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Abstract

the efficiency and efficacy of the proposed method.

Graph matching and classification play fundamental roles in computer vision. The computational complexity of the
conventional method based on a spectrum method is high, which prevents it from handling large graphs in
practice. This work proposes a novel framework for tackling the challenge by using conformal module. We apply
the classical Hodge theory from differential manifold to the graph setting and compute the combinatorial
conformal invariant of the graph, called as conformal module, which can be used as the fingerprint for the graph.
The method is applicable for viewpoint classification and posture detection. The experimental results demonstrate

Keywords: Graph matching, Graph classification, Conformal module

1 Introduction

Graph matching has been widely used to solve a large var-
iety of problems in computer vision. Fundamentally, graph
matching aims at finding correspondences between two
sets of features extracted from images. When matching or
recognizing structural objects, graph matching does well
on considering the pairwise node interactions [1]. Further-
more, when there are correspondences between two im-
ages, graph matching can finish many vision tasks such as
object categorization [2], feature tracking [3], symmetry
analysis [4], and posture recognition [5, 6].

In the past thirty years, extensive research has been car-
ried out on graphing matching [7], however, there still ex-
ists several challenges in current methods. For example,
almost all matching algorithms require high time complex-
ity, so it is difficult to deal with large graphs. No methods
have been provided to deal with graphs in 3D vision field,
which means that graphs embedded in high genus surfaces
cannot be matched using current approaches. Many tech-
niques are proposed to solve graph matching in terms of
rigid transformation, which can hardly handle the circum-
stance where two graphs to be matched have large
non-rigid transformations. Although the third issue is con-
sidered in [8], the other two issues are still open. Our main
contributions conclude as follows: (1) the proposed method
can discover the combinatorial invariant of a given graph,
(2) the proposed method can tolerate non-rigid
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transformation on a given graph, (3) the proposed method
can solve the matching problem in linear time, (4) the pro-
posed method can be applied on not only planar graphs,
but also those embedded in high genus surfaces.

The main mathematical theory in our method is based
on combinatorial Hodge theory. There is some work on
surface registration [9, 10] and shape analysis [11] by the
combinatorial Hodge theory. In the textbook [12], Gu et
al. introduced the detailed theoretic treatment on com-
binatorial Hodge theory. These works focus on computing
the conformal invariants and conformal mappings in-
duced by the Riemannian structure of the input surfaces.
By contrast, current work focuses on computing the con-
formal modules induced solely by the combinatorial struc-
ture of the graphs. The process is that we apply
combinatorial Hodge theory to compute the combinator-
ial harmonic functions on graphs. The solution of har-
monic functions is equivalent to solving combinatorial
Laplace matrices. The combinatorial harmonic 1-forms
can give the combinatorial conformal invariant of a given
graph, called as conformal module, which can be used as
the fingerprint of a given graph. So the conformal module
can be used to deal with some matching problems. In this
paper, we compute the conformal modules by the com-
binatorial structure of the given graphs for viewpoint clas-
sification and posture detection.

2 Previous works
Graph matching problem has been an active field in
computer science and mathematics. There is a large
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literature for this topic in the past thirty years, so a thor-
ough survey is beyond the scope of the current work. In
the following, we only review the most related work. For
more detailed treatment, we refer readers to [7]. There
usually exists two categories of graph matching methods:
exact matching and inexact matching.

Exact matching aims at graph isomorphism, where the
interest is in an exact matching between nodes and edges.
Most of approaches to find the graph isomorphism are
based on Tree Search. Due to the brute Tree Search algo-
rithm, some improvements are developed. Ullmann pro-
poses one of the most important and popular tree search
algorithms [13]. He prunes the unfruitful matches which
are not consistent with current partial matching. Cordella
suggests another interesting approach based on Tree
Search [14, 15]. He provides a heuristic based on analysis
of the sets of nodes adjacent to the ones already consid-
ered in current partial matching. Except for Tree Search,
some other techniques are proposed. According to group
theory, an approach was proposed by McKay [16]. He de-
fines equivalence classes for graphs in terms of isomorph-
ism and does the equality verification in O(#%). There are
other methods based on machine learning techniques to
speed up the matching against a large library of graphs
[17, 18]. But they are used for filtering out the unmatched
candidates not for matching.

Inexact matching focuses on mapping between graphs
with weighted attributes on nodes and edges. The solution
is a quadratic assignment problem and the optimization is
NP-hard [19]. Looking for better optimization strategies is
important for major research in graph matching. According
to the relaxations of the constraints on a one-to-one map-
ping F between the nodes in both graphs [8], methods can
be generally classified into several categories. The first is to
approximate the constraints as an orthogonal one F'F=
I, which is called as spectral method. Under the orthogonal
constraint, optimizing graph matching can be solved in
closed form as an eigen value problem [20-22]. Further-
more, Leordeanu and Hebert relax F to be of unit length
| F|l5=1 for handling more complex problems in com-
puter vision [23]. The work in [24, 25] proposes a spectral
method to decompose the graph into sub-graphs, where
the process can be cast into a hierarchical framework and
suitable for parallel computation. The second group of
methods relaxes F to be a doubly stochastic matrix, the
convex hull of F. Under this constraint, optimizing graph
matching can be solved as a non-convex quadratic pro-
gramming problem and a local optimization could be done
within several proposed strategies. For instance, Gold and
Rangarajan propose the graduated assignment algorithm
for iteratively solving a series of linear approximations of
the cost function in the form of Taylor expansion. The
work of [26] proposes a path-following algorithm. Besides
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the optimization-based work, probabilistic frameworks are
also useful for interpreting and solving graph matching
[27]. Several work aims at higher-order tensor factorization
[8, 28, 29], where higher order geometrical relations make
graph matching invariant to rigid transformation. Due to a
small increment in the order of relations induces a combin-
ation explosion of data, it is only suitable for very sparse
graphs. Furthermore, this method cannot deal with
non-rigid transformations.

3 Method
This section briefly introduces the theoretical back-
ground for combinatorial conformal module. We apply
algebraic topology method to consider our matching
problem. Algebraic topology focuses on studying topo-
logical problems by algebraic methods and uses simple
linear algebraic methods to solve these problems. The
detailed description of algebraic topology methodology
can be seen in [12], where the authors consider these
methods on surfaces with Riemann structure. In this
paper, we apply algebraic topology method to the graph
setting and consider combinatorial Hodge theory on
graphs. Combinatorial Hodge theory can deduce a
unique combinatorial conformal module for each graph,
so it can be viewed as the fingerprint of a given graph.
We consider all objects on a three-connected planar
graph G which is embedded on a topological surface S.
A planar graph means that there are no edge crossings
on G and different edges of the graph can only intersect
at the endpoints. So each face of G can be viewed as a
topological disk. We usually use a triple G = (V,E, F) to
represent a graph, where V is the vertex set, E is the
edge set and F is the face set. At the first step, we need
to introduce some tools about computational topology.
These similar concepts are defined on surfaces with Rie-
mann structure in [12]. Here we use them on graphs.
The vertex set is denoted as

V ={vi,va, ", Vu}. (1)
Each oriented edge e is denoted as
e=[v,vj]ore=-[v;,v], (2)

where v;, v; are its two endpoints.
A face fis represented as

f: [Vil,Vi27"'7Vik]7 (3)

where v, is its vertex and (i1, iy ***, i) is any cyclic
permutation of (1,2, -+, k).

We call the vertices of G as 0-dimensional cells, the

oriented edges of G as 1-dimensional cells and the faces
of G as 2-dimensional cells. Their linear combinations
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can form a linear chain space. We will give some defini-
tions on the chain space of a graph.

The k-dimensional chain group of a graph G = (V,E, F)
is given by

Ck(G7 Z) = {Zfl’s;(7€iez}7 (4)
i=1

where s}; denotes the ith k-dimensional cell of G. We
call each element of Ci(G, Z) as a k-chain of G.

Definition 1: The k-dimensional boundary operator
ok : Ci(G,Z) — C_1(G, Z) on graph G is defined as

Ok (Zk: &'8};) = Zk: &0k (82) . (5)

The boundary operator has the linear property. In this
paper, we only consider the low dimensional boundary
operator, for instance,

doVvi = 0, o1 [VL', Vj

] = v;—vi, 02 [vi, vj, ]
- Vi7V/ +

vjsvi] + [vi,vj]- (6)

The k-chain in the kernel of J; satisfies
Ker o = {exeCi(G,Z)|okex = 0}. (7)

We call each element in Ker di as a closed chain. The
closed chains are closed loops and the boundaries of any
2-dimensional patches are called as boundary loops.

The k-chain in the image of J , ; satisfies

Img ory1 = {ex€Ci(G, Z)|3e111€Cx 11 (G, Z), &
= Ok416k+1)- (8)

Each element of Img oy, 1 is called as an exact chain.
Property 1: The boundary of a boundary is empty:

ak°ak+1 = O. (9)

The proof can be seen in [12].

From the above property, we can easily obtain that
Img 0 . 1 is a sub-linear space of Ker di. The complemen-
tary space is called as the homology group of the graph.

Definition 2: Suppose 0 : Ci(G, Z) — C_ 1(G, Z) is the
k-dimensional boundary operator on a graph G. Ker d
={ex€ Ci(G, Z)| okex =0} is the kernel of oy Img 0,1
={exr€ Ci| Fex 1€ Cry 1 € = Ok + 16k + 1} 1s the image of Jy
+1- The k-dimensional homology group of the graph G is
defined as the quotient group, satisfying

Ker o

H Z)= .
HG2) Img o1

(10)

Each element in H(G,Z) is called a k-dimensional
homologous class. A closed k-chain g, € ker di represents
a homologous class, denoted as [g]e€ H(G,Z). Each
element in the homologous class can form the basis of
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homology group. The similar algorithm in [12] is used
to compute the homology basis of a discrete surface. Fig-
ures 1 and 2 show the homology basis of two graphs
with different topology.

In order to do computation on graphs, we define the
cohomology group which is the dual of the homology
group. In fact, cohomology group is the space of linear
functions defined on homology group. The following
discussions are considered in parallel because all the ob-
jects are dual of the above counterparts such as co-chain
and exterior differential operator.

The k-dimensional co-chain space of the graph G is a
linear function defined on k-dimensional chain space
and given by

CY(G,R) = {o" : Ck(G,2)>R}. (11)

We call each element in C¥(G, R) as a k-form.

The dual of the boundary operator o is called as the
exterior differential operator d.

Definition 3: The exterior differential operator dj:
CX(G,R) — C** (G, R) is defined as follows:

Ao (ex1)=0" (s 18641), (12)

where w* e CX(G, R), &, 1 € Cis1(G, Z).

Corresponding to closed chain, we have that any
k-form in the kernel of d; satisfies

Ker di = {0"eC*(G,R)|dro* = 0}. (13)
We call each element in Ker dj, as a closed k-form.
Similarly, any k-form in the image of d; satisfies

Img di_y = {0*eCH(G,R)|3" 1 eC* (G, R), 0" = dj_10*'}.
(14)

We call each element in Ker d as an exact k-form.

From Property 1, we obviously obtain the following
property.

Property 2: The exterior differential operator dj:
C"G,R) > C**YG,R) is a linear operator with the

property

Fig. 1 Homology group basis for a graph embedded on a genus

one surface
N\ J
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Fig. 2 Homology group basis for a graph embedded on a genus two surface

dyedy_1 = 0. (15)

According to property 2, we have that exact forms are
closed. Therefore, Img d;_, is a sub-linear space of
Ker dy. The complementary space is defined as the coho-
mology group of the graph.

Definition 4: Suppose the linear operator dy: CX(G,
R) — C**1(G, R) is the exterior differential operator on a
graph G. Ker dj = {w* e CXG, R)| di* =0} is the kernel
of di. Img di_; ={w"e CG,R)|F* e C*YG,R), 0"
=d_ 1wk" 1 s the image of d; _ ;. The k-dimensional co-
homology group of the graph G is defined as the quo-
tient group, satisfying

Ker dy

R ga

(16)

A graph G embedded on a topological surface S can
induce a CW-cell decomposition. The Poincare dual of
G is denoted as G which is also a graph embedded on S
such that each vertex v; of G corresponds to a face v; of
G and each face f; of G corresponds to a vertex ]7; of G.
Furthermore, each oriented edge e of G corresponds to
an oriented edge € on G as follows: if e = [v; v], e=vn
v;. Furthermore, if the left face of e is f; and the right
face of e is f,, € = [f,, f}].

Definition 5: Suppose a graph and its dual are de-
noted as G and G respectively. The Hodge star operator
*: CK(G,R)—C**(G,R) is a linear operator, satisfying

(17)

where © € CX(G, R), e € C((G, Z), €€Cy_+(G, Z), and *we
C* (G, R).
Combining definition 3 and definition 5, we can obtain

“0(@)=ale),

another linear operator oy: CXG,R) —> C*"YG, R),
satisfying
O‘k:*dk*. (18)

The operator oy can be viewed as the adjoint of the ex-
terior differential operator, called as the co-differential
operator. Combining operator d; and oy, we can define
the Laplace operator.

Definition 6: Suppose d;:CNG,R) — C**1(G,R) is
the exterior differential operator on a graph G.* : CX(G,
R)—C**(G,R) is the Hodge star operator on G. o
="d,": CN(G,R) — C*" (G, R) is the co-differential oper-
ator on G. The Laplace operator A: NG, R) — CNG, R)
is defined as

A=cp1dy + di_10%. (19)

Obviously, the Laplace operator is symmetric, that is,
for any &, y € cG, R),

(A, n) = (¢, 4n). (20)
Furthermore,
(4¢,¢)=0. (21)

We mainly consider functions whose values are equal
to zero with the action of the Laplace operator. These
functions have inspiring mathematical and physical
properties. In this paper, we will compute these func-
tions on the graph setting. Based on the combinatorial
structure of a graph, the solution of harmonic functions
is equivalent to solving combinatorial Laplace matrices
on the graph. Finally, these combinatorial harmonic
functions can give out the combinatorial conformal in-
variant of a given graph, called as conformal module,
which can be used as the fingerprint of a given graph.
So, the conformal module can be applied into matching
applications on graphs.

Definition 7: Suppose d;:CYG,R) — C**Y(G,R) is
the exterior differential operator on a graph G. ;= "d,":
CXG,R) - C*"Y(G, R) is the co-differential operator on
G. A=o0y,1dy+dy_101: CN(G,R) > CX(G,R) is the La-
place operator on G. A k-form we CX(G,R) is called to
be harmonic, if

Ao = 0. (22)

Since (Aw, @) = |dww|* + |ow|* = 0, we can easily have
the following property.

Property 3: A harmonic k-form w € CN(G, R) satisfies
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0

0 (23)

dkw
{ (39)

From the physical viewpoint, the exterior differential
operator dj is the curl operator and the co-differential
operator oy is the divergence operator. So a harmonic
k-form means that it is both curl-free and
divergence-free.

The group of all the harmonic k-forms is denoted as
HX (G, R), namely

H’g(G7 R) = Ker din Ker oy. (24)

According to Hodge theory, any a k-form can be
decomposed into an exact form, a co-exact form and a
harmonic form.

Theorem 1: Suppose w is a k-form. di_1:CY(G,
R) — CN(G,R) is the exterior differential operator on a
graph  G. o;="d,:C"G,R)—>C* "X (G,R) is the
co-differential operator on G. Then there is a unique (k
- 1)-form a, (k+1)-form S and a harmonic k-form y,
such that

© = dr1a+ ok +y; (25)

moreover, such kind of decomposition is unique.

The detailed proof can be checked in [12].

For example k = 2, suppose G is embedded on a closed
surface with genus g.{y,y2, -+, y2o is the generator of
1-dimensional homology group H;(G, Z). Let w;, w, be
two harmonic 1-forms with respect to the homology
equivalence class, namely

/ w1:/ Wy, k=1,2 - 2g. (26)
Yk Yk
Due to the linear property, we have
d(&)l—(x)g) = d&)l—dwz = O, (27)
o(wi-wy) = owi-owy; = 0.

So ®; — w, is harmonic and f}’k (01-wy) = fykwl—fyk
wy = 0.(w1-wy) is exact. There is a function f: G— R
such that w;-w,=df. According to the maximum
principle and the empty boundary, f has no extremal
value and is constant. That means the uniqueness holds:
w1 —wy=df=0.

Suppose weH'(G,R) is closed and f:G—R is a
smooth function. So w + df and w lie in the same coho-
mology class. The solution of o(w + df) =0 is equivalent

to the solution of Poisson equation:
Af = —ow. (28)

In order to compute harmonic functions on a graph,
we need define the combinatorial Laplace matrix.
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Definition 8: Suppose G ={vy,v,, -, v,} is a planar
graph. The combinatorial Laplace matrix A =(§;) on G
is defined as

-1, Vi~ VL #E
5.=1 0,

: (29)
),

V,-7LVj,l'¢j;
=7

where v;~v; means two vertices are adjacent and d(v,)
is the degree of v; in the graph. According to theorem 1,
the following Corollary is straightforward.

Corollary: The group of all harmonic k-forms on G is
isomorphic to the k-dimensional cohomology group, that
is

HX(G,R)=H*(G,R). (30)

Suppose w; and w, are cohomological k-forms, then
there is a (k- 1)-form #, such that w; = w, + dy. Assume
the Hodge decomposition of w; is

w; =day + 0, +y, =dar +y;. (31)
dw; =0, déf5; =0, so §f3; = 0. Directly, we get
@y = d(a1-17) + 7. (32)

That means two cohomological forms share the same
harmonic form. Therefore, each cohomological class in
HY(G, R) corresponds to a unique harmonic form in HX (
G, R), which establishes the isomorphism.

Combinatorial Conformal Invariants: Suppose a
graph G is embedded on a genus g surface S.  is a com-
binatorial harmonic 1-form on G and y is a closed loop.
We can choose a tubular neighborhood of y,

N(y)={acG|any=2}. (33)

We can periodically embed N(y) to the plane. Each
period is represented as a complex number, denoted as
Jyo.

We can choose a canonical homology group basis in
H\(G, Z) as {ai, by, ay, by, -+, ag by}. Namely, they satisfy
the following conditions

ﬂi'biil,ﬂi'ﬂjio,bi'bl‘:(), (34')

where a - b represents the algebraic intersection num-

ber. Suppose a closed differential 1-form is w. The inte-
gral of w on a;

/w,/ w/ o
ay a ag

is called as the a-period of w. Similarly,

(35)
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/ w,/ w7~~7/ ® (36)
by by by

is called the b-period of w.

For all a,, slicing the surface S to get S;, the boundary
of S; is 9S; =a; —a; . We construct a function f; such
that

+
1, vi€a;
0, vi€a; R
random, otherwise

filvi) = (37)

and denote a; = df;.

For all b, slicing the surface S to get S;, the boundary
of S;is dS; = b;—b;. We construct a function g; such
that

1, Vkeb;r
0, VkEb; ,
random, otherwise

gj("k) = (38)

and denote ;= dg;.
The combinatorial period matrix of G is as following:

mod(@)= | [ o] | [

a; by

-1

(39)

For genus one case, the graph G can be embedded into
the plane as a parallelogram. The combinatorial period
matrix Mod(G) represents the shape of the parallelo-
gram. For high genus graph G, the combinatorial period
matrix is the generalization. The combinatorial period
matrix can be used as the fingerprint of the embedded
graph G.

One face fy on the graph G is selected as the unique
exterior face. Four vertices on the boundary of f; are
chosen, denoted as {v, vy, vy, v3}, sorted counter clock-
wisely. The graph G with four corner vertices is called as
a topological quadrilateral. The corner vertices divide
the boundary of the exterior face into four segments, de-
noted as left, top, right, and bottom segments, such that
Vo is the left lower corner. Then we can compute a har-
monic function #: G — R with Dirichlet boundary con-
dition, namely

u(vi) = 1,vetop,
u(vi) = 0,vebottom, (40)
Au(v;) = 0,otherwise.

In fact, the harmonic 1-form w is the exterior differen-
tial of u, w = du.

Theorem 2: Suppose G is a topological quadrilateral
which is a planar graph with an exterior face f; and four
corner vertices {vo, V1, Vs, v3}. The harmonic 1-form maps
the topological quadrilateral to a rectangle with width w
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and height /4, then the conformal module of the topo-
logical quadrilateral is

Mod (G, {vo,v1,Vva2,v3}) (41)

w

This theorem can be proven by an extremal length
theory. More detailed proof is shown in [30].

So, there is a conformal mapping ¢ which maps a
topological quadrilateral into a canonical rectangle and
maps four vertices {vo, vy, Vo, v3} into four corner vertices
of the rectangle. The ratio of width and height is the
conformal module. Four vertices {vg, v, Vo, v3} divide the
boundary of the topological quadrilateral into four seg-
ments, denoted as Ty, I'y, I'y, I's and oIy = v, 1 — V. Solv-
ing two Dirichlet equations, there are two harmonic
functions f;, f; : G — R which satisfy the Dirichlet bound-
ary and the Neumann boundary:

Afl = Oa

f1|r(, = 0,

fil, =1, (42)
o,
o |r,ur, ’

AfZ = Oa

folr, =0,

falr, = 1 (43)
o |rour, '

where 7 is the normal vector. The gradient fields Vf
and Vf, are mutually vertical lines but are not conjugate
to each other. A constant A is necessary for the con-
formal mapping ¢ with ¢ = Af, ++/-1f,. So A is the
width of the canonical rectangle. Due to the harmonic
function with conformal invariant property, there is a
mapping energy

B = [ 9fifaa= (44)
and
¢:E(f1)f2+\/__1f1- (45)

4 Experimental results and discussions
All experiments are conducted on a Windows 7 plat-
form, with a single 2.3-GHz Intel CPU, 16-GB RAM
memory. All algorithms have been developed in generic
C++, compiled using Visual Studio 2010. The sparse lin-
ear systems are solved using the numerical library Eigen
[31].

The experimental work is to apply the combinatorial
Hodge theory to compute the harmonic functions on
the graph setting and use these harmonic functions to
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Fig. 3 Viewpoint detection experiment
A

get the combinatorial conformal module of a given
graph. The combinatorial conformal module can be
viewed as the fingerprint of a graph. For each image, we
make a feature graph for it. Based on the combinatorial
conformal modules of graphs, matching work can be
done by finding correspondences between two sets of
features extracted from images. We test the proposed
method in the following applications.

4.1 Viewpoint detection

Figure 3 illustrates the experiment for viewpoint detec-
tion by the combinatorial conformal modules of graphs.
We use the house images with features from CMU
house datasets. Although all the images are the same
building with the same feature, the combinatorial struc-
ture of the Delaunay triangulation varies according to
the viewpoint change. If the viewpoints are close to each
other, the corresponding combinatorial structure of the
feature graph is similar. We expect that the

combinatorial conformal modules of the feature graphs
with close viewpoints are close as well. We select four
corners which are consistent among all the house images
and separate the exterior face boundary into four seg-
ments, denoting as left, bottom, right, and top respect-
ively. Applying our proposed method into these graphs,
we can compute the conformal module of each image.
Each image is associated with a conformal module, then
the data is cast on the plane as shown in Fig. 4. It can be
easily seen that there are three clusters of the conformal
modules, which correspond to three major view posi-
tions. This means that the combinatorial conformal
modules of the feature graphs with close viewpoints are
close as well.

4.2 Posture detection

Another experiment is that we use CMU Graphics Lab
Motion Capture Database for the application of the pos-
ture detection. The human actor wears 41 markers and
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Fig. 4 Conformal modules of house images
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makes a motion sequence. There are devices which cap-
ture the 3D position of the markers. In our experiment,
we fix a virtual camera and project the markers onto the
2D image plane to analyze the result. Firstly, we use
Delaunay triangulation to construct the graph. Then we
compute the combinatorial conformal module of the
graph. Four canonical postures are selected: standing,
jumping, leaning back and walking as shown in Fig. 5.
We project the posture onto the XOY,YOZ and ZOX
plane respectively and calculate the corresponding
Delaunay triangulation which is showed in the 3D pos-
ture scatter figures. We project the 3D posture onto the
plane to find the most left vertex, the most bottom ver-
tex, the most right vertex and the most top vertex as the
corners. The proposed method is applied to compute
the combinatorial conformal module of a posture graph.
The combinatorial conformal module can be used to
distinguish these postures. We use the proposed method
to process the whole video sequence with 2751 frames
and use K-nearest neighbor method to classify the pos-
tures. The correct rate of posture classification result is
nearly 90%.

5 Conclusion

Graph matching has been intensively applied in com-
puter vision for finding correspondences between two
sets of features extracted from images. Most of the exist-
ing graph matching methods require high time complex-
ity and are not usable to large graphs. Furthermore,
these methods can hardly handle the circumstances
where two graphs to be matched have large non-rigid
transformations. In this work, we propose a novel graph
matching and classification method by the combinatorial
conformal module.

We generalize the classical Hodge theory to the com-
binatorial graph setting. The process is that we apply
combinatorial Hodge theory to compute the combina-
torial harmonic functions on graphs. By defining com-
binatorial Laplace matrices on graphs, the solution of
harmonic functions is converted into solving linear La-
place matrices. The combinatorial harmonic 1-forms can
give the combinatorial conformal invariant of a given
graph, called as conformal module. According to the
mathematical result, the conformal module can be used
as the fingerprint of a given graph. Thus we can use the
conformal module to do some matching work. Compar-
ing to other graph matching methods, the proposed
method can discover the combinatorial invariant of a
given graph. Furthermore, the proposed method can tol-
erate the non-rigid transformation on a given graph.
Due to considering the proposed method from the alge-
braic topology viewpoint, the computation of matching
problem can be done in linear time. More importantly,

(2019) 2019:26

Page 9 of 10

our proposed method is adaptable to not only planar
graphs but also graphs embedded in high genus surfaces.

In the future work, we purpose to explore the inexact
graph matching method based on the conformal module
and we hope the proposed method can be used to more
applications in computer vision.

Abbreviations
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