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Abstract

With the popular use of high-resolution satellite images, remote sensing scene classification has always been a hot
research topic in its related areas. However, limited to the issues of remote sensing datasets including the small
scale of scene classes, the lack of rich label information and so on, it is quite challenging for deep learning
methods to learn powerful feature representation. To overcome this problem, we propose a rotation-invariant
feature learning and joint decision-making method based on Siamese convolutional neural networks with the
combination of identification and verification models. Firstly, a novel data augmentation strategy is proposed
specially for the Siamese model to learning rotation-invariant features. Secondly, a joint decision mechanism is
introduced in our method, which is realized by the identification and verification model to better improve the
classification performance. The proposed method can not only suppress problems caused by lack of rich label
samples but also improve the robustness of Siamese convolutional neural networks. Experimental results
demonstrate that the proposed method is effective and efficient for remote sensing scene classification.

Keywords: Remote sensing scene classification, Identification and verification models, Rotation-invariant features,
Joint decision mechanism

1 Introduction
With the development of remote sensing techniques, a
large collection of high-resolution remote sensing images
is becoming available. These images have been widely ap-
plied to many fields [1–3], such as urban planning, natural
hazard detection, and environment monitoring. For this
reason, more and more research efforts have been put into
developing methods for remote sensing scene classifica-
tion which is a hot research topic in the remote sensing
field to better interpret the images [4–6].
Feature extraction is a critical step for remote sensing

scene classification which can significantly affect the
performance. According to the used features, the existing
remote sensing classification methods can generally
be divided into three main categories [7, 8]:
handcrafted-feature-based method, unsupervised-feature-

learning-based methods, and deep-feature-learning-based
methods.
Handcrafted features contain color, shape, and texture

information which are primary characteristics of the
remote sensing images and carry useful information for
scene classification. The early scene classification
methods are mainly based on these features [9–11]. To
be specific, there are several representative handcrafted
features such as color histograms [12], GIST [13],
scale-invariant feature transform (SIFT) [14], and HOG
[15]. The color histograms and GIST descriptors are the
global features used to describe the statistical properties
of an entire image in the perspective of color, texture,
and spatial structure information, whereas SIFT descrip-
tor and HOG feature are local features that represent
local structure and shape information. Multiple types of
feature can convey scene information of an entire image,
which cannot be done by one single type of feature.
Hence, many methods based on the combination of
various complementary features for scene classification
have been proposed to boost the performance. These
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human-engineering features are manually designed and
require domain expertise, which greatly limits the
representation capability when the scene images be-
come challenging.
To overcome the problems of handcrafted features for

scene classification, unsupervised feature learning is
reckoned as the potential strategy. It can automatically
learn features from unlabeled input data and has made
astonishing progress in remote sensing scene classifica-
tion [16–18]. The unsupervised-learning-based features
are more discriminative and better suited to the
classification problem. PCA, K-means clustering, sparse
coding, and autoencoder are typical unsupervised learn-
ing methods. These methods and their variants have
achieved great success in the scene classification field.
In recent years, various deep learning methods have

shown their powerful feature representation in the field
of machine learning [19]. Convolutional neural network
(CNN) is one of the most successful methods and has
acquired various applications in remote sensing commu-
nity [20–22]. Despite the success of CNN, there are
several challenging problems of remote sensing
classification. First, the small scale of remote sensing
datasets has severely hindered the development of
deep-learning-based methods for scene classification be-
cause deep learning models need large datasets to be
trained on in order to avoid overfitting. Besides they
could not learn robust feature representation without
abundant and diverse images. Second, unlike natural
image datasets, remote sensing datasets have their own
characteristics. For example, NWPU-RESISC45 dataset
carefully selects images under various real-world condi-
tions including illuminations, seasons, and weather. For
images of the same category, they are very different in
terms of object pose, appearance, spatial resolution, and
background. These practical factors significantly affect
the performance of useful feature extraction which is a
critical step for scene classification. In brief, it is vital to
learn discriminative feature representation of remote
sensing images.
In this paper, we present a robust tool for classifying

the remote sensing images which is accomplished by
adopting a Siamese CNN architecture better adapted to
the characteristics of remote sensing datasets. Our archi-
tecture has two identical CNN channels that combine
the identification and verification models. The identifica-
tion model accepts a single image as input and utilizes
the CNN to extract the useful features and the final con-
volutional layer to predict its label. Meanwhile, the veri-
fication model compares the feature vectors of the two
images extracted by their respective identification
models and calculate their distance in feature space.
These two models are complementary and their combin-
ation allows the method to learn discriminative feature

representation. Considering the two CNN channels of
our architecture, one channel input adopts data aug-
mentation like random rotation while the other remains
unchanged. This operation can let our network learn
rotation-invariant features which positively affects the
classification results. To make the most of this combin-
ation, a joint decision making is introduced in our work.
That is, we encode the probabilistic relationships drawn
by identification and verification models to mine the
valuable information of input data.
In general, the main contributions of this paper are

listed below:

1) Data augmentation, especially random rotation, is
adopted in one of the CNN channel input, which
allows the identification model to learn rotation-
invariant features to enhance the classification
performance.

2) To take full advantage of the identification model
and verification model, we introduce the joint
decision made by these two models to the
classification task.

The remaining part of this paper is organized as follows.
Section 2 introduces related work. Section 3 presents the
details of our method. Section 4 shows the experiments
and discussion. Section 5 makes a conclusion about this
paper and describes the possible future work.

2 Related work
2.1 Convolutional neural networks
Convolutional neural network (CNN) is a typical deep
learning model which consists of the input layer, the
convolutional layers, the pooling layers, the fully con-
nected layers, and the output layer. Convolutional layers
are used for extracting multi-level features of data ac-
cording to convolution kernels of different sizes. Pooling
layers aim at reducing the dimensions of feature repre-
sentation and making the feature invariant from the lo-
cation through a pooling function. Fully connected
layers combine the outputs of all the previous layers into
high-level features. Generally, CNN can automatically
learn high-level features and has proved its powerful
classification capability.
There are three successful CNN models used in our

paper: AlexNet [23], VGG16 [24], and ResNet50 [25].
AlexNet contains five convolutional layers, three pooling
layers, and three fully connected layers. The output of
the last fully connected layer is fed to a softmax function
to produce a distribution over 1000 class labels. VGG16
contains five convolutional layers, five max-pooling
layers, and three fully connected layers. The first two
fully connected layers have 4096 channels each, and the
last has 1000 channels for each class. The final layer is a
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softmax layer. It is important to point out that the con-
volutional layers of VGG16 use very small 3 × 3 recep-
tive fields (stride 1) instead of relative larger ones and
max-pooling is performed on 2 × 2 pixel window (stride
2) so as to simplify the network structure. ResNets insert
short connections that perform identity mapping based
on the philosophy of VGG Nets and have shown signifi-
cant performance on various computer vision tasks
compared with state-of-the-arts.

2.2 Data augmentation
In many classification problems, especially remote sens-
ing scene classification, the available data is inadequate
to train accurate and robust classifiers. To alleviate the
impact of this problem, one popular approach is data
augmentation. Data augmentation is the process of gen-
erating new similar samples to the training set by using
label-preserving transformations. The common image
transformations are as follows:

1) Flipping. Flip the image horizontally.
2) Rotation. Rotate the image at random orientation.
3) Cropping. Crop a part from the original image and

resize the cropped image.
4) Shifting. Shift the image to the left or right, and the

translation range and step length can be specified in
order to change the location of the image content.

5) Noise. The image is added random noise to RGB
channels of each pixel.

6) Color jittering. Change the random factors of color
saturation, brightness, and contrast in the image
color space.

7) PCA jittering [23]. PCA is performed on the image
to get the principal component, which is added to
the original image with a Gaussian disturbance of
(0,0.1) to generate the new image.

Jia et al. [26] had carried out comprehensive experi-
ments which indicate that flipping, rotation, and crop-
ping not only outperform the other enhancement
methods but also are more effective on the smaller scale
of data sets.

3 The proposed method
3.1 The architecture of the Siamese CNNs
Based on the work of [27], we utilize the Siamese CNNs
which combines identification and verification models
for remote sensing scene classification. Figure 1 presents
the overall architecture. The network consists of two
ImageNet [28] pre-trained CNN models, three additional
convolutional layers, and a square layer. AlexNet [23],
VGG16 [24], and ResNet50 [25] are employed as the
pre-trained CNN models. To better adapt to the charac-
teristics of remote sensing datasets, we replace the final
fully connected layer of three CNN models with a con-
volutional layer whose number of kernels is identical
with the scene classes of datasets. The whole network is
trained to minimize three cross-entropy losses and one
distance loss jointly.
The whole architecture takes a pair of images as input.

The input pair can be divided into a positive one (from
the same scene class) and a negative one (from different
scene classes). Given a pair of images, the network pre-
dicts their labels and the similarity simultaneously. For

Fig. 1 The architecture of the Siamese CNN. The network takes a pair of images as input. The original image is sent to one CNN channel while
the positive image (from the same scene class) or the negative one (from the different scene class) is sent to the other CNN channel
simultaneously. The two parameter-sharing CNNs are exploited to process the input images and extract their features. The nonparametric square
layer is used for similarity estimation based on the extracted features of the input pair. At the end of the architecture combines the identification
(classification) loss and verification (similarity) loss
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the identification model, it uses the CNN to extract
image features and then predicts the label of the image
based on the extracted features. For the verification
model, it accepts the two feature vectors produced by
the two CNNs as input and utilizes the square layer to
calculate the similarity score of two images.
There are two identical CNN models in our architec-

ture, which share weights and predict the two scene
class labels of the input image pair simultaneously. The
identification model is composed of each CNN channel
with an additional convolutional layer. To fine tune the
whole network on remote sensing datasets, the final fully
connected layer of the pre-trained CNN model is re-
placed with a convolutional layer. NWPU dataset has 45
scene classes. Accordingly, this convolutional layer has
45 kernels of size 1 × 1 × 4096 connected to the output
of the CNN model. And a softmax unit is added to
normalize the final output. We use the cross-entropy
loss as the identification (classification) loss, which is
expressed as:

pb¼ softmax θI � fð Þ ð1Þ

Lid f ; t; θIð Þ ¼
XK

i¼1
−pi log bpið Þ ð2Þ

Here, asterisk denotes the convolution operation. f is
defined as the output of the CNN model and is a
4096-dim feature vector. θI is the parameters of the add-
itional convolutional layer. Based on the work of [27], t
is the target scene class, p is the target possibility, and
accordingly pb is the possibility of the predicted scene
class. So for the target class t, pt = 1 and pi = 0 (i≠t).
The high-level features f1 and f2 from the fine-tuned

CNNs in the identification model are directly used by
the verification model for similarity estimation. From
Fig. 1, our work uses a square layer which is nonpara-
metric to compare these high features. It takes two fea-
ture tensors f1, f2 as inputs and outputs tensor fs, where
f1, f2 are 4096-dim feature embeddings and fs = (f1 − f2)

2.
After the square layer, we add a convolutional layer and
a softmax function to embed fs to a 2-dim vector ð bq1; bq2Þ
that denotes the predicted probability of the input image
pair belonging to the same scene class. To be more spe-
cific, the convolutional layer filters the input fs with two
kernels of size 1 × 1 × 4096. The softmax function is used
to normalize the output. Similar to the identification
loss, we also use the cross-entropy loss as the verifica-
tion loss, which is expressed as:

qb¼ softmax θs � f sð Þ ð3Þ

Lver f 1; f 2; s; θsð Þ ¼
X2

i¼1
−qi log bqið Þ ð4Þ

Here, f1 and f2 are the 4906-dim feature tensors from
the finetuned CNN in the identification model. θS

denotes the parameters of the added convolutional layer.
s means whether the two images are from the same
scene class or not. qb is the predicted probability. If the
two input images are from the same scene class, q1 = 1
and q2 = 0; otherwise, q1 = 0 and q2 = 1.

3.2 Rotation-invariant feature training
We will perform random-rotation-based data augmenta-
tion on the training sets which feed the network to learn
rotation-invariant features. For remote sensing datasets,
images of the same category have many variants in terms
of different directions, appearances, backgrounds, and so
on, which hamper the improvement of scene classifica-
tion. As our architecture takes a positive/negative pair as
input, the random rotation is only used for the positive
pair of images which come from the same category.
There are two CNN channels in our architecture as
shown in Fig. 1. One CNN channel accepts the original
images, and meanwhile, we randomly rotate the images
if the other CNN channel accepts the positive (from the
same class) one. Ideally, the two CNN channels will
learn nearly the same features of two images. Towards
this end, we add a metric learning regularization term
on these two features learned by the CNNs, which en-
forces the training samples with and without random ro-
tation to share the similar features, hence achieving
rotation invariance.
In the influential work of [29], we intend to use the

high-level feature tensors f1, f2 to calculate the Euclidean
feature distance of the input pair (xi, xj), which comes
from the same scene class. The distance formulation is
expressed as follows:

D xi; x j
� � ¼ f 1− f 2k k22 ð5Þ

D xi; x j
� �

< τ; yi ¼ y j
D xi; x j
� �

> τ; yi≠y j

(

Of which, given a training sample (xi, xj), their target
identity is (yi, yj). The margin τ is a threshold to define
the feature distance between the similar pairs. That is, if
(xi, xj) is from the same scene class, their feature dis-
tance should be smaller than τ; otherwise, they are from
the different scene class. It is necessary to point out that
our model only focuses on minimizing the feature dis-
tance between the similar input pairs (positive pairs)
through this margin τ. Accordingly, the metric learning
regularization term is defined as below:

Dist f 1; f 2ð Þ ¼
X

i; j
D xi; x j
� �

;D xi; x j
� �

< τ ð6Þ

Moreover, we set a ratio of random rotation on the
positive training images. The ratio set between positive
training images with and without randomly rotating is
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{1:1, 1:2, 1:3, 1:4}. To figure out which ratio performs
best, we train the models based on the ratios separately.
We will discuss the results in Section 4.

3.3 Joint decision making
To make the most of the combination of identification
and verification models, we introduce the joint
decision-making mechanism to the classification work.
This mechanism intends to encode the probabilistic rela-
tionships given by these two models. Considering the
whole architecture, the identification model extracts the
features of the image to predict its class label, which
means this model outputs a soft-max probability Pi. And
the verification model outputs a prediction probability
Ps of whether the two images belong to the same scene
class. First of all, we randomly select the same number
of typical images for each scene class from the training
set as the comparison set. Then, we sample the image x
from the test set and the image y from the comparison
set to generate an input pair (x, y). The whole network
will output two kinds of probabilities with regard to the
input data. This probabilistic relationship can be
encoded by the following eq.:

P xð Þ ¼ Ps x; y j; θS
� �

� Pi y jjx; θI
� �

; j ¼ 1; 2;…;K ð7Þ

Of which, x and y are random variables from the data-
set. They are totally independent of each other before
fed through the network. K is the image number of the

comparison set. Figure 2 visualizes the joint
decision-making mechanism. Every shape in Fig. 2 repre-
sents one class. One test image along with the images in
the comparison set is fed through the whole network.
The identification model outputs the class probability
Pi(j) (j = 1, 2, ..., K) of images in the comparison set.
Meanwhile, the verification model outputs the similarity
measurement Pv(j) which is the relationship score be-
tween the test image and every single image in the com-
parison set. Based on Eq. (7), we can get a set of P
(x)(P1(x), P2(x), ..., PK(x)) and then use the highest score
as the class probability of the test image.

4 Experimental study
To evaluate the classification performance of the proposed
model, we conduct plenty of experiments on three remote
sensing datasets including SIRI-WHU dataset [30], UC
Merced Land-Use dataset [31], and NWPU-RESISC45
dataset [7]. In this section, we will present the experimen-
tal results and corresponding discussions.

4.1 Datasets
SIRI-WHU [30] is a Google image dataset and mainly
covers urban areas in China. It contains 12 scene
classes with 200 images per class. Each image mea-
sures 200 × 200 pixels with a 2-m spatial resolution in
the red-green-blue (RGB) color space. Figure 3 shows
some examples.

Fig. 2 The visualization of the joint decision-making mechanism. Each shape represents a scene class. One test image along with the images in
the comparison set is fed through the whole network. The identification model outputs the class probability Pi(j) (j = 1, 2, ..., K) of images in the
comparison set. Meanwhile, the verification model outputs the similarity measurement Pv(j) which is the relationship score between the test
image and every single image in the comparison set. A set of P (x)(P1(x), P2(x), ..., PK(x)) can be obtained based on Eq. (7)
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UC Merced Land-Use dataset [31] covers 21 land-use
scene classes with 100 images per class. Each aerial
image measures 256 × 256 pixels, with a spatial reso-
lution of 0.3 m per pixel in the RGB color space. Figure 4
presents the examples of this dataset.
NWPU-RESISC45 dataset [7] is a publicly available

benchmark for remote sensing scene classification
(RESISC). It contains 31,500 images divided into 45
scene classes. Each class has 700 images measuring
256 × 256 pixels in the RGB color space. Figure 5
presents the examples of this dataset.

4.2 Implementation setup
We utilize AlexNet [23], VGG16 [24], and ResNet50
[25] pre-trained on ImageNet dataset as the CNN
architecture of our model and then fine tune them to
better adapt to the remote sensing datasets.
During training, we randomly crop images into 227 ×

227 for AlexNet and 224 × 224 for VGG16 and ResNet50.
To alleviate the prediction bias, we first shuffle all the
datasets and use the random order of the images. Then,
we sample another image from the same/different scene
class to form a positive/negative pair. The ratio between

Fig. 3 Eight scene images from the SIRI-WHU dataset: a industrial, b commercial, c residential, d agriculture, e river, f overpass, g pond, and h park

Fig. 4 Eight scene images from the UC Merced Land-Use dataset: a agriculture, b baseball diamond, c dense residential, d forest, e golf course,
f medium residential, g river, and h sparse residential
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positive and negative pairs is initially set to 1:1 and then is
multiplied by a factor of 1.01 until it reaches 4:1.
The maximum number of training epochs is set to

120. The batch size is 48 for AlexNet and VGG16 and
36 for ResNet50. The learning rate is 0.001 and 0.0001
for the final ten epochs. And we set the distance margin
τ to 1. The mini-batch stochastic gradient descent
(SGD) is adopted to update all the parameters of our
network. In our model, the network has three kinds of
losses including identification loss, verification loss, and
distance loss to minimize. In the training of our model,
the trade-off parameter λ1 for identification loss, λ2 for
verification loss, and λ3 for the regularization term are
three important factors that can exert a noticeable im-
pact on the performance of scene classification. Hence,
we set λ1 = {1, 0.5}, λ2 = {0.5, 0.05, 0.01}, and λ3 = {0.01,
0.001}, respectively, in our work. After extensive experi-
ments, the set {λ1 = 1, λ2 = 0.05, λ3 = 0.001} has achieved
the best results. In Section 3, we set the ratio between

positive training images with and without randomly ro-
tating is {1:1, 1:2, 1:3, 1:4}. To figure out which ratio
performs best, we conduct experiments on SIRI-WHU
dataset. Table 1 shows that the ratio 1:1 for random
rotation performs best. Hence, we use this parameter set
in our subsequent training. We compare the proposed
model with the CNN classifier including AlexNet,
VGG16, and ResNet50 and also with the exact same
architecture as our model without random rotation and
joint decision making which is represented by R.D in fol-
lowing tables. We use the overall accuracy and Kappa
coefficient to evaluate the scene classification perform-
ance of the proposed method. Overall accuracy is the
percentage of the correctly classified images among all
the testing set. Kappa coefficient is another widely used
evaluation standard, which is based on the confusion
matrix to assess the precision of remote sensing classifi-
cation. Our model was trained on a PC with a 3.7-GHz
7-core CPUs and 16-GB memory. We use NVIDIA GTX

Fig. 5 Several scene images from the NWPU-RESISC45 dataset: a airplane, b baseball diamond, c beach, d bridge, e chaparral, f circular farmland,
g forest, h meadow, i railway station, j river, k ship, l terrace
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1080 GPUs for acceleration. The whole training takes
about 14 h, 20 h, and 75 h, respectively, for our models
based on AlexNet, VGG16, and ResNet50.

5 Results and discussion
The training of the proposed model uses three training
percentages (TP): 20%, 50%, and 80%. Three tables
present the classification results on NWPU-RESISC45,
UC Merced Land-Use, and SIRI-WHU datasets. Gener-
ally, from these tables, we can draw that the classifica-
tion performance of our model with data augmentation
and Bayesian theory is superior to the CNN classifiers
and the plain model. All the methods adopted in our
work have obtained the best results on the
NWPU-RESISC45 dataset, which demonstrates that
deep-learning-based models can achieve better perform-
ance using relatively larger and abundant training sam-
ples. The statistics in Tables 2, 3, and 4 show that the
classification accuracy on SIRI-WHU data set is in-
creased by a larger margin compared with the other two
datasets using our method, which indicates that data
augmentation can achieve better enhancement on the
smaller scale of the original training set [26]. Compared
with UC Merced Land-Use and NWPU-RESISC45
dataset, SIRI-WHU contains fewer scene classes and
may lead to overfitting in some way. Our method has

enhanced the classification accuracy on the NWPU-
RESISC45 dataset, but still has misclassifications. This is
because this dataset has not only rich image variations in
terms of viewpoint, object pose, appearance, spatial reso-
lution, background, etc., but high within-class diversity and
between-class similarity. As Fig. 6 shows, it covers
high-semantic overlapping scene classes such as commer-
cial area and industrial area, circular farmland and rect-
angular farmland, and railway and railway station. Hence,
NWPU-RESISC45 is a challenging dataset for our method.

6 Conclusion
In this paper, we propose a rotation-invariant feature
learning and joint decision-making method based on
Siamese convolutional neural networks which combine
identification and verification models. A large number of

Table 1 The experiments of random rotation ratio on SIRI-WHU
dataset

Method Ratio OA (%) Kappa (%)

Siamese ResNet50 1:1 82.50 81.08

1:2 81.04 79.32

1:3 79.89 78.07

1:4 78.59 76.75

Table 2 Comparison of OA (%) and Kappa (%) on NWPU-
RESISC45 data set

Methods Epoch TP(%)

20 50 80

OA Kappa OA Kappa OA Kappa

AlexNet 120 70.00 69.22 78.37 77.85 82.67 82.27

Siamese AlexNet 120 71.31 70.66 78.65 78.14 83.81 83.44

Siamese
AlexNet+R.D

120 72.79 71.11 80.45 80.01 84.35 83.99

VGG16 120 89.75 89.51 92.91 92.74 94.59 94.46

Siamese VGG16 120 90.06 89.83 93.45 93.30 94.70 94.58

Siamese VGG16
+R.D

120 91.03 90.82 94.03 93.89 95.24 95.13

ResNet50 120 90.90 90.69 94.87 93.69 95.71 95.62

Siamese ResNet50 120 92.28 92.11 94.94 94.82 95.95 95.68

Siamese
ResNet50+R.D

120 92.67 92.50 95.00 94.88 96.11 96.02

Table 3 Comparison of OA (%) and Kappa (%) on UC Merced
Land-Use data set

Methods Epoch TP(%)

20 50 80

OA Kappa OA Kappa OA Kappa

AlexNet 120 36.01 32.82 55.05 52.80 67.70 66.00

Siamese AlexNet 120 37.56 34.44 56.76 54.60 69.52 68.00

Siamese
AlexNet+R.D

120 38.89 35.44 58.29 56.20 71.62 69.00

VGG16 120 76.53 75.56 85.05 84.30 90.24 89.75

Siamese VGG16 120 76.90 75.75 85.14 84.50 92.38 92.00

Siamese
VGG16+R.D

120 78.13 76.94 88.10 87.50 93.33 93.00

ResNet50 120 74.11 72.81 89.43 89.00 91.90 91.50

Siamese ResNet50 120 76.52 75.06 90.95 90.50 94.29 94.00

Siamese
ResNet50+R.D

120 78.87 77.81 91.71 91.20 94.76 94.50

Table 4 Comparison of OA (%) and Kappa (%) on SIRI-WHU
data set

Methods Epoch TP(%)

20 50 80

OA Kappa OA Kappa OA Kappa

AlexNet 120 46.72 41.88 82.50 80.91 88.33 87.27

Siamese AlexNet 120 54.38 50.23 83.25 81.73 88.96 87.95

Siamese
AlexNet+R.D

120 58.28 54.49 86.71 85.20 89.12 88.18

VGG16 120 83.65 82.16 94.42 93.91 96.25 95.90

Siamese VGG16 120 84.43 83.01 94.50 94.00 97.30 97.05

Siamese
VGG16+R.D

120 86.98 85.80 95.25 94.82 98.46 97.14

ResNet50 120 58.13 54.32 94.67 94.18 95.63 95.23

Siamese ResNet50 120 63.02 59.60 95.75 95.36 97.50 97.27

Siamese
ResNet50+R.D

120 82.67 81.08 96.88 96.01 98.85 98.23
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experiments have proved the effectiveness of the pro-
posed method for the classification task on three widely
used datasets.
In general, we have the following contributions. First of

all, the random rotation is adopted in one CNN channel
input while the other CNN channel remains unchanged.
This kind of data augmentation not only can expand the
insufficient training samples of remote sensing datasets,
which makes our CNN-based method develop its full po-
tential, but also makes the identification model learn
rotation-invariant features to strengthen the classification
power of our method. Secondly, a joint decision making is
introduced by encoding the probabilistic relationships
output by identification and verification models to classify
the remote sensing images for better precision. In the
future, we will try to optimize the structure of deep neural
networks by means of multi-objective optimization

methods [32] to explore a more robust way to classify the
challenging NWPU-RESISC45 dataset.
The datasets analyzed during the current study are

available in the NWPU-RESISC45 repository (http://www.
escience.cn/people/JunweiHan/NWPU-RESISC45.tml),
UC Merced Land-Use repository (http://weegee.vision.
ucmerced.edu/datasets/landuse.html), and SIRI-WHU
repository (http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/
e-code.html).
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CNN: Convolutional neural network; RESISC: Remote sensing scene
classification; RGB: Red-green-blue; SGD: Stochastic gradient descent;
SIFT: Scale-invariant feature transform; TP: Training percentages
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