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Abstract

Recognition of facial images is one of the most challenging research issues in surveillance systems due to different
problems including varying pose, expression, illumination, and resolution. The robustness of recognition method
strongly relies on the strength of extracted features and the ability to deal with low-quality face images. The
proficiency to learn robust features from raw face images makes deep convolutional neural networks (DCNNs)
attractive for face recognition. The DCNNs use softmax for quantifying model confidence of a class for an input face
image to make a prediction. However, the softmax probabilities are not a true representation of model confidence
and often misleading in feature space that may not be represented with available training examples. The primary
goal of this paper is to improve the efficacy of face recognition systems by dealing with false positives through
employing model uncertainty. Results of experimentations on open-source datasets show that 3–4% of accuracy is
improved with model uncertainty over the DCNNs and conventional machine learning techniques.
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1 Introduction
Face recognition became the most sought-after research
area due to its applications in surveillance systems, law
enforcement applications, and access control and exten-
sive work has been reported in the literature in the last
decade [1]. The process of face recognition refers to
identifying the person by comparing some features of a
new person (input sample) with the known persons in
the database. Face recognition pipeline consists of four
main phases: face region detection, alignment, feature
extraction, and classification [2] where the most crucial
phase is feature extraction. Hand-crafted features have
achieved reasonable results for constrained environ-
ments [3–5]. However, the recognition of unconstrained
face images is an evolving and challenging field in the
context of the real-world issues such as varying poses,
expressions, illumination, and quality of images [6].
Many researchers tried different approaches for

improving the recognition accuracy of unconstrained fa-
cial images [7] using different classification techniques
such as support vector machine (SVM) [8], stochastic
modeling [9], neural networks [10] and ensemble classi-
fiers [11]. Recently, deep learning (DL)-based tech-
niques, especially deep convolutional neural networks
(DCNNs) have shown excellent results in face recogni-
tion by discovering intricate features in large datasets
using the backpropagation algorithm [2, 12–15]. The
DCNN-based models use softmax for quantifying model
confidence of a class for an input face image in order to
make a decision. However, the softmax probabilities are
not a true representation of model confidence and often
misleading in feature space that cannot be represented
with available training examples [16]. In this research,
we observe (an example is shown in Fig. 5) that such a
scenario happens in borderline cases (i.e., faces with
smaller intra-class variations). The primary goal of this
paper is to improve the efficacy of face recognition sys-
tems by dealing with false positives through employing
model uncertainty. The proposed study highlights the
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advantage of Bayesian deep convolutional neural net-
works (B-DCNN) over DCNN for robust recognition of
facial images particularly in cases where intra-class varia-
tions are low.
Rest of the paper is prepared as follows: related work

and background are presented in Sections 2 and 3. The
algorithm proposed for the face recognition is elaborated
in Section 4. Section 5 is dedicated to the results and
discussions, while the last section concludes the paper.

2 Related work
2.1 Machine learning-based face recognition approaches
Face recognition has attracted lots of attention, but
current systems are yet far from human perception cap-
abilities. A critical issue in face recognition is finding apt
descriptors for modeling faces. Based on the descriptors,
face recognition techniques can be broadly divided into
three categories; holistic, feature-based, and hybrid face
matching [17]. In holistic methods, the face is modeled by
extracting a set of global features [18]. In this context,
principal component analysis (PCA) [18], Mahalanobis co-
sine PCA (MahCos PCA) [19], linear discriminant analysis
(LDA) [20], and 2D PCA [21] have been explored. On the
other hand, local feature-based descriptors have shown ro-
bustness to variance in pose and illumination [22]. Biswas
et al. [23] described local facial landmarks with the
Scale-Invariant Feature Transform (SIFT) features. At
each landmark, Gabor magnitude factors are extracted as
the pose-robust feature. Fischer et al. [24] suggested that
extracting landmarks for non-frontal faces had a degrad-
ing effect on the recognition results and proposed robust
landmark extraction around nose tip and mouth corners.
Guo et al. [25] proposed local binary patterns (LBP)-based
features extraction for encoding facial landmarks.
Hybrid methods make use of holistic features around

essential facial points [26–28]. Ding et al. [26] fused
component-level and landmark-level approaches by using
Dual-Cross Pattern (DCP) feature of landmarks which be-
long to the same facial component. Liao et al. [28] pro-
posed alignment-free partial face recognition by extracting
Multi-Keypoint Descriptors (MKD) for sparse representa-
tion of facial images. Arashloo et al. [29] computed the
normalized energy of Markov random field (MRF) fea-
tures to match face images with slight pose invariance.
In scenarios where limited face images are available for

training, virtual image creation based on linear combin-
ation of symmetrical face images [30] and Rotated Face
Model (RFM) [31] techniques have provided an alternative
solution [32]. Synthesis of virtual deformable face models
using 3D model fitting [33] and Generic Elastic Model
(GEM) [34, 35] have achieved promising results. Hu et al.
[36] used FaceGen Modeler commercial software for 3D
modeling of the single 2D image to generate different pose
varied synthesized images.

2.2 Deep learning-based face recognition approaches
Although machine learning techniques for facial recogni-
tion have provided decent results, these techniques do not
perform well under unconstrained environments. This is
mainly because machine learning approaches rely on
hand-crafted features or representations selected by
human experts that may work for one scenario and fail for
other situations. On the other hand, deep learning
(DL)-based approaches have proven to be most suitable as
the representations and features are discovered automatic-
ally from data by the back-propagation learning technique.
Taigman et al. [2] performed face alignment using ex-

plicit 3D face modeling and proposed a nine-layer deep
neural network for learning generic face representations
in unconstrained environments. Wen et al. [37] pro-
posed a robust DCNN using softmax loss function
jointly with center loss function to increase the discrim-
inative power of learned features for face recognition.
Sun et al. [38] proposed DCNN-based face recognition
system (DeepID2) that combined the classification and
verification loss functions to learn more discriminative
features. The generalized DeepID2 features are extracted
from the different identities to increase inter-personal
verification, whereas the same identity’s extracted features
reduce the intra-personal variations to incorporate new
identities that are not available in the training data. Sun et
al. [13] proposed DeepID3 that further enhanced the
results of DeepID2 [38] by creating an ensemble of two
DCNN architectures based on VGG net [39] and
GoogLeNet [40]. Schroff et al. [14] proposed a DCNN
called “FaceNet” that computed face similarity based on
distances in Euclidean space learned directly from face im-
ages. The authors employed a triplet loss function to learn
feature embeddings used to perform face recognition.
DL algorithms have proved to be successful in learning

dominant representations from high-dimensional face
data. However, in DL-based classification, predictive
probabilities obtained at the end of the pipeline (i.e.,
softmax output) are often erroneously interpreted as
model confidence, which is not true. Understanding
what a model does not know is a critical part of machine
learning systems. Conventional DL tools for regression
and identification do not detect uncertainty of the
model. To the best of our knowledge, no study has con-
sidered exploiting the recent integration of model uncer-
tainty tool within DL to deal with uncertain faces (i.e.,
confusing face). In this study, the focus is on the
Bayesian DCNN (B-DCNN) [41] that can efficiently
model the uncertainty in the DL model for face images.

3 Background and preliminaries
DL consists of a set of techniques that can automatically
learn the representations (i.e., features) from raw data
used for classification tasks [12]. The ability to learn
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representations at multiple levels of abstraction merely
by stacking non-linear layers allow DL methods to
achieve better generalization on highly complex tasks
such as image classification. DCNN is a type of DL
methods that have recently become modus of operandi
for image recognition tasks due to its remarkable
achievements in this area [39]. This success is partly be-
cause of its robust and precise assumptions about the
natural images (i.e., locality of associations between
pixels and statistical stationarity) [12] and partially due
to ease of optimization because of significantly lesser pa-
rameters as compared to feed-forward networks [42].

3.1 Convolutional neural networks
A typical architecture of DCNN is composed of convo-
lution, pooling, fully connected layers, and softmax [43]
layers as shown in Fig. 1. A short description of these
component layers is given below:

� Convolution layer: In this layer, each unit is
connected to a local patch of units in the previous
layer through a set of weights called a filter. The
unit activation is called feature map and computed
by applying non-linearity functions over the locally
weighted sums.

� Pooling layer: While convolution layer learns
features, the pooling layer combines semantically
related features into a single feature. Each unit in a
pooling layer takes input from a patch of units in
the previous layer and outputs a maximum or
average of these values.

� Fully-connected layer: In this layer, each unit is
connected to all the units in the previous layer.
Typically, the convolution and pooling layer are
stacked in two or three stages before using fully-
connected layers.

� Softmax layer: Softmax function is used for
converting the features into probabilities of the

classes. This layer contains as many units as the
number of classes. The softmax function is given in
Eq. 1 [44]:

Softmax aið Þ ¼ eaiPm
j¼1e

a j
ð1Þ

where Softmax(ai) and ai represent respectively the prob-
ability and feature of ith class. The nominator is an un-
normalized measure of probability, and denominator is used
to normalize the probability distribution over m classes.

Different activation functions such as rectified linear
units (ReLU) [45], leaky-ReLU (LReLU) [46], exponential
linear unit (ELU) [47], and scaled-ELU (SELU) [15] can
be used to model non-linearity for determining the out-
put of neurons. ReLU [45] is one of the most commonly
used activation functions that give non-negative outputs
and prevents the vanishing gradient issue in deep learn-
ing tasks [47]. However, ReLU-based networks can result
in dead neurons due to the zero gradient in the negative
part of ReLU [46]. LReLUs [46] can be used to rectify
this problem by introducing a small, non-negative gradi-
ent in the negative part of the function but they are not
very robust against noise [47]. Recently, ELU [47] activa-
tion function was proposed which converges faster and
is more robust against noise. ELUs usually perform bet-
ter than ReLU and LReLUs in networks with over five
layers, but ELUs can saturate for large negative values
[47]. SELU is a variant of ELU with an extra scaling par-
ameter, and it shows good results for fully connected
networks [15]. Learning phase of the DCNN model deals
with optimizing weights of the units with the objective
to minimize misclassifications. Stochastic gradient des-
cent is typically used as an optimization procedure
where gradients over the weights are computed by using
the standard back-propagation algorithm.

Fig. 1 Deep convolutional neural network (DCNN) architecture for face recognition
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3.2 Bayesian convolutional neural networks
In order to deal with the lack of visual discernibility be-
tween face images, we want a model capable of repre-
senting prediction uncertainty. Current methods such as
[48–50] are based on kernel methods where image pairs
are fed for measuring similarity. The similarity is then
used as an input to a classifier such as SVM. However,
we are using DCNN models and are interested in a prin-
cipled Bayesian approximation of uncertainties. A Bayes-
ian equivalent of DCNN is proposed in [51]. These
Bayesian DCNNs (B-DCNN) are a type of DCNNs that
have prior probability distributions over a set of model
parameters ω = {W1, … ,WL}:

ω � p ωð Þ ð2Þ
A likelihood model can be defined by assuming a

standard Gaussian prior p (ω) for classification as given
in Eq. 3 [44]:

p y ¼ cjx;ωð Þ ¼ softmax f ω xð Þð Þ ð3Þ
The inference in the B-DCNN model is performed by

employing stochastic regularization techniques such as
dropout [52, 53]. To perform the inference, a model is
trained with dropout before every network layer. Also, the
dropout is used at the time of testing and sampling from
the approximate posterior. This is formally equivalent to
perform an approximate variational inference where the
task is to find a tractable distribution q�θðωÞ using a train-
ing dataset Dtrain . This is achieved by minimizing
Kullback-Leibler (KL) divergence with the true model pos-
terior pðωjDtrainÞ [44]. Dropout can be considered as a type
of variational Bayesian approximation, where the approxi-
mated distribution is a blend of two Gaussians with small
variances and one of the Gaussians is fixed at zero mean.
The uncertainty in the weights brings uncertainty in the
prediction through marginalizing the approximate poster-
ior by Monte Carlo integration as given in Eqs. 4–6 [41]:

p y ¼ cjx;Dtrainð Þ ¼
Z

p y ¼ cjx;ωð Þp ωjDtrainð Þdω
ð4Þ

≈
Z

p y ¼ cjx;ωð Þq�θ ωð Þdω ð5Þ

≈
1
T

XT
t¼1

p y ¼ cjx; ω̂tð Þ ð6Þ

where q�θðωÞ is referred to as dropout distribution [54].

4 Proposed methodology
Face recognition task can be formulated as given a face im-
ages dataset X = {x1, … , xN} where X Є [0; 1]h ×w (h and w
symbolizes height and width of the N images) and set of

corresponding labels Y = {y1, … , yN} where each label be-
longs to a set of unique classes C. The objective is to learn
a function f that maps the set of input images X to a set of
labels Y such that the output label Cout is similar to
ground-truth label Cgt.
The method we employ to form a B-DCNN architec-

ture is dropout [41]. In [51], the authors have shown a
relationship between dropout and variational inference
in B-DCNN with Bernoulli distributions over the net-
work’s weights. We used this approach to represent
model uncertainties while classifying facial images. We
want to find the posterior distribution over the convolu-
tional weights of B-DCNN, given the face training data
X and labels Y as given in Eq. 7:

p W jX;Yð Þ ð7Þ
Generally, this is not a tractable distribution; hence, the

distribution over the weights is required to be approxi-
mated [51]. We employ variational inference for approxi-
mating these weights [51]. This approach facilitates to
optimize the approximate distribution over weights, q(W),
by minimizing the Kullback-Leibler (KL) divergence be-
tween q(W) and p(W|X,Y) as given in Eq. 8 [44]:

KLðq Wð Þ j p W jX;Yð Þj Þ ð8Þ
where q(Wi) can be defined for every K × K dimensional
convolutional layer i containing j units as given in Eq. 9:

bi; j � Bernoulli pið Þ for j ¼ 1; 2;…;Ki Wi ¼ Mi diag bið Þ
ð9Þ

Here, bi and Mi represent vectors of random variables
distributed with Bernoulli distribution and variational pa-
rameters respectively. Hence, the B-DCNN model is ob-
tained [51]. Although we can optimize the dropout
probabilities pi, they are fixed to a standard value of 0.5
[41]. It is shown in [51] that minimizing the cross entropy
loss function leads to minimize KL divergence. Thus, the
learning of a network with stochastic gradient descent leads
to learn a distribution over network’s weights. We train our
B-DCNN model for face recognition with dropout. In order
to get the posterior distribution of class probabilities, the
dropout is used at test time also to sample the posterior dis-
tribution over the weights. The mean and variance of the
samples are used respectively as confidence and uncertainty
for each class. The final classification decision is made on
the basis of a simple heuristic function as given in Eq. 10:

ithclass; i f di − ci > 0

D; otherwise
ð10Þ

Here ci is the confidence of ith class (the class pre-
dicted by the model), D indicates doubt or rejection
class and di is rejection threshold of ith class and
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defined on the basis of model confidence ci and uncer-
tainty ui for each class i as di = ci − ui.
For image classification, we used DCNN because of

its state-of-the-art performance in image classification
tasks [39]. Figure 2 shows a schematic of the face
recognition and model uncertainty representation pro-
cedure. Mainly, it consists of three types of modules:
feature extraction, feature selection, and prediction.
Each module includes a series of operations that de-
fine layer-wise functionality. The feature extraction
module at stage l represented as g(l)extracts features
H(l) as given in Eq. 11:

H lð Þ ¼ g lð Þ H l−1ð Þ;W lð Þ; b lð Þ
� �

¼ normalize pool relu W lð Þ � H l−1ð Þ þ b lð Þ
� �� �� �

ð11Þ

where ∗ operator represents convolution, W(l) and b(l) are
the weights and biases of the lth layer, respectively, and
H(l − 1) is either the input image X for l = 1 (i.e., H(0) =X)
or activation of l − 1th layer for l > 1. Specifically, feature
extraction involves operations in the following order: con-
volution, non-linear transformation, max-pooling, and
local normalization [42]. The feature selection module
f(l)involves dot product operation followed by non-linear
transformation as given in Eq. 12:

H lð Þ ¼ f lð Þ H l−1ð Þ;W lð Þ; b lð Þ
� �

¼ relu W lð Þ:H l−1ð Þ þ b lð Þ
� �� �

ð12Þ

where (.) indicate dot product, and H(l − 1) represents
activation of l − 1th hidden layer. Finally, the prediction
module involves a softmax [16] operation to gives the
probability over each output class C as given in Eq. 13:

p CjX;W ; bð Þ ¼ softmax W lð Þ:H l−1ð Þ þ b lð Þ
� �

ð13Þ

The feature extraction, selection, and prediction mod-
ules are stacked together to construct the DCNN model
architecture as given in Eq. 14:

p CjX;W ; bð Þ ¼ softmax f 5ð Þ f 4ð Þ g 3ð Þ g 2ð Þ g 1ð Þ Xð Þ
� �� �� �� �� �

ð14Þ

5 Results and discussion
The results of the proposed face recognition algorithm
are presented by comparing recognition accuracies with
other methods available in the literature on two open
source databases [55, 56]. The experimental setup is dis-
cussed in the following section.

5.1 Experimental setup
The two databases used for experimentation are specific-
ally selected to account for variation in pose, facial ac-
cessories, position, and illumination. Both databases are
mentioned below:

1) AT&T Face Database (formerly called ORL) [56]:
This database consists of 400 grayscale images of 40
different individuals taken with the varying pose
(straight, left, right). Some sample images from this
database are shown in Fig. 3a. This database is
divided into 320 images for training and 80 images
for testing.

2) EURECOM Kinect Face Database (EKFD) [55]:
This database consists of 936 images of 52 different
individuals, taken with the varying pose (straight,
left, right and up), expression (neutral, happy) and
eyes (wearing glasses or not), and illumination.
Some sample images from this database are shown

Fig. 2 Schematic illustrations of the proposed face recognition method
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in Fig. 3b. This database is divided into 780 images
for training and 156 images for testing.

The proposed face recognition algorithm is tested on
three different DCNN architectures given in Table 1.
The deep learning library used is Tensorflow [57], and
all experiments are performed on Google Collaboratory
platform (https://colab.research.google.com).

5.2 Results of the proposed DCNN methodology
Results of the proposed DCNN and B-DCNN-based face
recognition for architectures mentioned above from
Table 1 are calculated based on the model learning
curves (accuracy and loss) for both EKFD [55] and
AT&T [56] databases. Figure 4a, b presents the model
accuracy and loss graphs of the best performing archi-
tecture (Arc-2) for both EKFD [55] and AT&T [56]

databases respectively. The proposed DCNN model
Arc-2 achieves recognition accuracies of 94.2% and
97.5% on EKFD [55] and AT&T [56] respectively.

5.3 Results of the proposed Bayesian DCNN (B-DCNN)
methodology
The results of the proposed B-DCNN-based models
have achieved an additional improvement of around 3–
4% as compared to the proposed DCNN models for all
model architectures of Table 1. Specifically for Arc-2,
the proposed B-DCNN methodology achieved accuracies
of 98.1% and 100% on EKFD [55] and AT&T [56] data-
bases respectively. Table 2 presents a comparison of face
recognition accuracies of proposed DCNN and
B-DCNN methodologies with other methods in litera-
ture such as PCA [18], MahCos PCA [19], and DCNNs
proposed by Lee et al. [58] and Vinay et al. [59].

Fig. 3 Sample images from both datasets. a AT&T face dataset. b EURECOM Kinect Face Database

Table 1 Description of network architectures used for experimentation

Layer
No.

Architecture # 1 (Arc-1) Architecture # 2 (Arc-2) Architecture # 3 (Arc-3)

Layer type @ size Activation Layer type @ size Activation Layer type @ size Activation

1 C1 @ 3 × 3 × 32 ReLU + dropout C1 @ 3 × 3 × 32 ReLU + dropout C1 @ 3 × 3 × 32 ReLU + dropout

2 P1 @ 2 × 2 – P1 @ 2 × 2 – P1 @ 2 × 2 –

3 C2 @ 3 × 3 × 32 ReLU C2 @ 3 × 3 × 32 ReLU C2 @ 3 × 3 × 32 ReLU

4 P2 @ 2 × 2 – P2 @ 2 × 2 – P2 @ 2 × 2 –

5 C3 @ 3 × 3 × 64 ReLU C3 @ 3 × 3 × 64 ReLU C3 @ 3 × 3 × 32 ReLU

6 P3 @ 2 × 2 – P3 @ 2 × 2 – P3 @ 2 × 2 –

7 FC1 @ 512 ReLU + dropout C4 @ 3 × 3 × 64 ReLU C4 @ 3 × 3 × 64 ReLU

8 FC2 @ 128 ReLU + dropout P4 @ 2 × 2 – P4 @ 2 × 2 –

9 FC3 Softmax FC1 @ 512 ReLU + dropout C5 @ 3 × 3 × 64 ReLU

10 – – FC2 @ 128 ReLU + dropout P5 @ 2 × 2 –

11 – – FC3 Softmax FC1 @ 512 ReLU + dropout

12 – – – – FC2 @ 128 ReLU + dropout

13 – – – – FC3 Softmax
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Face recognition using PCA [18] achieved accuracies of
89.0% and 91.0% on EKFD and AT&T databases respect-
ively, whereas the MahCos PCA [19] achieved accuracies of
90.4% and 92.5% on the same databases. The proposed
DCNN and B-DCNN methodologies outperformed both of
these techniques comfortably. Lee et al. [58] achieved a rec-
ognition accuracy of 97.0% on EKFD as compared to 98.1%
accuracy achieved by the proposed B-DCNN on the same
database. The proposed B-DCNN achieved higher accuracy
even though Lee et al. [58] used non-occluded images
whereas the proposed methodology included both the

occluded and non-occluded images which make the pro-
posed method more robust to partial face images. The com-
plexity of the proposed B-DCNN is much lower as only four
layers were used as compared to 12 layers in the DCNN
proposed by Lee et al. [58]. On the AT&T face database,
Vinay et al. [59] achieved an accuracy of 95.2% compared to
the 100% accuracy achieved by the proposed B-DCNN.
In order to show the effect of activation functions, fur-

ther analysis has been made by utilizing two more acti-
vation functions namely LReLU [46] and ELU [47] in
addition to ReLU [45]. Table 3 presents the comparison

Fig. 4 Model accuracy and loss of proposed DCNN architecture, Arc-2. a EKFD [55]. b AT&T Database [56]

Table 2 Summary of results

Method Recognition accuracy (%)

EURECOM Kinect Face Database [55] AT&T face database [56]

PCA [18] 89.0 91.0

MahCos PCA [19] 90.4 92.5

DCNN by Lee et al. [58] 97.0 [58] –

DCNN by Vinay et al. [59] – 95.2 [59]

Proposed DCNN

Arc-1 90.4 87.5

Arc-2 94.2 97.5

Arc-3 92.3 92.5

Proposed B-DCNN

Arc-1 94.2 92.5

Arc-2 98.1 100

Arc-3 96.2 97.5

The results of the best performing network architecture are shown in italic
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results of these activation functions tested on the pro-
posed architecture Arc-2 on EKFD [55]. The effect of ac-
tivation functions is observed based on model training
time, model accuracy, and average prediction time. The
average prediction time is measured by predicting the
same image 100 times using the trained feed-forward
network. As it can be seen from Table 3, ReLU and
Leaky-ReLU achieve similar testing accuracies, but ReLU
performs slightly faster than Leaky-ReLU and ELU since
it is less computationally expensive. ELU achieves lower
accuracy since the network depth is four layers and ELU
usually performs better for much deeper networks [47].
Figure 5a presents an example case where the conven-

tional DCNN model incorrectly predicted a class with
the softmax probability of 98.9%. The proposed
B-DCNN model correctly classified the person with
74.6% probability and reduces the incorrect class prob-
ability to 14.5%. Samples of incorrectly predicted class
by DCNN model are shown in Fig. 5b. The reason for
misclassification by the DCNN model can be due to sev-
eral misleading similarities between the images of two
classes such as the similar color of clothes and spectacles
being worn by both the persons.
The comparison results presented in this section have

shown that the proposed DCNN and B-DCNN-based
face recognition give highly accurate results in compari-
son with other methods presented in the literature.

Furthermore, the proposed B-DCNN methodology has
shown improvement in the recognition accuracy as com-
pared to the DCNN methodology, which shows that the
proposed B-DCNN can successfully exploit model un-
certainty and reduce erroneous recognition.

6 Conclusion
Facial image recognition is one of the most challenging
tasks in surveillance systems due to problems such as
low quality of images and significant variance in pose,
expression, illumination, and resolution. Although a
number of face recognition algorithms have been
proposed in the literature, face recognition in an
unconstrained environment still presents low accuracy.
Recently, deep convolutional neural network (DCNN)-
based techniques have shown excellent results in face
recognition by discovering intricate features in large
data-sets. However, DCNN-based models struggle to
suggest uncertainty in the prediction of the output class
which can be useful to reduce false positives. In this
study, Bayesian deep convolutional neural network
(B-DCNN) is employed to represent model uncertainty
to improve the accuracy of facial image recognition.
In this study, the B-DCNN architecture is imple-

mented by employing dropout at both training and test-
ing phases [41] to get the posterior distribution of class
probabilities. The mean and variance of the class

Table 3 Comparison of different activation functions tested on proposed B-DCNN Arc-2 model on EKFD

Activation function Time comparison Accuracy comparison on EKFD (%)

Average training time (s/epoch) Average prediction time (ms) DCNN B-DCNN

ReLU 96.8 2.94 94.2 98.1

LeakyReLU 98.1 3.21 94.2 98.1

ELU 99.1 3.38 92.3 94.2

Fig. 5 Example case to show the significance of B-DCNN over DCNN. a Image “rgb_0031_s2_OpenMouth” from EKFD incorrectly classified by
DCNN however correctly classified by the proposed B-DCNN. b Samples of incorrectly predicted class by the DCNN
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probabilities are then used as confidence and uncertainty
respectively for each class. The final classification deci-
sion is made by applying heuristic function. The experi-
mentations are performed on two open-source
databases: AT&T Face Database and EURECOM Kinect
Face Database. The B-DCNNs are comparatively ana-
lyzed with DCNNs, and conventional machine learning
approaches such as PCA and MahCos PCA are carried
out. The results have demonstrated that the B-DCNN
outperformed these methods and achieved an improve-
ment of 3–4% in the accuracy of face recognition. In fu-
ture, we intend to incorporate face-alignment for 3D
face data and then apply B-DCNN for face recognition.
We will observe how the alignment step affects the over-
all accuracy of 3D face recognition in extension to
B-DCNN. Moreover, the proposed architecture can also
be evaluated in terms of multi-scale/multi-view deep
learning architectures for face data.
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