy-
pothesis on the corresponding undirected graph model:

p{xieVixz} = p{xieVixr }- (5)

That is to say, observations that depend on the overall
distribution are separated from the whole in the form of
local associations.

According to the above analysis, on the one hand, the
offset measure on the random hyperparameter field f re-
flects the characteristics of the observation mark classifi-
cation and the density distribution agglomeration under
the local relation. On the other hand, considering that
when the offset set level parameter is higher, the Euler
indicative number of the offset set is larger, and it shows
that the local coverage of the offset set at the high level
in the planar domain is more complete and shows more
of a clustering trend. Therefore, the learning problem
for p(-) can be transformed to a random clustering
learning problem. This section uses the infinite Dirichlet
process mixture model of the clustering model to con-
struct the probability density p(-) in Eq. 2. The Gibbs
sampling method is used to iteratively study the density
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Fig. 1 Hidden Markov model of excursion set observation on discrete lattice in image fields
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structure of the hierarchical probability form under the
assumption of the Markov neighborhood.

2.2 Nonparametric distributions and infinite Dirichlet
processes

To improve the adaptability of the model to the target
distribution, the model of the target distribution p is
represented as a nonparametric hybrid model,

N
Pletty, ety o xy) = / PO [[plo)de, (6)
A =1

where 60 is a hyperparameter, which is not limited to a
limited form of distribution to improve the learning ef-
fectiveness and image-recognition rate.

In particular, the Dirichlet process defines the distribution
of stochastic components on a stochastic probability meas-
ure as an effective alternative to parametric model learning.
The nonparametric method constructs a stochastic process
on the infinite dimensional parameter space ® and quanti-
fies it by the finite statistics of the stochastic process, where
® is the measurable space. The Dirichlet process is defined
by the base measure H on ® and the central parameter a.
Os limited distribution(T5, ..., T}) is:

UleTk = @, TkﬂTl = @,kil (7)

The mean of the random probability distribution G on
® over the finite-match diversity T follows the Dirichlet
distribution:

(G(T1), ..., G(T})) ~ Dir(aH(T), ..., aH(Ty)). (8)

The random process DP(«a, H) is defined by the central
parameter a and the base measure H.

Since the parameter a controls the probability distribution
of random parameter sets in the Dirichlet process, the later
update and accurate sampling have a decisive effect on the
convergence of iterative learning. Since the sampling strategy
of a is related to the generation mechanism of the random
measure distribution in the Dirichlet process, the sampling
details corresponding to different generation mechanisms
differ slightly. In this section, under the idea of discrete
approximation based on lattice Gibbs mixed sampling, the
prior distribution is taken as the Gamma distribution,

a~G(a,b). )

The posterior condition update form using a
multi-gamma distribution mixing representation (taking
a mix number of 2) is

(@, k)~m,G(a + k, b log(r))
+ (1-m,)G(a + k-1.b- log()),

(10)

where G is the Gamma distribution, K is the current
number of updated clusters in the Dirichlet blending
process (DPMM), and # is the observed data volume,

(1)

(12)

n~Beta(a + 1, n)

. a—+K-1
T a+K-14nx(b-log(n))’

To improve the sampling accuracy and stability, the
Monte Carlo sampling method is used and the sample
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mean of the above conditional distribution is taken as
the final sampling result:

N
p@D,) ~ N plaln,, k),

where N is the number of samples and k; may have a
degeneration value of K.

For the intra-group parameters, the specific components
of the image offset set target distribution can adopt a
two-dimensional Gaussian distribution. In order to make
the update law of Gaussian distribution, parameters meet
the requirements of a posteriori maximization. For the
two quantities to be learned, namely the mean parameter
and the covariance, the normal-Inverse-Wishart distribu-
tion [32] can be taken as the conjugate form of the corre-
sponding joint edge distribution. The posterior update law
of its parameters is:

(13)

Ky n n _
= x
/’ln I(o +n /’lO 1<0+I’1
I(n :K0+1’1
Vy=Vo+n (14)
I(ol’l _ _ T
Ap =N+ S+ —— (F—p,)(Z-
o+ +K0—|—n (X—po) (X~p)

where po, Ao, Ko, andv, are the initialized mean pa-
rameters, the scale matrix, the data dimension, and the
degree of freedom. Get posterior joint edge distribution:

P(ﬂv Z | D’”O7 I<07 A07 VO)

:NIW(u,ZWn,K,,,A,,,V,,) (15)

By sampling the above distribution, an effective clus-
tering parameter update can be obtained, and the update
learning of parameters in each mixed Gaussian compo-
nent can be realized.

2.3 Infinite Dirichlet process mixed model based on
collapsed Gibbs sampling
According to the N observations x = {xi}fil of the Dirich-
let process mixed model, the hidden variable label z; the
total number of clusters, and the corresponding parameter
{6x ), are inferred. The exact posterior distribution p(7,
0| x) contains the distributions corresponding to all possible
category labeling spaces, and it uses a collapsed Gibbs sam-
pling algorithm to implement iterative learning of an infin-
ite clustering mixture model. First, all observed variables
are sampled with their corresponding hidden variables z;
then the posterior edge 7 of the polynomial corresponding
to the current label class distribution and all clustering
hyperparameters {6y }+_, is calculated.

Fixing the rest of the observation variables of the la-
tent variable z;, the current distribution of the hidden
variables of the current measurement is

(2019) 2019:23

Page 5 of 20

P(Zl"Z\l',x, a, /1) “P(Zi|z\ia “)p(xi|zv x\hA) . (16)

Under the assumption of exchangeable text, the first
item in the above formula can be expressed as

1 K i A
plalzn @) = oy (Yo Nio e k) + ad(z.8)).

(17)

where k represents the cluster label in all current, in-
finitely many empty tag categories. Similar to the finite
mixture model, the likelihood of observing the fixed
class model at «; is

pxilzi = k2, 2,4) = p(xil{x)lz; = k, j=i}, ).
(18)

Similarly, the predicted likelihood of the current obser-
vation x; under the new marker & is

Dl = ozymd) = plxld) = / F10)n(6))db,
(19)

where H(}) is the specified conjugate prior. The Dirichlet
process hybrid model contains infinitely many goals to be
learned parameters and generalizes the learning inference
of the finite mixture model. The specific flow is as follows:
®

. is started

t—l) (i

® The next resample of sample marker z

with the Dirichlet hyperparameters a((f_l

=1,..,N).

® The random array {1, 2, ..., N} of the observation

sequence 7(-) is sampled.

® According to the last iteration, the initialization

parameters are set to z = 27 and ap = a(()H).

® For random arrangement i € (1), ..., 7(n):

(a) The observation data x; are removed from the
marker class z;, and the sufficient statistics S,, and
n, of the observation class z; are updated.

(b) If «; is the only observation in the current category,
the category label and all corresponding clustering
parameters are cleared. Update statistics S,, and #;,,
total K=K -1 of marker class.

(c) Relabel all non-empty activation categories 1, ..., K.

(d) Calculate the prediction likelihood for all K-like
clusters that are activated based on the statistics

{Sk}ir and {micy:

filx) = p(xil{x)lz; = k, jzi}, ).

) and zl(

At the same time, calculate the potential marker
distribution:
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Fre () = / F(3:16)Go(6)de.

(e) Sample new class of z; from the (K + 1)-dimensional
polynomial distribution:

2~ (af (30)8(zi F) + > NI (508 (z0,K)) /24
Zi=afy(a) + Y Nifilx),

where N’ is the total number of observations for

which the current observation position i belongs to the
label k.

(f) If z;= K+ 1, a new clustering marker is obtained
and denoted as K + 1. The new clustering parameter
corresponding to (K + 1) is sampled by H( ;| «,).

(g) Update sufficient statistics {Si }+_, and {ny};_, for
all category markers.

® 1t is judged whether all categories are resampled. If
not, return to the flag ul, and return to @ for the next
resampling.

© Sample all clustering parameters for all tagged
classes:

9<kt)~p(9k\{x,-|z§” = k}J).

@ Sample using the auxiliary variable method:

a ~ Gamma(a,b), a(()t>~p(a0|l(, n,a,b).

3 Method—knuckle image mid-level data model

In view of the complexity of the random offset set itself,
the difference between the offset characteristics corre-
sponding to different offset parameter intervals is rela-
tively large. And the further the offset parameter is from
the standard value of 1, the more complex the corre-
sponding feature. Therefore, in the learning process of
random image bilateral offset measurement, especially
for the case of small offset parameters, it is necessary to
deeply analyze the random distribution characteristics of
the actual offset observations in the training image data-
base and to select an appropriate model for learning. In
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this section, we obtain the ﬁsz/ equivalent density esti-
mate p(-)“/}Gzlp/(-) by learning the multi-label distribu-
tion random field model for the mid-density location.

3.1 Mid-level data distribution training based on Gaussian
process classification
Due to the complexity of the distribution patterns in the
middle-level data, it is difficult to obtain a mid-level mi-
gration density distribution model with relatively obvious
features and a certain resolution. According to the non-
parametric density kernel estimation result, the image gray
position data corresponding to the offset parameter in the
selected interval segment are taken as an observation of
the random offset image bilateral offset set. The endpoints
of the offset parameter interval are cy; =0.50 and ¢y, =
0.85, and the middle-layer data are further divided into a
multilayer structure corresponding to the three types of
labels, according to the level of the corresponding density
level, as shown in Fig. 2. Figure 2 a—c respectively corres-
pond to observations in the intervals 0.70-0.85, 0.60-0.75,
and 0.50-0.65. With the decrease of the offset parameter,
the distribution pattern in Fig. 2a has certain regression
characteristics. Figure 2b shows a clustering trend, and
Fig. 2c shows the spread features. Comparing the transi-
tions between the three graphs, it can be seen that the
mid-level data distribution does not obviously have the
clustering patterns or trends implicit in the high-level data
distribution. Instead, it reflects the characteristics of ran-
dom fields, i.e., the overall distribution of middle-level
data, has the transition characteristics from clustering to
irregular diffusion. In the above judgment of the distribu-
tion characteristics of the mid-level data, a random distri-
bution modeling method can be used to learn the typical
distribution states of the three parameter segments in the
“clustering-diffusion” classification mode and to obtain
ﬁGzUP, in Eq. 1, the estimated results on the plane domain.
For multi-classification problems on the random field,
consider that different label values correspond to differ-
ent horizontal parameter ranges, and the label class
values are taken in a limited discrete space. At the same
time, the relationship between multi-category tags at the
image position is not completely determined. Therefore,
the random distribution of all category labels must be
uniformly modeled and expressed to better restore the
overall characteristics of the mid-level data distribution.
In this section, the Gaussian process model is used to
take the observation data as the training sample set X.
The Bernoulli distribution is used to represent the prob-
ability of a single-class label at a fixed position of the
image, and the probability result of the class label y at
the airport is used as the training output. The distribu-
tion pattern among the three types of tags further con-
tains two types of information: one is the activation and
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Fig. 2 Three-class label observation of middle-layer data from knuckle image. From left to right is a, b, and ¢
transformation of state tags at the same location and the Under the Bayesian framework,
other is the distribution relationship between different
p(f1X,y) = pOLHp(f1X)/p(y1X). (23)

locations and multiple states. For the former, the Gibbs
form is used to represent the parameter association in
the corresponding polynomial distribution of the label.
Accounting for the limitations of the complexity of the
learning process, this paper assumes that the different
tag classes between image locations are irrelevant, and
the joint distribution of tags of the same type has Gauss-
ian characteristics. The Gaussian field function fis used
to represent tag associations between the same classes:

Vi |fi ~Bern(a(fily = 1)) (20)

exp(f7)
Zc’ exp (flC/) 7

where the location i tag » has {0, 1} value, and the f
vector form is f = f(f1, s fosfosenforfar o). It
has a prior form f | X~N(0,K), where K is the corre-
sponding covariance function and z is the amount of
training data. Assuming the category information is not
related, K has the form of a diagonal matrix, K= diag {
ki, ky, ..., k;}, where k. represents the trust relationship
between each type of tag data. Therefore, the learning of
the middle-level migration measure is transformed to
the learning of the random quantity f.

pOilfE) = nf = o(yifi) = (21)

3.2 Posterior calculations on Gaussian fields with multiple
binary classifications

Since the field f;=f{-| x;) is a Gaussian function, the pos-
terior form is also Gaussian:

7~ N (il a )= (=3 (-5) A (7))
)

The maximum posterior estimate of the implicit func-
tion f is defined as f = arg maxsp(f|X,y), A=-VV
logp(f = f1X, ).

Since the classification mark y of test dataset X is not
directly related to f, ie., p(y| X) does not include f, the
posterior maximum solution of f corresponds to the log

likelihood of j’:
(/)2 log(p(yL)p(f1X)) .
o (Zc:l expff)

1
1 n 198
=-fTK 4y f- E 1 C

2 - log\l(|—7n log2m

2
(24)

The posterior solution ]’ corresponds to the zero of
VV¥ =0. After differentiation of the above formula, it is
obtained that

VY = -K'f + y-m. (25)
The zero point of this type is the prediction solution f
= K(y-7) of the implicit function f variable. We further
use the following differential relationship:
7 ; :
T logd " exp(f]) = mibu + midu + min  (26)

VVY = —-K'-W, W2 diag(m)-TIIT, (27)

where IT is a Gibbs distribution 7 corresponding to a
cn x n scale column block matrix.

We use the Newton iteration format to obtain implicit
function updates:

fneW
F-(VVY)IVY = £+ (K + W) (<K Vf + y-71)
= (K + W) (W + y-m).
(29)

= f-(VV¥) 'V (28)

Because the matrix K is a larger ¢n x cn diagonal block
matrix and the bandwidth is large, to improve the
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accuracy and speed of the inversion, the following
decomposition is used:

(K'+ W) =K-K(K+ W)k
= K-K(K + D'-RO™'R") 'K
= K-K (E-ER(O + R'ER)'R"E)K
— KK E-ER(_ E.) 71RTE> K
(30)

where E = (K + DY)~ = DY*(1+ DY*KkD"?)"'D2,

The convergence monitoring of the above iterative
process is represented by the likelihood value of the
training data:

pOIX) = / PO PFIX)df

- / exp(¥(f)df. (31)

Under Laplacian approximation, the form of Eq. 30
under local approximation of W(-) is

w0 - (7)) ()59 a )
(32)

The likelihood of the training data for the posterior
model can be approximated as

p1X)=q(yX)
= e(v(7)) [ on(-3(7) (7))o
(33)

The likelihood of the training data for the posterior
model can be approximated as

[ (=3 (r9)"a(r-7) )ar= pEes
(54)

The logarithmic form of the likelihood can be
expressed as

logp(y]X)= logq(y|X)

lt N 1 o
= —5/ K'f + logp(3f )~ loglK|- loglK

FW = F KTy Y tog(S0F o)

1
-5 log|lc, + Wl/szl/z‘

(35)
From this, an implicit function posterior update based

on the overall training dataset is obtained. The algorithm
is as follows:
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@ Input observation measurement marker y,
covariance matrix K, and probability marker function
initialization f 0.

® Calculate the label distribution law of the current
observation variable:

M pilf) =7 = exp(£)/>, exp(f7)
VY = -K'f +y-m, VV¥ =-K'
where W £ diag (77) - rr’.

® For each class of implicit labels ¢ =1,2, ..., C,
calculate:

L:=Cholesky (1 n+ Di/ 2K, CDi/ 2)

E. = D§/2LT\(L\D;/2), 2=y logly.

® Calculate transition parameters:

M=Cholesky (ZLE i)
b=(D-TIT")f + y-7, c¢=EKb

a=b—c + ERM"\ (M\(R"¢)) f=Ka.

® Calculate the objective function and determine if it
converges. If it does not converge, return to @.

1
objective function = — iﬂT 4y f

+37, los(3, exel(r0))

® Compute edge likelihood prediction and hidden
signature distribution edge prediction:

g, 6)= 3" +57 + 3, (3, o))
f=f (label).

3.3 Structure of positive definite kernel function of
random information in the middle level

The design of the difference matrix under different systems
contains different understanding of training data sets. On
the one hand, there is an association between the extraction
process of image data and its physical meaning. On the
other hand, the actual image data has the characteristics of
being distributed near higher layer data during the extrac-
tion process. Therefore, the covariance matrix used in this
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section of the multi-class learning algorithm references the
results of high-level data learning. The high-level data
model information is substituted into the covariance matrix
of the middle-level data learning to further improve the
learning effect of the GP model. For the three-category
learning process used in this section,

K(x,x,) = diag{ky, ko, k3}, (36)

and the design parameter array is p=[1,0.5 , 0.25;
05,1,05025, 05 ,1].

In the above equation, the sub-diagonal array k; corre-
sponds to the position of the image observation data at the
density estimation level of 75 to 85% in the mid-level data-
set of the image. After testing, it was found that although
the aggregation level of this category dataset is weaker than
the aforementioned high-level data model, it still has a cer-
tain clustering trend. Therefore, the associated credits be-
tween this category of data can be designed as an
exponential clustering pattern, and the closest clustering
component of the observation data can be found. The final
correlation result of the clustering trend between x and x is
determined using an isotropic exponential function. The
design of the parameter array p;; further confirms the label-
ing of the best high-level clustering component to which
the two observations belong, i.e., when the data in the two
images belong to the same clustering component in a
high-level model, they have a higher degree of trust.

In the design of sub-diagonal arrays, the image data cor-
responding to the 60—75% density estimation level in the
mid-level dataset of the image no longer have a clustering
trend, but surround the cluster centers. The clustering
center has both attractiveness and repulsiveness to the
category data. Therefore, we can consider adding a certain
empirical offset A to the likelihood value of the high-level
model corresponding to the observation position of the
category image. The offset is taken as the empirical value
0.7. In the underlying data, i.e., the 50-65% density esti-
mation range of the mid-level data in the image, the pos-
ition distribution has basically been irrelevant to the
clustering, and only the distance form is used:

k() = exp{{- min{ (e-ukiCe-) /AL }
_ min{ <x/ —,u[) k; (x/ —//{i),/Al,}— Hx#jj”}
(37)
ka (xx) = eXP{—(A—Zisz(% His 0:‘))
_ (A—Ziwi/\/(xl,ui, oi)> ~|lx]| /3

(38)
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kg(x,x,) = exp{—Hx—x/H/l}. (39)

Figure 3 shows an example of the covariance matrix in
the learning process of a multi-class model of middle-finger
data in the distal phalanx and middle-finger images. The
covariance scale is 37 x 31, and 7 is the data volume of the
layer density observation set in the training image. It can be
seen that there is a certain difference in the degree of trust
between the different diagonal block arrays for class posi-
tions. Only the sub-array ks, in the form of a distance has a
stronger associative relationship with respect to the posi-
tions of gray particles in the same class. Considering that
the degree of data association carried by the sub-array k; in
the form of clustering is the smallest, it indicates that the
overall diffusion trend of the middle-level data is strong
and the clustering trend is relatively weak.

3.4 Model prediction process
The marker-predicted implicit vector functionsf, of the
test data x, obey the approximation distribution:

f* Nq(f*‘vaax*)'

Under the Bayesian conditional distribution, the pre-
diction of the test position x, in the training dataset X is
expressed in integral form as

(40)

a(f 1%, y5.) = / P X% N IX y)df.  (a1)

Since p(f.| X, x.,f) and q(f] X,y) are Gaussian distribu-
tions, the c-label prediction of test data x, is

Bylf(x)|X, y,2.] = ke(x.) K. f
()" (0 -7°),
where k.(x.) is the c-type marker covariance vector be-

tween test data x, and all training set data X. The predic-
tion covariance matrix is

ke
3 (42)

cov, (11X, 3% = = + QT (I + W) 'K,

= diag(k(x.,x.))-Ql (K + W_I)JQ*
(43)

where X is a Cx C matrix and the sub-diagonal matrix has
the form ¥, = k. (x.,%.) -k, (x,)K; k. (x.). In this section,
the Monte Carlo method is used to sample the above predic-
tion mean and prediction covariance matrix and obtain the
sample mean value as an a posteriori prediction. The forecast-
ing process based on the training set at the random field is:

@ Input posterior edge prediction j‘ , covariance matrix
K, detection x.

@ Calculate the current observation variable label
distribution law IT:
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Fig. 3 Covariance matrix of GP learning on middle-layer data from knuckle image. a Covariance matrix on GCP model on far knuckles 1 and 2.

p(flf) = mi = exe(70)/32, e (f: )

VY = -K'f +y-1, VV¥ = -K"!

where W £ diag (1) - r’.

® For each class of implicit labels c=1,2, ..., C,
calculate

L=Cholesky (1 .+ DY 2I<CD3/2)
E. = DL\ (1\D}?)
M:=Cholesky (ZiEi)

He=0F )k

b=E.k¢, c=E.(R(M"\(M\(R"D)))).

@ For each type of implicit label ¢ =1,2, ..., C,
calculate

D ST W W A CHE S

® Initialize Monte Carlo posterior sampling: 7, := 0.
© Posterior distribution of sampling test position markers:

FoN(,5)mom + exp(f9)/Ze - exp(f2 ).
@ Calculate the regularized estimate vector:
=1, /S.

Calculate tag category prediction vector:

By (n)lm(f (%)), X, y)=r,

4 Knuckle image recognition based on learning
results of two layers of observation data

In the previous section, based on the high- and
mid-level data in gray image density estimation, offset
measurement estimation under different offset level pa-
rameters was implemented. At the same time, the
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learning results of the two-layer data model were used as
two kinds of offset information features on the grayscale
image. Since the above two types of migration features are
the specific forms of the overall random set migration
characteristics of the image in the interval, it is obviously
necessary to integrate the above two features as the char-
acteristics of the overall image features. According to the
process of data-extraction and model-generation, it can be
seen that there is a strong correlation between the two
features, and there is even consistency in the overlapping
range of the horizontal parameters. From the modeling
process on the Poisson Gaussian field of random images,
the two kinds of offset information also have strong
compatibility.

From the perspective of information fusion and feature
learning, two types of feature models that have been
learned can be used as detectors of two kinds of offset
features on the image, and the detection results are two
likelihood values of a specific image under the above
model. The likelihood value corresponding to the posi-
tive sample image is higher, and the negative sample
image is the opposite. Therefore, the fusion of offset fea-
tures is the learning process of jointly distributing the
two likelihood values on the offset eigenvalue plane. Fur-
thermore, since the size of the training library in the
aforementioned model learning process is not large, the
amount of information provided by the training results
is not sufficient, and the learning result is not perfect.
Also, the offset feature itself has a strong random fea-
ture. Based on the above analysis, the likelihood value
fusion process in the feature plane is not suitable for
learning with a generative model. Therefore, in this sec-
tion, the likelihood values of the two models labeled
with positive and negative samples are used as input.
The Gaussian process classification in the discriminative
learning method is used to fuse the likelihood values of
the two types of images in the feature plane. The estima-
tion of the joint overall distribution of the two types of
features is obtained, and the joint image is directly iden-
tified based on the estimation results.

4.1 Binary classification and image offset information
fusion based on Gaussian process

Depending on whether it belongs to the hand joint
image, the test image is given the y mark {-1, 1} at the
corresponding observed data point in the two-layer
model likelihood space. In this way, the aforementioned
fusion process can be presented as Binary Gaussian
process learning. The learning result is the probability
distribution of the marker y = 1 on the discriminant field
for the joint target and non-joint targets. Different from
middle-level information modeling, in the learning
process of the classification information for the marker
information y in this section, the sample domain is a
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training dataset generated from the two types of model
likelihood values corresponding to the test image set.
The learning domain is a normalized feature plane.

In the binary Gaussian classification process, an offset
model likelihood set X = {x;};_ 1, .. , with a label y={y;};
—1,... » is used as a training dataset. Taking X as the
model input quantity, marking y as the final observation
and measurement of the fusion model, and discriminat-
ing the learning process on the field is the construction
and learning process of the correlation method between
the input quantity and observation quantity. This associ-
ation method includes two main aspects, which are the
classification of tags under specific input quantities and
the distribution relationship between corresponding tags
of different input quantities. Obviously, the former can
be naturally embodied in conditional probability form,
while the latter is now the joint distribution of the
marker variables in the discriminant random field. The
Gaussian random field provides an effective way to com-
prehensively represent this association method. By build-
ing the Gaussian implicit function f on the feature plane,
the conditional distribution of the marker classification
is decomposed into two independent parts: y | fand f |
X. At the same time, the joint distribution of marker
variables is transformed to the description of the struc-
ture of the field function f instead of directly modeling
the associated structure on the conditional field y | X.
Considering the binarization of the label, it is clear that
the label value of the discriminant field on the lattice
point domain can be expressed as a Bernoulli distribu-
tion by using the implicit function f:

¥i | fi ~ Bern(o(fily; = 1)).

The logic transformation o(-) transforms the Gaussian
variable f; to the range 0 ~ 1 as the control parameter of
the activation label y; = 1:

(44)

1

p(fily) =olyif:) = HTp(—le)

Since the value of label y is 0 in the range, the specific
form of conditional field f | X can be given by using the
Gaussian process a priori f | X ~ N(0,K), where K is
the binary covariance function on field f. It can be seen
that the main content of classification learning is the
posterior update of f and the prediction of p(f.| f, X, y, x.)
at the test position x,.

Since the Gaussian field f; = f{-| x;) is a Gaussian func-
tion, the posterior form also maintains a Gaussian form:

(45)

7~ N(iira)= ep(=3 (75) a(r7)),
(40
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where f = arg maxsp(f|X,y) and A =-VV logp(f

=f1X.y).

According to the Bayesian rule, the maximum poster-
jor estimate of the implicit function f in the above for-
mula is

p(f1X,y) = pOLN)p(f1X)/p(y|X).

In Eq. 47, because the classification mark y of test
dataset X is not directly related to f, p(y| X) does not in-

clude f. Then f’s posterior maximization solution f only
must consider the numerator, and the corresponding
logarithmic form is

(/)2 log(lf)p(f1X))

1 _ 1 n
= logp(ylf)-5f "K' f~ loglK|- log2m

(47)

(48)

f corresponds to the zero of V¥(f) = 0:
V¥(f) =V logp(y|f)-K'f (49)
f=K (V logp (y| f)) (50)

The standard Newton-Raphson iterative format can be
used to solve the nonlinear equation V¥(f) = 0:

I = f-(VR¥(f)) T VE(S) (51)

F~(V29)IVY = £+ (K71 + W) (V logp(ylf)-K ')

= (K™ + W) (WF + V logp(lf),
(52)

where VVY()=V Vlogp(y|)-K'= -W-K",
i.e., the a posteriori covariance function in Eq. 46:

A=K'+WwW. (53)

Equations 51 and 53 yield the posterior format g(f|X, y)
= N(f, (K + W) ") of f.

Considering the numerical stability in learning, the numer-
ical characteristics of important matrices in the iterative
process must be analyzed. The adjustment method of the in-
verse matrix is changed to make the eigenvalues of the
matrix away from 0, so as to ensure the accuracy of the solu-
tion. According to the aforementioned model construction,
the relationship between p(y;| f}) and p(y;| f) has been trans-
ferred to the structure of field f. Therefore, dp(y;| f) is 0, and
W has the diagonal matrix form W= diag (my(1 - my),
<o, (1 = 11,,)), where 1; = p(y;= 1| f}). In combination with
Eq. 45, the numerical form of the derivative of the objective
function (.) is
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57 loarOilf) = -
ti=(y,+1)/2

0 lowlylf;) = -m(1-m).

o (55)

VV logp(ylf)l; =

In addition, the matrices K and W in the Newton iter-
ation of Eq. 52 are both larger # x u sparse squares. (K
+ W)~ can be decomposed by using the positive definite
matrix B:

B=1+ WKW? (56)

(K + W) = K-K(K+w™) 'K
= K-KW2W (K + W) wiwik
= K-KWAW (1w (K + w) " wh ) whk
1 1 1\ -1 1 1 1
= K-KWA(1+ WHKW?) WK = K-KWHB WAK.
(57)
Equation 56 obviously produces a diagonal band matrix.
The inverse matrix can be quickly calculated by means of
Cholesky decomposition. The inversion format in Eq. 57
is more stable than the directly solved inverse matrix of A.

The convergence monitoring of the above a posteriori it-
eration is given by the model likelihood of the label value:

pOIX) = / POLA P 1X)df

- / exp(¥(f))df. (58)

Under the Laplacian approximation, the form of
Eq. 57 under the local approximation of () is

w() = ¥(F)- e (ar)=(7)-5 (5-7) A ()
(59)

POIX)=q01X) = exp(¥()) / exp (—% (f—f)TA(f—f‘))df-
(60)

The integral term in Eq. 60 can be simplified to
1 AT N 1

/ eXP(—2 (f—f) A(f—f)>df“|K_l+W|_l-

(61)

The logarithmic form of the a posteriori prediction is
expressed as:
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1.1 - N 1 )
logg(y|X) = -0 f K7'f + logp(ylf>—§ log|K]~3 log|K™! + W/

- %j’TK’l J+ togn(s1f) *% log|B|
(62)

For test data x,, the posterior mean f, under Laplacian
approximation is expressed as

Eqlf . |X,y,5.] = k(%) 'K f = k(x.)"V logp(y|f), (63)

and the forecasting variance of Gaussian approximation is

Vq[f* ‘X7y7 x*] = Ep(f*\X,x*.f) [(f*_ELf*lx>x*7fD2]

By (rxp) (B |X, %, f], -BIfLIX, 3, 2.])7)
(64)

Under the Gaussian process assumption, the above
equation has the following analytical form:

VIf.1X, 3, 2] = k(%) -kTK ke + KTKH (K + W) Kk,
= k%, %)~k (K + W)k .
(65)

Under the Eq. 56,

VoIf.ly] = k(x, 2.)-k(x,) " WB  k(x,) W3
= k(x.,%.)~k(x,) W3 (LLT)ilk(x*)W% = k(% %)V,
(66)

where v = L\(W2k(x,)). Calculate the positive marker
class probability corresponding to the Bernoulli distribution
based on the predicted mean and predicted likelihood:

By |X, y, %] = / o(f Jalf. X y.x)df . (67)

In summary, the two-class Gaussian process prediction
algorithm based on Laplace is:

@ Input posterior edge prediction j’, covariance
function &, and detection X.

© W=-VV logp(ylf).

®L  Cholesky(l + W' KW"?).

@ f.=k(x.)"V logp(yf).

®v LI\NWk(x.)).

@ V[f*]:zk(x*,x*):VTV.

@ = [o(2)N (2lf., VIf.))dz.

The predicted edge distribution with tag category 1 is 7z..

4.2 Knuckle target recognition algorithm based on offset
feature distribution

Based on the learned image layered offset fusion GP
model, the model likelihood of the fusion image of the test
image is used as the image feature. In the range of the test
image domain, according to this feature combined with

(2019) 2019:23

Page 13 of 20

the maximum  between-class variance  method,
self-adaptive threshold recognition is performed for the
far finger and middle finger in the image. The concrete
manifestation is that sub-image extraction is performed
after the template data are calculated from the test image
data. The nonparametric density kernel estimation calcu-
lations and the evolution of the level set of interest regions
are performed on the obtained sub-images to obtain high-
and mid-level data for density kernel estimation.
High-level data are used to calculate the high-level data
model likelihood through the high-level data model
(DPMM). After the middle-level data are transformed by
the data discrete group, the mid-level data model is used
to calculate the mid-level data model likelihood. We then
combine the two to calculate the two-level data fusion GP
model likelihood.

The likelihood value of the fusion GP model is calcu-
lated at each template position of the test image, and this
likelihood value is used as the information matrix corre-
sponding to the image feature. Due to the limitations of
the integrity of the model, detection points with higher
likelihood values may appear at non-joint target locations.
The largest cluster-like variance method is used to elimin-
ate the position with the highest GP-likelihood in the case
of threshold adaptation. Then, nonlinear evolution is per-
formed on the feature information matrix with the high
likelihood value removed, the features are enhanced, and
the joint target is detected again using the adaptive thresh-
old detection method. Because the detection position of
the high threshold at non-joint positions is mostly un-
stable, it is difficult to recover it by the neighborhood in-
formation after rejection by the threshold. At the same
time, a high threshold value at the joint location is more
stable, so it can be recovered by the evolution of the
neighborhood information.

5 Analysis of results and discussions

5.1 DPMM model learning process

Examples of iterative learning monitoring of high-level
density data DPMM in far- and middle-knuckle gray scale
images are shown in Figs. 4 and 5. Using the above col-
lapsed Gibbs sampling method, the Dirichlet process
model for high-level data distribution of knuckle images is
iteratively learned. Iterative initialization uses the k-means
algorithm to classify the results and records the first 300
steps of likelihood monitoring values. The a priori param-
eters in the normal-inverse-Wishart distribution are taken
as k = 0.1, v = 4; the a priori hyper parameters in the mixed
Gamma distribution are taken as ¢ =0.1, »=0.1; and the
parameters of the Dirichlet process are initialized as a =
10. To improve the sampling accuracy of matrix parame-
ters, the Cholesky decomposition of the covariance matrix
obtained by iterative updating is performed. Sample mo-
ment statistics are made on its eigenvalues and feature
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directions, and matrix sampling is used to recover valid
matrix samples.

From the results, the convergence speed of DPMM is
faster and the smoothness of the likelihood curve is
greater. On the one hand, because the number of clus-
ters is flexible, the model has further improved the
identification of the structure within the training data-
set. The process of testing the number of linked ran-
dom clusters can further clarify the sampling results. In
the initial phase of the iterative process, the number of
clusters suddenly increases by several times the

convergence value. As shown in Figs. 4 and 5, different
from the parameter optimization in the traditional fi-
nite mixture model, this stage corresponds to the sam-
pling algorithm performing a random search in a wide
range of clustering models, so that the model can
quickly determine a more stable clustering mode. On
the other hand, the Dirichlet distribution uses an a
priori structure, so that the update process of the
DPMM internal parameters can be more effectively
controlled under higher-level conditional distributions,
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manifesting that the convergence curve has higher
smoothness in the stable region.

5.2 Offset measurement data learning results

Examples of the DPMM model learning results on the
training image library are shown in Fig. 6. Under the
condition of K=3 clustering initialization, the flexible
random clustering modeling for image high-offset dens-
ity position distribution is realized. A high-level distribu-
tion likelihood model of knuckle images with a more
complex internal structure is obtained. The far phalanx
goal learning results shown in the figure clearly show
that the clustering self-adaptive process has similar re-
sults to data density clustering. The model scale has a
strong ability to adapt to the training set. The distribu-
tion of clustering represented by the model likelihood
results is not only consistent with the observed charac-
teristics on the whole. The characteristic orientation of
the internal clustering component also reflects the fea-
tures of the knuckles under the grip of the hand. It
shows that this algorithm has better modeling ability for
the high-level distribution of far-knuckle images.

Using the aforementioned middle-level distribution
learning and prediction algorithm, the multi-classification
model of middle-level data for each image is learned in 51
positive images of distal phalanx images and 51 positive
sample images of middle phalanx images, respectively, as
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shown in Fig. 7. In Fig. 7, from left to right, there are first-,
second-, and third-class hidden flags.

From the prediction results in Fig. 7, it can be seen
that the three-category tag learning results of layer data
in the finger image can more clearly show the design
goals of the model. The marker results of the learning
prediction also conform to the hypothesis of the distri-
bution of layer data in the knuckle image.

Considering the learning accuracy and computational
complexity of the fusion process, the lattice field [1:1:
101] = [1:1:101] generated after discretizing the feature
plane is used as the discriminant field. We take the co-
variance matrix as an isotropic exponential form:

k(x1,%) = exp (— M) , (68)

K

where the scale parameter is x=0.007. In the distal
phalanx and middle-finger image test libraries (51 posi-
tive and negative samples), the high- and middle-level
data-extraction process, feature likelihood calculation,
and fusion model learning are completed. Based on the
high-level data DPMM model learning results, the
high-level data model likelihoods are obtained. We com-
bine the mid-level three-classification model to calculate
the likelihood value of the corresponding observation
data and normalize the two similarity values as a labeled

b Example of Learning Based on Middle Layer Data on middle Knuckles Image

Fig. 7 Example of hidden label Gaussian process learning on middle-layer image data for knuckles. a Example of learning based on middle-layer
data on far knuckles image. b Example of learning based on middle-layer data on middle-knuckle image
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test set for the supervised learning of the two-class
Gaussian process. Multi-offset feature likelihood distri-
butions, covariance functions, and fusion model (GP)
learning results are shown in Fig. 8, in which the left
graphs of each map are far-knuckle results, and the right
graphs are the middle-finger results.

According to Fig. 8b, in the normalized feature plane,
the first characteristic direction of the positive sample
fusion distribution follows the characteristic line (O,
0)-(100, 100) direction in the feature plane. The second
feature direction is nearly perpendicular to the feature
line; the first feature direction of the negative sample fu-
sion distribution is close to the vertical direction of the
feature line. The angle relationship between the feature
direction and the feature line indicates that the two
types of offset features that are fused constitute a certain
degree of discrimination between positive and negative
samples, and the fusion results show a stronger forecast
of this differentiation. Comparing the left and right
graphs shown in Fig. 8b, the high-end model of
far-knuckle images has better discrimination between
positive and negative samples than the middle-level
model, while the fusion prediction of middle-finger im-
ages shows the opposite result. The main reason for the
difference between the above models is the obvious

differences in the random structure of the distal phalanx
and middle phalanx images, which are embodied in the
differences in distribution patterns at different levels of
displacement.

5.3 Recognition for various algorithms

Under the fixed threshold condition, the recognition
ability of the high-level data DPMM model, the
middle-level data implicit marking GP model, and the
DPMM+ GP model combining the two are briefly ana-
lyzed. We artificially produced four finger-knuckle image
databases with library capacity of 330, 1344, 1896, and
1400 images. These knuckles are taken by industrial
cameras and come from people of different genders, ages
and sizes. In these image libraries, positive and negative
samples each make up half. In these image libraries, two
are far-finger image libraries and two are middle-finger
image libraries. To test the adaptability of the recogni-
tion algorithm to the fuzzy objects, the joint features
corresponding to all the knuckle images in the four
image libraries are artificially selected to be weaker than
those in the training library. That is, testing on a
feature-rich joint image can achieve higher recognition
capabilities. Three models are used in the four image li-
braries for detection to compare the optimal recognition
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Fig. 9 Constant threshold image detection for knuckles based on different data models. a ROC of far-knuckle detection based on multi-model 1
and 2. b ROC of middle-knuckle detection based on multi-model 1 and 2

ability of each algorithm for each image library; through
the test analysis, the threshold of the highest recognition
capability of the above three models in each image li-
brary is taken as the best recognition threshold of each
algorithm in the library and plotted to a receiver operat-
ing characteristic curve (ROC). At the same time,
through actual measurement, it is found that the differ-
ence between the best recognition thresholds of the
same algorithm in different image databases is small.
Therefore, the following four ROC curves can be com-
pared and analyzed as a whole, as shown in Fig. 9.
Considering that the area under the curve (AUC) on
the ROC is a measure of the recognition ability of the
identifier, it can be clearly seen from Fig. 9 that in the
far-knuckle test library, the comprehensive model recog-
nition ability of the middle-level data model and the
two-tier data is not as good as that of high-level image
features. In the middle-finger test library, the recognition
curves of the two high-level data models are low, and
the corresponding AUC is less than 0.5. The recognition
ability of the high-level data model in the far-finger li-
brary is obviously higher, while the middle-tier data

model in the middle-finger library has stronger recogni-
tion ability. The above shows that the existing data
model has great differences in the ability to identify dif-
ferent types of knuckle objects. It also potentially indi-
cates that there is a certain difference between deep
model categories in the distribution of far- and
middle-finger image data.

In Fig. 9b, the AUC values of the high-level data model
corresponding to the two ROCs are 0.5134 and 0.2332.
It can be seen that the recognition effect of high-level
models in the middle-finger image database (2) is not
obvious, and wrong classifications even appear. Further
tests show that the high-level model with high likelihood
is the middle-finger area, not the finger joint area. This
phenomenon occurs because the intermediate region
has relatively small local information entropy due to the
smooth grayscale distribution. The high-level data vol-
ume is larger and denser than the usual joint image data,
which undermines the model’s assumptions on data dis-
tribution, and therefore, it has poor recognition capabil-
ity. At the same time, according to Fig. 9, it can be seen
that the ROC corresponding to the two-layer data fusion
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model is located between the high- and middle-level
models. It shows that the recognition based on the fu-
sion model has the effect of comprehensively judging
the two features. In the case that the high- and
middle-level models differ greatly in their ability to iden-
tify models, they can provide effective comprehensive
evaluation, which is more prominent in Fig. 9b. The
minimum area under the curve for the fusion model is
(a) 0.4512 on the left of the figure, and the maximum is
(b) 0.7880 on the right of the figure. The results show
that the fixed threshold identification method has stable
and correct classification ability under the condition of
existing limited data and test set in the environment
where the light intensity is relatively stable and the im-
aging angle does not change much.

To further improve the recognition ability of the fusion
model, combined with the learned DPMM+GP model,
adaptive threshold joint detection is performed on a hand
test image containing a finger joint. The size of the test
image is controlled to include the size of about 1000 tem-
plates, as shown in Fig. 10. Among them, black indicates
that there is no finger joint at the position, the gray portion
is the artificially marked finger joint region, and the white
position is the joint point position result recognized by the
adaptive threshold segmentation. When the detected joint
position falls within the manually determined gray area, the
joint identification is correct. Being away from the gray area
indicates that the detected position has a large deviation
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from the true position. With the aid of diffusion evolution,
the recognition result is closer to the real target area, which
obviously improves the accuracy of finger joint target rec-
ognition. It is worth noting that the detection results and
the marked areas shown in Fig. 10 are all at the pixel level.
Therefore, the detection error of the above algorithm in the
actual image is also at the pixel level. For actual detection
tasks, joint detection can be initially implemented.

6 Conclusions

In this paper, nonparametric density kernel estima-
tion results are used as observation sets, and the es-
timation of multi-level migration of knuckle images
is estimated using both random clustering iterative
learning and a multi-class random field model. Fur-
ther, through the fusion learning of multilayer migra-
tion features, the overall characteristics of knuckle
images are constructed, and the detection and recog-
nition capabilities of the above multiple models
under fixed and adaptive thresholds are compared.
At the same time, a knuckle position image recogni-
tion algorithm based on an offset feature fusion
model under adaptive threshold conditions is pre-
sented. Threshold recognition is carried out on the
image with relatively stable light intensity. The re-
sults show that the corresponding algorithm is feas-
ible. For the environment with large change of light
intensity and the large change of camera angle, it is

~N

2 4 6 8 10 2 4 6 8

a Adaptive Threshold Image Detection for Far Knuckles Based on DPMM+GP

5 10 15 20 25 5 10 15 20 25 30

b Adaptive Threshold Image Detection for Middle Knuckles Based on DPMM+GP

Fig. 10 Adaptive threshold image detection for knuckles. a Adaptive threshold image detection for far knuckles based on DPMM+GP. b Adaptive
threshold image detection for middle knuckles based on DPMM+GP
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necessary to further study the adaptability of image
threshold.
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