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Abstract

We propose a high-performance visual target tracking (VTT) algorithm based on classified-patch kernel particle filter
(CKPF). Novel features of this VTT algorithm include sparse representations of the target template using the label-
consistent K-singular value decomposition (LC-KSVD) algorithm; Gaussian kernel density particle filter to facilitate
candidate template generation and likelihood matching score evaluation; and an occlusion detection method using
sparse coefficient histogram (ASCH). Experimental results validate superior performance of the proposed tracking
algorithm over state-of-the-art visual target tracking algorithms in scenarios that include occlusion, background
clutter, illumination change, target rotation, and scale changes.
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1 Introduction
Visual target tracking (VTT) [1–15] is a key enabling
technology for numerous emerging computer vision
applications including video surveillance, navigation,
human-computer interactions, augmented reality, higher
level scene understanding, and action recognition among
many others. It is a challenging task because the visual
observations often suffer from interference due to occlu-
sion, scale and shape variation, illumination variation,
background clutter, and related factors.
VTT differs from conventional tracking task in that

the observation at each time instant is a video frame and
the motion trajectory is confined to the spatial coordi-
nates in each frame. On the other hand, like the conven-
tional tracking, a VTT algorithm is divided into the
prediction phase and an update phase. In the prediction
phase, a motion model is incorporated to predict the tar-
get location based on current estimate. In the updated
phase, a maximum likelihood (ML) estimate of the tar-
get location is sought based on observations made in the
current frame. Then, an updated target position is de-
cided based on predicted location and the ML estimated

position. These location predictions and estimations are
traditionally realized using sequential Bayesian estima-
tion algorithms such as Kalman filters or particle filters.
Based on how the ML estimation of target location is

realized, current VTT algorithms may be categorized
into two families: discriminative algorithms versus gen-
erative algorithms [5]. Discriminative methods detect the
presence of a tracked object using a pattern classification
approach with the objective to distinguish the fore-
ground target from the background. For example, the
multiple instance learning (MIL) [6] method puts all
ambiguous positive and negative samples into bags to
learn a discriminative model for visual target tracking.
Generative methods detect the tracked object by search-
ing for the region most resembling to the target model,
based on templates or subspace models. In [7], a robust
fragments-based tracking method is proposed to handle
partial occlusions or pose changes. Every patch votes on
the possible positions and scales of the target in the
current frame by comparing the intensity histogram
against the corresponding histogram of each image
patch. However, a static appearance model of the target
cannot adapt to rapid appearance changes of the target.
Incremental learning visual tracking (IVT) algorithm [8]
handles the problem of changing target appearance. In
the template update process, a forgetting factor is

* Correspondence: yjlgedeng@163.com
3School of Internet of Things Engineering, Jiangnan University, Wuxi 214122,
China
Full list of author information is available at the end of the article

EURASIP Journal on Image
and Video Processing

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Zhang et al. EURASIP Journal on Image and Video Processing         (2019) 2019:20 
https://doi.org/10.1186/s13640-019-0411-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-019-0411-1&domain=pdf
mailto:yjlgedeng@163.com
http://creativecommons.org/licenses/by/4.0/


introduced to ensure that less modeling power is wasted
fitting older observations. Visual tracking decomposition
(VTD) algorithm [9] is proposed to handle the appear-
ance and motion changes of the target occur at the same
time. In the tracking process, the observation model is
decomposed into multiple basic observation models that
can cover different specific target appearances. The
motion model is also represented by combining mul-
tiple basic models that cover different motion types.
Then two types of basic models are used to construct
the multiple basic trackers to handle a certain change
of a target.
Tracking algorithms based on the sparse model have

attracted great interests lately. Mei et al. [10, 11] formu-
lated visual target tracking as a sparse approximation
problem in the particle filtering (PF) framework [12, 13].
Using a dictionary of image patches, the target template
can be represented as a weighted linear combination of
very few (hence sparse representation) image templates
in the dictionary. The sparse representation can be esti-
mated by solving an l1-norm regularized least squares
(LS) problem. In [14], a real-time robust l1 tracker is
proposed by adding an l2-norm regularization to the co-
efficients associated with the trivial templates, and an ac-
celerated proximal gradient (APG) method is employed
to speed up the problem solving. Multi-task tracking
(MTT) is proposed [15] as a multi-task sparse learning
problem in a PF framework. The particles are modeled
as linear combinations of dictionary image templates,
and the interdependencies between particles are
exploited to improve the tracking performance. In [5],
an adaptive structural local sparse appearance model is
proposed to locate the target more accurately by consid-
ering the spatial information of the target based on an
alignment-pooling method. Moreover, the incremental
subspace learning and sparse representation are com-
bined to update the template, which can adapt to the ap-
pearance change of the target with less possibility of
drifting. When the target exhibits dramatic appearance
changes, a collaborative model is proposed [16] that
combines a sparsity-based discriminative classifier and a
sparsity-based generative model. With this appearance
model, both holistic updates and local representations
are considered. Moreover, the latest observations and
the original template are used to update the model and
adapt to the appearance change while mitigating the
drift problem.
Most of the dictionaries based on the sparse represen-

tation theory are constructed directly by the samples of
the template base or obtained by the clustering method
with some constraints. The image templates in the dic-
tionary often lack the ability of discrimination. More-
over, the templates updated by the same update scheme
cannot adapt to the changes of the foreground and the

background of the target. To address these concerns, in
this work, we propose an adaptive visual target tracking
algorithm based on classified-patch kernel particle filter
(CKPF), which has the following advantages:

(a) Classified patches and low-dimensional dictionary
are considered in the CKPF. Note that low-dimensional
dictionary and classification parameters (CP) are
learned by the label-consistent K-SVD (LC-KSVD)
[17, 18] technique. To the best of our knowledge, this
is the first work to extend the LC-KSVD approach to
exploit the intrinsic structure among the patches of
the visual target. The image patches in the dictionary
trained using LC-KSVD will be more discriminative
to classify foreground from the background, and the
obtained low dictionary can reduce the computational
burdens.

(b) The anti-occlusion sparse coefficient histograms
(ASCHs) [16] are merged in CKPF to enhance the
ability of anti-occlusion. If the reconstructed error
of one patch is bigger than the threshold, the patch
will be marked as occluded, and the corresponding
sparse coefficients were displaced with zero to
reduce the negative influence.

(c) Gaussian kernel density (GKD) of the learned patches
is considered to make the proposed algorithm more
stable. The reason is that the importance of each patch
is considered in the structure of candidate template
according to the distance close to the center of the
template.

(d) An adaptive template update scheme is developed
to adapt to the target appearance changes improving
the robustness of the tracker. It is because the
appearance of the target often changes significantly
due to the disturbance of illumination changes,
occlusion, rotation, and scale variation.When the
target is occluded, the arrived template usually
cannot describe the real target effectively. Therefore,
the weight of the arrived template should decrease at
this time. Otherwise, the weight should increase due
to the accurately estimate of the arrived template
without other disturbance factors.

Our proposed visual target tracker differs from exist-
ing approaches [10–16] in several aspects, such as the
dictionary learning of the local image patches by LC-
KSVD, likelihood model construction of the candidate
particles, as well as the design of the adaptive parameter
for the template update. The main contributions of this
paper are threefold. (a) Classification parameters and
low-dimensional patches are learned by LC-KSVD to
construct the CKPF. (b) Isotropic Gaussian kernel dens-
ity of the patches is proposed to produce the mixture
likelihood of the each candidate particle. (c) An adaptive
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template update scheme is proposed to adapt to the tar-
get appearance changes.
The remainders of this paper are organized as follows.

In Section 2, we summarize the details of the proposed
adaptive visual target tracking algorithm based on CKPF.
An overview of the LC-KSVD is presented. Meanwhile,
adaptive template update scheme is developed and dis-
cussed. In Section 3, extensive simulation results com-
paring our proposed algorithm against existing visual
target trackers are reported and the implications of these
results are discussed. Conclusions and future works are
presented in Section 4.

2 Methods
2.1 Overview of the algorithm
As shown in Fig. 1, the target is represented as a rect-
angular template in each frame, and the target template
will be scaled to 32 × 32 pixels (big red boxes on the
right). Candidate target region will also be scaled at the
same ratio before further processing. Pixels within the
template are assumed to be positive samples of the tar-
get. A 4-pixel wide strip surrounding the template is de-
fined as the background whose edges outside and inside
of the target template are denoted by B1 and B2, i.e., the
gray annular area (B2-B1) with width 8 pixels are the
background area. A patch is defined as a 6 × 6 square.
Np = 196 image patches (positive samples) will be ex-
tracted from the template (foreground, target), and
Nn = 196 patches will be extracted from the back-
ground as negative sample. These extracted image
patches are regularly distributed over the foreground
or the background regions respectively with overlaps
as needed. Together, the positive-labeled patches rep-
resent the target and the negative-labeled patches rep-
resent the background.

Each patch is raster-scanned and converted into a
36 × 1 vector. Hence, there are 196 vectors labeled with
+ 1 (positive samples) and 192 vectors labeled with 0
(negative samples). We denote the total number of
patches N = 392. A label-consistent, kernel singular value
decomposition (LC-KSVD) algorithm will be applied to
both the 196 positive vectors and the 196 negative vec-
tors and select a subset of 50 vectors from each of them
to form a labeled dictionary. This dictionary consists of
50 vectors with positive (+ 1) labels and 50 vectors with
negative (0) labels. Let K = 100, the dictionary may be
represented by a 36 × K matrix D. The dictionary will be
estimated from the initial frame where the target to be
tracked is specified for the tracking algorithm. It will re-
main unchanged until template update operation is
performed.
The LC-KSVD algorithm also yields a sparse represen-

tation of each patch (36 × 1 vector) as a weighted com-
bination of the 100 vectors selected in the dictionary.
Two constraints are imposed on the potential sparse
representations: (a) (discriminative constraint) Sparse
vectors corresponding to foreground (or background)
patches should have similar representation. This is rep-
resented by a discriminative parameter matrix AK ×K. (b)
(classification constraint) Class labels (+ 1, 0) can be
reproduced from weighted linear combination of the
sparse representation. This is represented by a 2 × K
classification parameter matrix W. In addition to the
sparse representation of each foreground and back-
ground patches, represented by a K ×N matrix X, the
LC-KSVD algorithm can estimate the dictionary D, the
discriminative parameter matrix A and the classification
parameter matrix W simultaneously.
Given the dictionary D and sparse representation of

the template X, tracking begins by moving into the next

Fig. 1 Template and patches
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frame. A kernel particle filter is applied to generate 100
potential target positions at (k + 1)th frame according to
the particle representation of the state transition prob-
ability p(xk + 1|xk) such that E(xk + 1|xk) = xk where xk
= {xk, yk, θk, sk, αk, βk} is the state vector of the target at
the kth frame. The assumption is that the target motion
may be described by an affine transformation, for ex-
ample, (xk, yk) is the target position, θk, sk, αk, and βk are
the rotation angle, the scaling factor, the aspect ratio,
and the angle of inclination, respectively. We also as-
sume p(xk + 1|xk) has a Gaussian distribution where the
covariance matrix is selected based on prior knowledge
of the tracking task.
Each particle corresponds to a candidate target template.

Then, 196 image patches are extracted, and corresponding
sparse representation X’ are evaluated using LC-KSVD and
the library D. A kernel density weighted sparse coefficient
similarity score (SCSS) then will be applied to produce an
estimate of the likelihood probability between the sparse
representation of the template X and the current template
candidate X’. The kernel density weightings place more
weight on image patches that are closer to the center of the
template and less weight on image patches on peripherals
of the template. The location of the best-matched template
will be designated as new target position.
Before moving into the next frame, the tracking algo-

rithm may also adaptively update the template when oc-
clusion of the target is detected. This is accomplished by
using a sparse coefficient histogram matrix (SCHM)
[16] to estimate the level of occlusion of the target. If
so, the algorithm uses the newly estimated template,
or a weighted linear combination of the estimated
template and an initial template depending on the
percentage of patches that are deemed occluded. With
the newly updated template, the algorithm moves to
the following frame.

A block diagram summarizing above overview of the pro-
posed algorithm is depicted in Fig. 2. It has an initialization
phase where a low-dimensional label-consistent dictionary
D of image patches will be estimated, and the sparse repre-
sentation X as well as classification parameters W of indi-
vidual patches are also computed. Next, the kernel
density-based particle filter (KPF) algorithm generates can-
didate templates in the following frame. For each candidate
template, the likelihood score will be evaluated, and the
maximum likelihood estimate of the target position will be
computed. This is followed by an adaptive template update
phase where occlusion of the target is detected.

2.2 Theoretical backgrounds
2.2.1 LC-KSVD
The LC-KSVD dictionary learning algorithm [17, 18] in
Fig. 2 can simultaneously train an over-complete low-
dimensional dictionary and a linear classifier, i.e., the ob-
tained dictionaries have both reconstructive and discrim-
inative abilities. The objective function is expressed as

D;W ;A;Xh i ¼ arg min
D;W ;A;X

Y−DXk k22 þ α Q−AXk k22
þ β H−WXk k22; s:t: ∀i; xik k0≤T 0

ð1Þ

where Y ¼ fyigNi¼1∈R
n�N denotes the input sample

set, X = [x1, x2,⋯, xN] ∈ R
K ×N denotes the coefficient

matrix, D = [d1, d2,⋯, dK] ∈ R
n ×K denotes the low-

dimensional dictionary matrix containing K≪N proto-

type sample-atoms for columns fd jgKj¼1 , and T0 denotes

the degree of sparsity. Q ∈ RK ×N denotes the sparse
codes with discriminative power of Y for classification. A
is a linear transformation matrix, which can transform
the original sparse codes to be most discriminative in

Fig. 2 Block diagram of the proposed algorithm
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sparse feature space. kQ−AXk22 denotes the discrim-
inative sparse code error, which forces the samples
with same class label to have the similar sparse repre-

sentations. kH−WXk22 denotes the classification error,
W is the classification parameter matrix, and H is the
class label of input samples. α and β are the scalars
controlling the relative contribution of the corre-
sponding terms [18].
The K-SVD method [19] can be used to obtain the op-

timal solutions for all the parameters simultaneously.
Specifically, Eq. (1) can be rewritten as

D;W ;A;Xh i ¼ arg min
D;W ;A;X
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WTÞT, then Eq. (2) can be expressed as

Dnew;Xh i ¼ arg min
Dnew ;X

Y new−DnewXk k22
� �

; s:t: ∀i; xik k0≤T

ð3Þ

Then Dnew can be obtained by using the K-SVD
method, i.e., D, A, and W are learned simultaneously.
More descriptions about LC-KSVD can refer to [17, 18].
In Eq. (1), the learned dictionary can be better used to

represent the target due to the constraint terms. The
discriminative sparse code error can force the samples
with same class to have the similar sparse representa-
tions, which can enlarge the difference between classes
of training data. Moreover, the classification error can
effectively train a classifier to identify the foreground
and background of the target.

2.2.2 Sparse coefficient histogram and occlusion detection
The patches of the target can be represented by using
the obtained low dimensional dictionary D and the
sparse coefficient of each patch can be used to construct
the histogram matrix. However, some patches in the
candidate target may be occluded, and the coefficient
histogram cannot express the feature of candidate target
accurately. As a result, the target cannot be estimated
accurately. Taking this problem into account, the occlu-
sion detection strategy [16] is employed according to the
reconstruction error of each patch. And then the sparse
coefficient histogram can be updated according to the
occlusion detection results.
Assume that ξi denotes the sparse coefficient vector of

the ith patch, we have

min
ξ i

yi−Dξ ik k22 þ λ ξ ik k1 ð4Þ

The sparse coefficient histogram matrix can be estab-
lished by concatenating the sparse coefficient vector ξi,
i.e.,ρ ¼ ½ξ1; ξ2;…; ξNp

�. If the target is partially occluded,
then some of the patches of the target are occluded, and
their corresponding sparse coefficients will be meaning-
less, which makes the sparse coefficient matrix ρ unable
to express the candidate target well, causing big recon-
struction error. Therefore, we introduce an occluded tar-
get detective mechanism to identify the occluded
patches and their corresponding sparse coefficients.
It is defined that if the reconstructed error of each

patch is bigger than the threshold, the patch will be
marked as occluded, and then the corresponding sparse
coefficient vector is reset to zero. The candidate histo-
gram matrix after occlusion detection is defined as φ
= ρ⊙ o, where ⊙ denotes the element-wise multiplica-
tion. o∈RðKpþKnÞ�Npdenotes the matrix of occluded detec-
tion, and oi is the element of the matrix o, and can be
defined as:

oi ¼ 1; εi < ε0
0; otherwise

�
ð5Þ

where εi ¼ kyi−Dtξ i tk22 denotes the reconstructed error
of the ith patch. Note that only the positive patches are
used to compute the reconstructed error, therefore Dt

denotes the dictionary which only consists of the set of
positive patches from the learned dictionary D, ξi _ t de-
notes the corresponding sparse coefficient vector of Dt,
and ε0 denotes the threshold of reconstructed error of
each patch. If εi ≥ ε0, then the ith patch be considered as
occluded and the corresponding coefficient vector is set
as zero.

2.3 Classified-patch kernel particle filter
Given the observation set of target y1 : k = {y1, y2, … , yk}
up to the kth frame, the target state xk can be extracted
via the maximum posterior estimation, i.e., x̂k ¼ arg

max
xik

pðxik jy1:kÞ , where xik denotes the state of the ith

sampled particle of the kth frame. The posterior prob-
ability pðxik jy1:kÞ can be inferred by the Bayesian recur-
sion, i.e.,

p xik jy1:k
� �

∝p yk jxk
� � Z

p xk jxk−1ð Þp xk−1jy1:k−1
� �

dxk−1

ð6Þ
where p(yk| xk) denotes the observation model. p(xk| xk − 1)
denotes the dynamic model which describes the temporal
correlation of the target states between consecutive
frames. The affine transformation with six parameters is
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utilized to model the target motion between two consecu-
tive frames. The state transition is formulated as p(xk| xk −
1) =N(xk; xk − 1, Σ), where Σ is a diagonal covariance matrix
whose elements are the variances of the affine parameters.
The observation model p(yk| xk) denotes the likelihood

of the observation yk at state xk. It plays an important
role in robust tracking. In this paper, we aim to
construct a robust likelihood model having the
anti-occlusion ability and foreground target identifica-
tion ability by merging the similarity of sparse coefficient
histograms [16] and the classification information.
Moreover, we consider the spatial information of each
patch by using the isotropic Gaussian kernel density,
which can keep the stability of the proposed algorithm
for visual target tracking.
The likelihood of the lth particle is expressed as

pl ¼
XNp

i¼1

k
ylk−ci
h

����
����
2

 !
Ml

k;iL
l
k;i ð7Þ

where Ml
k;i and Llk;i denote the likelihood of classification

and the similarity function of the target histograms be-

tween the candidate and the template. kðk ylk−ci
h k

2
Þ de-

notes the isotropic Gaussian kernel density, where ci
denotes the center of the ith patch, and ylk denotes the
center of the lth particle in the kth frame. It means the
distance between the patch and the candidate particle is
considered, i.e., the patches far away from the center of
the target will be assigned smaller weights, which can
weaken the disturbance of the patches on the edge of
the target.
According to the histogram intersection function [16,

20], the similarity function of the ith patch of the lth
particle is defined as

Llk;i ¼
X

min φl
k;i;ψ

i
	 


ð8Þ

where φl
k;i and ψi denotes the sparse coefficient histo-

grams of the candidate target and the target template,
respectively. Template histogram is computed only once
for each image sequence. Moreover, the comparison be-
tween the candidate and the template should be carried
out under the same occlusion condition. Therefore, the
template and the ith candidate share the same matrix o
of occluded detection.
The likelihood of classification of the ith patch of the

lth particle is defined as

Ml
k;i ¼ cos∠ Wφl

k;i; Γ
	 


ð9Þ

where φl
k;i is the sparse coefficient vector of the candidate

patch. Γ denotes the base vector of target classification,

i.e., Γ = [1, 0]T, cos∠ðα; βÞ ¼ α�β
jαjjβj denotes the bearing of

two vectors.
The bigger the number of patches belonging to the

candidate particle is, the better the target appearance
can be described. Because the selected patches may be
from target templates or background templates. There-
fore, if the patch belongs to the target, we should give it
a bigger weight than that belong to the background.

2.4 Adaptive template update
In the tracking process, the appearance of the target
often changes significantly due to the disturbance of illu-
mination changes, occlusion, rotation, scale variation,
and so on. Therefore, we need to update the template
appropriately. However, if the template is updated too
frequently by using new observations, the tracking re-
sults are easy to drift away from the target due to the
accumulation of errors. Especially, when the target is oc-
cluded, the latest tracking result cannot describe the real
target well, which will cause the later estimated targets
to be lost. On the contrary, if tracking with fixed tem-
plates, it is prone to fail in dynamic scenes as it does not
consider inevitable appearance change.
In this paper, we propose an improved template histo-

gram update scheme by combining the histogram of the
first frame and the latest estimated histogram with the
variable μ, i.e.,

ψ̂n ¼ μψ þ 1−μð Þφ̂n; On < O0

ψ̂n‐1; otherwise

�
ð10Þ

where μ ¼ e‐ð1‐
On
O0
Þ denotes the weighting parameter,

which can adaptively adjust the update template to adapt
to the change of the target appearance. ψ̂n denotes the
update template histogram, ψ and φ̂n denote the tem-
plate histogram of the first frame and the latest estimate,

respectively. On ¼ #Patchocc
#Patch denotes the occlusion degree

of the current tracking results. #Patchocc and #Patch
denote the number of the occluded patches and the total
patches. O0 is a threshold of the degree of occlusion.
Moreover, to avoid frequent template update, we detect
the occluded state every five frames, i.e., we update the
template every five frames.
During the update process, the first frame template

and the newly arrived template are considered simultan-
eously. However, when the target is occluded, the arrived
template usually cannot describe the real target effect-
ively. Therefore, the weight μ of the arrived template
should decrease at this time. Otherwise, the weight μ
should increase due to the accurately estimate of the ar-
rived template without other disturbance factors. In this
paper, we set the parameter μ change with the recon-
struction error. If On increases, which denotes the target
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may be disturbed by some factors, such as illumination
and occlusion, the arrived template may be inaccurate,
hence the weight of the template should decrease, while
the weight of the first frame template should increase.

3 Experiment results
To verify the effectiveness of the proposed algorithm,
some challenging sequences from the public dataset of
video target tracking [1] (http://cvlab.hanyang.ac.kr/
tracker_benchmark/datasets.html) are used to evaluate
the performance of the proposed algorithm. The main
challenging features of the data are described in Table 1,
including the interference of occlusion, background clut-
ter, illumination change, target rotation, scale change,
motion blur, etc. The proposed algorithm is compared
with eight state-of-the-art benchmark tracking algo-
rithms, including multiple instance learning (MIL) [6],
compressive tracking (CT) [21], robust fragments-based
tracking (FRAG) [7], incremental visual tracking (IVT)
[8], visual tracking decomposition (VTD) [9], L1 tracker
using accelerated proximal gradient (L1APG) [14],
multi-task sparse learning tracking (MTT) [15], and
local sparse appearance model and K-selection (LSK)
[22]. The experiments are implemented on computer
with Intel Core 2.4 GHz, i7-4700HQ processor with
8 GB RAM. The software tool is MATLAB 2014a and
the l1 minimization problem is solved with the SPAMS
package [23]. For each sequence, the location of the tar-
get is manually labeled in the first frame.
The learned low-dimensional dictionary consists of 50

positive templates and 50 background templates which
are from the sampled templates by LC-KSVD dictionary
learning. In the framework of PF, 100 candidate particles
are sampled according to the same partition patch
method, and the most similarity candidate particle is
extracted as the estimated target. Set the threshold of
the occlusion degree as O0 = 0.8 in Eq. (10).

3.1 Qualitative evaluation
Figure 3 shows the tracking results of different algo-
rithms when the target undergoes heavy occlusion, illu-
mination variation, background clutter, rotation, scale
change, fast motion, and motion blur.

3.1.1 Occlusion and illumination variation
In order to demonstrate the anti-occlusion and
anti-illumination-variation performances of the proposed
algorithm, some challenging video sequences are used in
this experiment. Especially in (a) FaceOcc2 and (b)
Woman sequences, the targets are heavily occluded or
long-time partial occluded. However, the proposed algo-
rithm can extract the targets accurately. The reason is
that the local detection strategy for occlusion and illu-
mination changes as well as the adaptive template up-
date scheme are employed, which can easily describe
and detect the variations of the local details of the tar-
gets and help to decrease the influence of the distur-
bances including occlusion, illumination change,
rotation, etc. Moreover, the Gaussian kernel density of
the patches is considered in the CKPF, which considers
the global information of the local patches, improving
the tracking performance. Taking the 181th, 273th, and
659th frames in FaceOcc2 sequences as examples, the
target is occluded heavily by the book and the hat; the
proposed algorithm has the highest tracking accuracy. In
the 127th, 172th, and 495th frames in the Woman
sequences, the target is partial occluded by the car and
disturbed by the background clutters; some of the
benchmark algorithms cannot estimate the target accur-
ately with heavily position drift, while the proposed
algorithm can successfully track the target throughout
the entire sequences.
In (c) Shaking and (d) Singer1 sequences, there

exists large illumination variation, and partial scale

Table 1 The features of the video sequences

Name Occlusion Blur Scale change Background clutter Illumination change Rotation Fast motion Deform

FaceOcc2 √ √ √

Woman √ √ √ √ √ √ √

Shaking √ √ √ √

Singer1 √ √ √ √

Deer √ √ √ √

Board √ √ √ √ √

Trellis √ √ √ √

Walking2 √ √

Girl √ √ √

Jumping √ √

Human8 √ √ √

Car4 √ √
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change, the benchmark algorithms FRAG, IVT, MTT,
and CT cannot extract the target correctly following
with heavily drift. LSK and MIL have good estimated
results, but the proposed algorithm and the VTD
approach have better tracking results. For the VTD
algorithm, the observation model is decomposed into
multiple basic observation models that can cover

different specific target appearances, which can adapt
to the illumination changes; however, it is hard to
deal with the scale variation problem of the target
while the proposed algorithm can do it adaptively.
Therefore, in the Singer1 sequences, its tracking re-
sults are worse than those of the proposed algorithm
due to the scale variation of the targets.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 3 Tracking results of different algorithms. a FaceOcc2. b Woman. c Shaking. d Singer1. e Deer f Board. g Trellis. h Walking2. i Girl. j Jumping.
k Human8. l Car4
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3.1.2 Background clutter
In the video sequences of (f ) Board, (e) Deer, and (c)
Shaking, the targets are disturbed by some background
clutters, especially in Board sequences; the background
is complex and there exists partial target rotation and
fast motion. L1APG, MTT, and IVT cannot extract the
target correctly due to the use of the fixed global model,
while the proposed algorithm employs the local patch
features to describe the details of the target, and the
LC-KSVD method is introduced to learn dictionaries
and train the classification parameters simultaneously,
which can decrease the influence of the background dis-
turbance. In the 42th frame of the Deer sequence, there
is another deer in the background. Most of the algo-
rithms have the results with largely drift due to the clut-
ter disturbance. However, the proposed algorithm
obtains an accurate result; the reason is that the set of
background models is considered simultaneously and ef-
fectively updated in the tracking process.

3.1.3 Rotation and scale change
In (i) Girl and (f ) Board sequences, there exists heavily
target rotation. In the 94th and 119th frames of the Girl
sequences, the girl turns around. It is clear that heavily
drift exists in the results obtained by FRAG and LSK,
while the proposed algorithm can adapt to the case of
target rotation due to the use of the effectively update
strategy, which considers the initial target model and the
last estimate target model simultaneously. In the 434th
frame of the Girl sequences, the face of the girl is oc-
cluded by the man and the scale makes a little change
during the process of target rotation; the proposed algo-
rithm also obtains a good tracking result. From the
Board sequences, we can draw the same conclusions, in
which the proposed algorithm has a good performance
of target tracking under the scenario with target rotation
and scale variation.
Moreover, in the Singer1 sequences, it is clear that the

scale of the target changes heavily; the proposed algo-
rithm can obtain accurate results, because the scale par-
ameter sk is estimated simultaneously in the implement
process of CKPF.

3.1.4 Fast motion and motion blur
In (j) Jumping and (e) Deer sequences, there exists fast
motion of the target and motion blur. For the Jumping
sequences, L1APG, LSK, and MTT cannot extract the
target correctly due to the motion blur, while the pro-
posed algorithm has a good tracking result. In the 109th
and 262th frames of the Jumping sequence, fast motion
and motion blur make some of the benchmark algo-
rithms have heavily drift results, while the proposed al-
gorithm has good results. The reason is that the
background templates are considered to restrain the

influence of the background, and the updated positive
template can adapt to the case with motion blur. From
the Deer sequences, we can conclude the same
conclusions.

3.2 Quantitative evaluation
Two evaluation criteria are employed to quantitatively
assess the performance of the proposed algorithm. One
is average center location error (ACLE), and the other is
tracking success rate (SR). Figure 4 shows the relative
position error (in pixels) between the center and the
tracking results. ACE is defined as the average relative
position error. Assume the tracking result is Rr, and the
ground truth is Rg, then SR is defined as ϒ = (Rr ∪ Rg)/
(Rr ∪ Rg). Tables 2 and 3 give values of ACLE and SR for
different tracking algorithms.
As can be seen from Fig. 4, the proposed algorithm

has a better performance than those of the benchmark
algorithms. The tracking result of each frame is accurate
and the curve of the error is stable without high chan-
ging. While part of the benchmark algorithms are insta-
ble, and have big errors between some frames due to
different disturbances.
From Tables 2 and 3, it is clear that the proposed algo-

rithm can adapt to most of the video sequences with the
best and second best results except the (i) Girl se-
quences. The performance of the proposed algorithm
can be attributed to the detailed description of the local
patches by the LC-KSVD dictionary learning and adap-
tive template update scheme. Moreover, the Gaussian
kernel density of the patches as the global information is
considered in CKPF. The algorithm of VTD can also
adapt to the scenarios with illumination change and
lightly occlusion (e.g., Shaking and Singer1); the reason
is that the appearance change is considered in the target
template, but its performance decreases when the rota-
tion and the motion blur happen on the targets (e.g.,
Deer, Board, and Jumping). L1APG has a good perform-
ance on the Girl sequence; the reason is that the last
tracking result is used directly as the updated template,
which can effectively adapt to the Girl sequence with the
turn of the girl. However, it cannot extract the target
correctly due to the motion blur and illumination vari-
ation, such as in (f ) Board, (j) Jumping, (c) Shaking, and
(l) Car4 sequences. For the Girl sequences, the tracking
result of the proposed algorithm is not the best, but it is
only slightly below the L1APG and MTT algorithms.

3.3 Discussion of adaptive parameter μ
To verify the effectiveness of the adaptive template up-
date scheme, two special challenging sequences, the first
200 frames of FaceOcce2 and the first 170 frames of
Woman with big variance of appearance, are chosen in
this experiment. The tracking results with different
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

(k)

(j)

(l)

Fig. 4 Position errors (in pixel) between the center and the tracking results. a FaceOcc2. b Woman. c Shaking. d Singer1. e Deer. f Board. g Trellis.
h Walking2. i Girl. j Jumping. k Human8. l Car4
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constant values (e.g., 0.1, 0.4, 0.7, and 0.9) of the weight-
ing parameter μ of Eq. (10) are compared to those with
adaptive parameter value, and these are demonstrated in
Table 4.
As can be seen that there are different values of

ACLEs and SRs by choosing different constant values of
μ, and smaller value of μ (e.g., 0.1) gets higher accuracy
for the first 200 frames FaceOcce2 sequences, while big-
ger value of μ (e.g., 0.9) gets higher accuracy for the first
170 frames Woman sequences. The reason is that the
variations of the target appearance are small during the
1st frame to 140th frame of FaceOcce2 sequences, and
the updated templates mainly rely on the latest tem-
plates. But the target appearances are severely occluded
between 141st and 190th fames; the updated templates
more rely on the template of the first frame. Therefore,
it is noted that the differences of the tracking accuracy
are small with different values of μ for this sequences.

But for the Woman sequences, the target appearances
are slightly disturbed by the background clutters
between 36th and 170th frames, and there only exists
partial occlusion between 106th and 165th frames.
Therefore, most of the updated templates mainly rely on
the latest frame templates, and the bigger value of μ gets
better results. While for the proposed algorithm with
adaptive weight parameter, it is clear that it can obtain
an ideal tracking result without manually setting the par-
ameter values.

4 Conclusion
In this paper, we present an adaptive visual tracking algo-
rithm based on CKPF. The template sets constructed by
the local patch features from both foreground and back-
ground of the target are used to learn the dictionaries sim-
ultaneously. The low-dimensional dictionary and target
classification parameters are trained by using the
LC-KSVD dictionary learning. To robustly decide the final
tracking states, an adaptive template update scheme is de-
signed, and the classification information, the target candi-
date histogram, and the Gaussian kernel density are
merged to form CKPF. The effectiveness of the proposed
algorithm is experimentally demonstrated by comparing
with 8 state-of-the-art trackers on 12 challenging video se-
quences, and experimental results show that the proposed

Table 2 Average center location error (in pixel). The best and second best results are shown in italic and bold

IVT MIL VTD FRAG CT L1APG MTT LSK OURS

FaceOcc2 6.9 13.6 8.1 15.7 19.3 12.9 10.2 14.7 4.88

Woman 172.6 126.1 117.6 109.7 113.7 126.7 134.8 131.6 4.43

Shaking 85.4 24.0 9.0 192.1 80.0 109.7 97.3 25.5 10.02

Singer1 11.5 16.1 4.0 91.5 15.4 53.1 35.9 21.2 2.48

Deer 182.8 100.7 134.8 105.1 246.4 24.2 19.1 98.8 9.95

Board 162.2 71.5 137.7 84.5 52.8 184.4 159.2 45.4 12.08

Trellis 119.57 71.47 32.25 59.51 41.69 62.30 68.99 4.70 3.85

Walking2 3.04 60.65 46.25 57.53 58.53 4.52 3.48 18.95 2.84

Girl 56.6 34.1 21.5 51.7 47.1 6.9 10.4 73.2 11.8

Jumping 61.3 10.0 41.4 5.6 47.7 83.3 84.1 74.6 7.74

Human8 85.96 74.95 19.00 74.83 92.14 54.17 76.42 2.74 2.18

Car4 4.08 101.55 73.99 263.1 172.05 153.98 45.25 133.23 3.89

Table 3 Success rate. The best and second best results are shown
in italic and bold

IVT MIL VTD FRAG CT L1APG MTT LSK OURS

FaceOcc2 0.73 0.68 0.74 0.66 0.61 0.68 0.75 0.64 0.82

Woman 0.16 0.17 0.16 0.16 0.14 0.17 0.18 0.17 0.74

Shaking 0.03 0.43 0.71 0.08 0.10 0.08 0.04 0.46 0.65

Singer1 0.59 0.39 0.53 0.23 0.38 0.32 0.37 0.37 0.87

Deer 0.03 0.13 0.06 0.17 0.04 0.62 0.62 0.27 0.6

Board 0.15 0.46 0.22 0.55 0.50 0.11 0.16 0.65 0.83

Trellis 0.25 0.25 0.46 0.29 0.34 0.20 0.22 0.66 0.71

Walking2 0.76 0.29 0.33 0.28 0.27 0.78 0.81 0.47 0.75

Girl 0.17 0.40 0.56 0.45 0.31 0.74 0.67 0.31 0.62

Jumping 0.12 0.53 0.13 0.68 0.05 0.15 0.10 0.07 0.66

Human8 0.06 0.12 0.30 0.10 0.04 0.16 0.10 0.69 0.74

Car4 0.88 0.26 0.37 0.19 0.22 0.26 0.45 0.15 0.89

Table 4 Discussion of constant and adaptive parameter μ. The
best results are shown in italic

Evaluation
criteria

μ

0.1 0.4 0.7 0.9 Adaptive

FaceOcc2
1~200 frames

ACLE 4.48 4.53 4.65 4.81 4.59

SR 0.85 0.85 0.84 0.84 0.84

Woman
1~170 frames

ACLE 15.66 5.80 4.39 4.32 2.87

SR 0.58 0.80 0.82 0.82 0.84
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algorithm has a better tracking performance than some
benchmark methods in the scenarios with the interference
of occlusion, background clutter, illumination change, tar-
get rotation, and scale change. However, the computation
cost is high; in the future, we would like to improve the
computational efficiency by considering the reverse-
low-rank representation scheme [24], and some optimal
particle pruning schemes.
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