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performance in less challenging conditions.

Long-range imaging with visible or infrared observation systems is typically hampered by atmospheric turbulence.
Software-based turbulence mitigation methods aim to stabilize and sharpen such recorded image sequences based
on the image data only. Although successful restoration has been achieved on static scenes in the past, a
significant challenge remains in accounting for moving objects such that they remain visible as moving
objects in the output. Here, we investigate a new approach for turbulence mitigation on background as
well as large moving objects under moderate turbulence conditions. In our method, we apply and compare
different optical flow algorithms to locally estimate both the apparent and true object motion in image
sequences and subsequently apply dynamic super-resolution, image sharpening, and newly developed local
stabilization methods to the aligned images. We assess the use of these stabilization methods as well as a
new method for occlusion compensation for these conditions. The proposed methods are qualitatively
evaluated on several visible light recordings of real-world scenes. We demonstrate that our methods achieve a
similar image quality on background elements as our prior methods for static scenes, but at the same time
obtain a substantial improvement in image quality and reduction in image artifacts on moving objects. In
addition, we show that our stabilization and occlusion compensation methods can be robustly used for
turbulence mitigation in imagery featuring complex backgrounds and occlusion effects, without compromising the
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1 Introduction

Atmospheric turbulence often hampers long-range im-
aging with visible or infrared observation systems. This
turbulence causes random spatiotemporal variations in
the density and consequently the local refractive index
of the air between the observer and the imaged scene [1,
2]. Consequently, the recorded imagery suffers from ran-
dom shifts and blurs that vary across the field of view
and over time, which complicate their utility for visual
detection, recognition, and identification at large dis-
tances. Software-based turbulence mitigation methods
aim to restore such recorded image sequences based on
the image data only [3—14]. The goal of these algorithms
is to produce sharp and stable imagery of the observed
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scene, thus enabling visual detection, recognition, and
identification at larger distances.

Although successful restoration has been achieved on
static scenes in the past [3-7], there remains a signifi-
cant challenge in restoring imagery depicting moving
objects. The main challenge here is how to distinguish
between true motion of moving objects and apparent
motion due to turbulence [8—14]. Under medium turbu-
lence conditions, the apparent shifts will have similar
magnitudes and length scales as the observed frame-to-
frame object motion. Medium turbulence conditions are
roughly defined here as having 0.2 < r4/D < 1, with D the
diameter of the observation system’s aperture and ry the
Fried parameter for the image formation:
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where 1 is the wavelength, C? is the refractive index
structure parameter, and z is the distance from the im-
aged object at z= 0 to the camera at z=L. Under these
conditions, the apparent motion of image points due to
turbulence is typically significant compared to the pixel
size and compared to the size of the point spread func-
tion (PSF), but the PSF is still dominated by a central
lobe, so the turbulence-degraded image still appears like
a continuous deformation of the unperturbed scene
followed by some blur.

Several methods have been published in the literature
that deal with the challenge of detecting moving objects
in turbulence-degraded image sequences. Fishbain et al.
proposed a method involving temporal median filtering
per pixel to obtain a reference frame [8]. Pixels in subse-
quent frames are then classified as belonging to back-
ground or a moving object based on the magnitude and
directional variability of the estimated local displace-
ments relative to the reference frame. Output frames are
computed by taking a weighted average of the reference
frame and the raw frame in each pixel, with weights cor-
responding to the confidence that a pixel belongs to the
background.

Similarly, Chen et al. compute a reference frame as a
moving average of previous frames and threshold the es-
timated local displacements relative to the reference
frame to identify tentative moving objects [9]. Object
tracking is subsequently used to filter the tentative mov-
ing objects based on track properties. Moving object
pixels in the reference frame are then replaced by the
raw pixel values to obtain an output frame.

Halder et al. proposed a method in which a geometric-
ally stabilized background estimate is obtained by esti-
mating the motion trajectories of pixels in a reference
frame and taking the centroid of the trajectory as a ref-
erence position. Frames are then warped to this geomet-
ric reference and averaged. Moving objects are identified
based on their intensity difference with respect to this
reference and replaced by their raw pixel values [11].

Oreifej et al. proposed a very different approach, in
which a three-term low-rank matrix decomposition ap-
proach is applied to decompose a sequence into three
components: background, moving objects, and residual
errors due to apparent motions caused by turbulence
[12]. Although the method combines sensitive moving
object detection with accurate turbulence mitigation on
the background, it is computationally expensive and re-
quires sparsity in the number of pixels containing mov-
ing objects. This may be prohibitive for application to
sequences containing large moving objects.
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Recently, Anantrasirichai et al. proposed an approach
which combines moving object detection and tracking
with a recursive image fusion scheme which uses the
dual tree complex wavelet transform (DT-CWT) [13].
This DT-CWT fusion scheme has been shown to pro-
duce sharper fusion results than the typical multi-frame
averaging employed by competing methods. Interest-
ingly, this fusion is employed on both background and
on moving objects. However, a downside of this ap-
proach is that it still makes an explicit distinction be-
tween a static background and moving objects in the
registration and fusion steps.

Finally, Li proposed to compute motion fields between
successive frames to warp pixels from previous frames to
the current frame and average them to accomplish noise
reduction [14]. Pixels in the averaged frame are then
warped to the centroid position of their estimated motion
trajectory in a fixed number of preceding frames. This
serves as a similar geometric reference as used by Halder
et al. However, moving objects are not explicitly detected.
Instead, moving object pixels are similarly compensated
for turbulence-induced degradation as background pixels.
However, the temporal averaging employed for this com-
pensation results in blurring of both background and
moving object pixels. Also, the centroid position of pixel
trajectories may cause rapidly moving objects to exhibit a
substantial lag in their position in the output images rela-
tive to the raw input images.

In general, inaccurate detection and segmentation of
these moving objects may lead to several problems. On
the one hand, moving objects classified as background
may result in motion blur on these objects. Also, larger
moving objects may affect the estimation of global back-
ground motion. On the other hand, if image patches con-
taining moving objects are not corrected for turbulence in
the same manner as the background, then incorrectly clas-
sified background pixels will retain their turbulence-in-
duced distortions. Moreover, it should be noted that in
the use of many long-range camera systems, the oper-
ationally most interesting elements in the scene are most
often the moving objects, which favors methods providing
optimized performance on moving objects.

In this paper, we propose how turbulence mitigation
can be achieved in image sequences on both the back-
ground and on large moving objects, i.e., moving ob-
jects that have linear dimensions on the order of tens
of pixels or more such that their motion can be accur-
ately determined using optical flow. Similar to the ap-
proach taken by Li, apparent motion from turbulence is
compensated for in both the background and moving
object pixels. However, similar to our global turbulence
mitigation method for low turbulence [4], additional
processing steps are used in our newly proposed method
for noise reduction and compensation for blurring effects.
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Moreover, we propose novel methods for stabilization to
prevent lags in moving object positions and we propose a
means to account for occlusion effects, unlike previous
methods. The considered motion estimation and
stabilization methods do not employ a fixed reference
frame. Therefore, the proposed turbulence mitigation
methods are compatible with applications where a moving
camera is used. We evaluate our approach using visible
light recordings of a variety of real-word scenes.

The main contributions of this paper can be summa-
rized as follows:

1. A new method for software-based turbulence
mitigation on both background and large moving
objects in medium turbulence conditions, which
substantially improves upon our previous global
turbulence mitigation method.

2. A comparison of three optical flow algorithms on
their performance for turbulence mitigation.

3. Two new algorithms for stabilization in the presence
of dynamic scene deformations due to turbulence in
image sequences.

4. A new method to compensate for artifacts which
may arise in our processing chain due to occlusions
in the raw image sequences.

This paper is organized as follows. In Section 2, we
outline the proposed method. Subsequently, Section 3
shows the turbulence mitigation results we obtained by
qualitatively comparing imagery before and after our tur-
bulence mitigation. Section 4 discusses the stability of
the turbulence mitigated videos. In Section 5, we provide
a comparison of the performance of the different choices
for motion estimation, motion stabilization, and occlu-
sion compensation on the different datasets in Sections
3 and 4 and we show results of a small-scale observer
trial to independently qualify this performance. In Sec-
tion 6, we compare the results of the proposed method
to those obtained with the state-of-the-art approaches of
Fishbain [8] and Oreifej [12]. Finally, Section 7 provides
a general conclusion.

2 Methods

The starting point for our method is our global turbu-
lence mitigation method for low turbulence [4]. A flow-
chart of this method is depicted in Fig. 1.
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In this method, the first step is the estimation of the
global motion (i.e., translation and rotation) of the
image background between subsequent frames, where a
gradient-based shift estimator [15] is used which takes
the full frames as inputs. This global motion can be
caused by both the average turbulence-induced motion
and by the physical movements of the image sensor.

Subsequently, dynamic super-resolution (DSR) [16] is
applied to the aligned images. DSR is a proprietary algo-
rithm which estimates the true scene image that mini-
mizes the difference between the camera images and the
warped and backprojected true scene image. The back-
projection employs a PSF model consisting of a Gaussian
with a width parameter o = 0.3 low-resolution pixels and
rectangular camera response with 81% area fill factor
per pixel. The DSR step effectively temporally averages
small-scale turbulence-induced shifts of the scene over
ten frames, which results in blurring of the output of the
DSR step compared to the input. In the DSR step, mov-
ing objects are detected using the per-frame differences
between camera images and backprojected true scene
image mentioned above. All pixels are classified as either
background or moving object pixels. Pixels correspond-
ing to moving objects are not temporally averaged, but
instead the pixel values from the input frame are used
for the DSR output. For a given frame, the image points
in the output of the DSR step are aligned with the cor-
responding points in the raw input frame. For example,
a window in the output of the DSR step is located in
the same location as in the same window in the corre-
sponding input image, albeit on a higher resolution
pixel grid.

The subsequent sharpening step reduces the turbulence-
induced blur in the DSR output. Specifically, a Laplacian
of Gaussian filter with o =1 is applied to the DSR output
image, after which the filter output is multiplied by a
constant and added to the DSR output image. Finally,
the output is stabilized to compensate for the turbu-
lence generated global motion by moving average filter-
ing of the frame-to-frame motion.

Under low turbulence conditions, moving objects can
be distinguished from the background by monitoring the
difference between the current input frame and a tem-
porally averaged background estimate. However, under
stronger turbulence conditions, this approach breaks
down because the local shifts due to turbulence lead to

Dynamic
Global motion Super-
—>
Input frame estimation Resolution
(DSR)

Global
stabilization

Output
frame

> Sharpening [

Fig. 1 Flow diagram of the TNO global turbulence mitigation method for low turbulence (ie, ro Z D)
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differences between the input frame and the back-
ground estimates all over the field of view. Previ-
ously, we have shown for sea scenarios that this can
sometimes be overcome when the interesting part of
the scene consists of a single moving foreground ob-
ject, for example a ship [17]. In that case, the appar-
ent motion of the object can be determined instead
of its relatively uninteresting sea background, and
there is no need to distinguish the object from the
background to correct for the turbulence. However,
this is only possible when the sea exhibits little image
structure that affects the motion estimation, such as
wake or waves. Moreover, in our previous approach,
only simple models for the apparent motion of ships
were applied, such as a global translation-rotation
model. These models fail when ships exhibit more
complex rotational movement due to waves.

Here, we propose a general approach to accomplish
dynamic turbulence mitigation on both the back-
ground and on large moving objects. In this ap-
proach, the motion estimation and stabilization steps
are modified compared to the approach outlined
above. A flowchart of this new method is depicted in
Fig. 2.

In this approach, we obtain a dense motion estimate
rather than a global motion estimate. We use optical
flow to estimate the correspondence between each pixel
in the current input frame and the previous input frame,
i.e., the motion vector field. In the next step, we use the
estimated motion to calculate the DSR output. This ap-
plies to all parts of the image, and thus allows us to
apply the same processing to the moving objects and
background in the DSR step. Moving objects are no lon-
ger detected or treated separately in the DSR step.
Therefore, the effects of turbulence are not only miti-
gated on static scene elements but also on large moving
objects whose motion can be estimated using optical
flow. However, small moving objects will suffer from
motion blur because their motion cannot be accurately
estimated.

Several optical flow algorithms were considered for
this work:

e The Lucas-Kanade (LK) algorithm [18] for
estimating sparse motion vectors on a rectangular
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grid. The Lucas-Kanade algorithm minimizes the
following cost function at multiple image scales
using gradient descent, starting at a coarse
resolution and successively refining the estimated
motion at finer resolution levels:

K = Z (VI(i, j,t)-w(t) +1(i,j,t)~1(i, J, t—1)>2,
patch

(2)

where I is the input image, i and j are spatial indices of
pixels, ¢ is the frame index, and %(t) is the frame-to-
frame motion vector. A dense motion field was created
by bilinear interpolation of the motion between the
sparse motion vectors.

e The Horn-Schunck (HS) algorithm [19], which
estimates the entire motion field at once and
applies an L2 norm regularization on the gradient
of the estimated motion field to suppress outliers.
This regularization improves the motion estimation in
regions with little image structure compared to
the Lucas-Kanade algorithm. The corresponding
cost function for this optimization is:

K=" (VIi,j,t)u(i,j) + 1(i, j, )-1(i, j,t-1))

image

+ (| Vuy? + [V ),
(3)

where u, and u, are the horizontal and vertical compo-
nents of the motion vector # (i, j).

e The total variation L1 regularization (TV-L1)
algorithm [20], which applies an L1 norm
regularization on the gradient of the estimated
motion field. Compared to L2 regularization, this
allows for a better segmentation between the motion
of moving objects and background. The corresponding
cost function for this optimization is:

Dynamic
Local motion Super-
—
Input frame estimation Resolution
(DSR)

Local
stabilization

Output
frame

Sharpening ¥

Fig. 2 Flow diagram of the proposed method for dynamic turbulence mitigation under medium turbulence conditions (0.2 < ry/D < 1)
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image

+1(i, j,0)=1(0, , t=1)] + |Viee| +[Vigy|. (4)

Different optical flow estimation algorithms could be
applied as well. However, the higher accuracy that can
be achieved with more advanced algorithms typically
comes at the expense of a vastly increased computa-
tional complexity, which is rather prohibitive for the
prospects of a real-time application of this turbulence
mitigation method. Also, it should be noted that stand-
ard benchmarks for optical flow algorithms typically do
not consider turbulence [21, 22], so highly ranking algo-
rithms may not exhibit similar performance under tur-
bulence conditions.

The smoothness of the optical flow field is determined
by the parameters controlling the regularization strength
of the Horn-Schunck and TV-L1 optical flow algorithms
and the patch size of the Lucas-Kanade algorithm.
Stronger regularization leads to a smoother field, which
reduces inaccuracies due to noise or higher order distor-
tions of local image structures due to turbulence, which
vary from one frame to another. However, this also leads
to less sharp transitions between the estimated apparent
motion of moving objects and the background. Also, the
motion of small moving objects may be suppressed en-
tirely in favor of a smooth motion field estimate. The
trade-off between suppression of inaccuracies due to
noise and distortions and excessive smoothing means
that practically, accurate motion estimation required for
enhancement of moving objects is only possible if they
have linear dimensions on the order of tens of pixels or
more under medium turbulence conditions.

The output of the sharpening step consists of sharp
images with reduced noise levels whose contents are
aligned with the raw frames, both on the moving objects
and the background. This implies that the background
in these images follows the movement of the turbulence-
induced shifts in the raw data. However, for typical detec-
tion, recognition or identification tasks this movement is
unwanted. It not only causes moving objects to stand out
less from the background but also objects’ shapes are dy-
namically deformed and thus more difficult to interpret.
Therefore, good performance on these tasks requires that
these shifts are suppressed such that rigid objects and
background do not show dynamic deformations. This ne-
cessitates a modification of the previous global image
stabilization method. Therefore, we suppress these shifts
by applying a local stabilization instead of a global
stabilization. We apply a temporal autoregressive filter to
the frame-to-frame motion to obtain a dynamic reference
and warp the sharpened DSR output to this reference. If
% (i, j,t) describes a point in the DSR output for frame ¢
with spatial indices i and j, and the motion estimate
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indicates that in the previous frame this point was located

e —> /e . —
at position x'(i, j,t)-u
the stabilized position x's:

z(l’, j,t) =(1-g)- Ws(i_ux(hj)aj_uy(i’ J)s t_l) (5)
+g'7(iajvt)a

(i, j), then this point is warped to

where u, and u, are the horizontal and vertical compo-
nents of the motion vector % (i, ) and g is an update
rate parameter which determines the amount of motion
smoothing and thus the suppression of turbulence in-
duced shifts. However, for fast moving objects, this sim-
ple filter may result in a substantial lag between the
current location of objects in the input frames and their
location in the stabilized output frames. Therefore, the
update rate g of the filter is increased in each pixel based
on the magnitude of the lag %'(i, j,t)- % (i, j, ¢) in that
pixel in the previous frame:

&=8p t+ <1_gbg) “Lhast
(1 + exp<4~ (1-2|| %, (i, j, t-1)-%(, j, t—1)||2/6>>)’1,
(6)

Here, g),, and gy, are two parameters which determine
the update rate for respectively background pixels and
pixels which exhibit a lag compared to the raw frame,
possibly because they correspond to moving objects in
the scene. The scheme in Eq. 6 can be interpreted as a
logistic classifier of pixels as belonging to moving object
or background based on the lag in the previous frame,
and uses this to assign an update rate. The user-adjust-
able parameter O specifies the maximum lag above
which pixels almost certainly contain moving objects.
The choice of the parameter & balances the stability of
the background with lags of moving objects. For higher
degrees of turbulence, the apparent motion in the back-
ground will appear larger and thus & should be larger to
limit the remaining background motion after stabilization.
The stabilization scheme with a fixed update rate g will be
referred to as local unadaptive stabilization and the
stabilization with an update rate set according to Eq. 6 as
local adaptive stabilization.

A final challenge for turbulence mitigation relates to
occlusions in image sequences. In complex scenes, mov-
ing objects such as vehicles or persons may be occluded
by more proximate scene elements, such as buildings or
foliage for example. For such complex scenes, the diver-
gence of the optical flow between the previous and
current frame is an indicator of the areas in the image
where occlusions occur, since such a divergence would
point to compression or expansion of objects if it would
describe the physical motion of those objects whereas in
practice objects are typically rigid. However, we find in
practice that using the local variance of the optical flow
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field as a proxy for the divergence provides a more ro-
bust indicator of occlusion areas.

In these areas, artifacts in the DSR output due to oc-
clusions are compensated for by replacing the DSR out-
put by a weighted average of the DSR output and the
raw input frame according to the following weighting
scheme:

I(i’ Js t) - (l_w(i’jv t)) : Imw(iv Js t) + W(i’ja t)
'Idsr(i7 j» t), (7)

W(i7 Js t) = eXp(—Vx(i, J; t)/vmax)- (8)

Here, V,(i, ], t) is the variance in the estimated horizon-
tal motion u,(;,j) in a rectangular window of 12x3
pixels centered around % (i, j). The vertical component
of the estimated motion is disregarded, as large vertical
motion in the image corresponds to rapid changes in
distance or height of physical objects relative to their
surroundings which is uncommon at the large viewing
distances to which turbulence mitigation is typically
applied.

3 Results and discussion

3.1 Turbulence mitigation results

To evaluate the proposed approach for turbulence miti-
gation, we will consider a number of visible light record-
ings of real-world scenes. For these scenes, we will
investigate whether our proposed dynamic turbulence
mitigation can improve the in image quality on moving
objects compared to the previous global turbulence miti-
gation approach, while retaining a similar image quality
on the background. Image quality in this case depends
both on the visual sharpness of the images and on the
level of artifacts, for example due to motion blur or
ghosting. However, turbulence-free reference imagery is
not available for these real-world scenes, which prohibits
a reference-based measurement of image quality on the
moving objects. To our knowledge, there are currently
also no simulations that accurately reproduce the full
complexity of the local image distortions due to turbu-
lence and their spatiotemporal correlation patterns for a
high-quality reference video with moving objects either.
This prohibits a representative evaluation based on syn-
thetic data. On the other hand, typical no-reference
image quality metrics rely on measurement of only edge
sharpness. Since a sharpening filter such as the one we
apply in our processing can arbitrarily sharpen edges at
the expense of noise amplification and ringing artifacts,
such a measurement is of limited utility in quantifying
improvements. Therefore, the evaluation of our methods
will be limited to a qualitative evaluation of the image
quality. A further evaluation of all the proposed methods
can be found in Section 5, where they are compared on
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their ability to address the main criteria determining the
image quality of the reconstructed images on all datasets
in this paper.

3.1.1 Sea scenario

In this section, we apply our turbulence mitigation
method in a sea scenario. Figure 3a—c shows part of a
video frame of a ship which is heaving in the waves im-
aged under medium turbulence conditions. The video
from which this region of interest (ROI) of 600 x 280
pixels taken was acquired from the coast of Scheve-
ningen, The Netherlands, using a 300 mm lens set to f/
11 mounted on an Allied Vision Mako G-125C 1/3"’
Color CCD camera operating at a frame rate of 30
frames per second. The ship in this video was located
approximately 12 km from the viewing position. Because
the motion of the sea background is not the same as that
of the ship, the estimation of the ship’s motion required
for turbulence mitigation needs to be accomplished on
the ship itself. The sea itself does contain image struc-
ture in the form of waves which exhibit a different mo-
tion from the ship.

Figure 3d-f shows the turbulence mitigation result
which is achieved when we apply our turbulence mitiga-
tion method from Dijk et al. [16] and estimate a
translation-only model for the ship’s motion based on an
image patch in the center part of the ship. Although the
center of the ship does look sharper after turbulence
mitigation, which is particularly apparent in the cut-outs
in Fig. 3b, e, the bow and stern of the ship exhibit verti-
cal motion blur. This becomes especially apparent when
comparing Fig. 3¢ and f. When we employ the Lucas-
Kanade optical flow estimation across the ship to esti-
mate the apparent local motion across the field-of-view,
we obtain the result shown in Fig. 3g—i. Particularly, the
cut-out in panel i reveals that the optical flow solution
removes the vertical motion blur caused by the heaving
of the ship.

3.1.2 Land scenarios

We now turn our attention to land scenarios. Unlike in
the sea scenario before, land scenarios do provide static
backgrounds whose motion can be estimated in image
sequences [4]. Figure 4 shows an example of such a se-
quence containing a helicopter flying above a city imaged
under medium turbulence conditions, using a 1000 mm
lens set to f/8 mounted on an Adimec TMX6-DHD cam-
era operating at a frame rate of 30 frames per second.
Note that the figure only shows an ROI of 912 x 376 pixels
from the full frame. The buildings in this video were lo-
cated approximately 16 km from the camera. The top row
of the figure shows a still from the raw imagery after
contrast enhancement as well as a cut-out around the
helicopter. The detection of the helicopter is



Nieuwenhuizen et al. EURASIP Journal on Image and Video Processing (2019) 2019:2 Page 7 of 22

Fig. 3 Turbulence mitigation on ship at sea. The ship is about 550 x 210 pixels in size. The top row shows a still from the raw video (a) with
enlarged cut-outs on the center (b) and bow (c) of the ship. The middle row (d-f) shows the results for our turbulence mitigation method
from Dijk et al. [16] and the bottom row (g-i) for the proposed dynamic turbulence mitigation with Lucas-Kanade flow respectively

N

complicated by the turbulence-induced deformation of the building now appear sharper and straighter. How-
its shape as well as the background noise in the sky. ever, the helicopter was not detected as a moving object
When we apply our global turbulence mitigation, we  because its motion is very similar to the apparent mo-
see in the results in the middle row that the back- tion in the background due to turbulence. Conse-
ground is indeed greatly enhanced: the wavy roofs of quently, the turbulence mitigation algorithm leads to a

Fig. 4 Turbulence mitigation on a helicopter flying over a city. The helicopter is about 55 x 25 pixels in size. The top row shows a still from the
raw video (a) and cut-outs around the helicopter (b) and a building (c). The middle row (d-f) shows the processing results with the global
turbulence mitigation method and the bottom row (g-i) shows the result for dynamic turbulence mitigation with Lucas-Kanade optical flow
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significant motion blur on the helicopter. This hinders
a human observer to detect and recognize the helicop-
ter in the image, even though the noise in the back-
ground is greatly reduced. The bottom row of the
figure shows the resulting turbulence mitigation when
Lucas-Kanade optical flow is used. Evidently, this pro-
vides a good mitigation result on the background as
well as the helicopter, which appears sharper than in
the raw input frame when comparing Fig. 4b and h.
The Lucas-Kanade solution for the motion estimation in
the previous case worked fairly well because of the separ-
ation between the helicopter and the land. Therefore, the
estimated motion in a patch around the helicopter in the
image is dominated by the movement of the helicopter.
However, in general, this is often not the case for moving
vehicles in land scenarios. Figure 5a shows part of a still
from an image sequence acquired at the NATO SET226
field trial in Quebec, Canada, using an 800 mm lens set to
f/11 mounted on an Allied Vision Mako G-125C 1/3""
Color CCD camera operating at a frame rate of 30 frames
per second and an exposure time of 1.25 ms. Note that this
example only uses an ROI of 1016 x 512 pixels from the full
frame. It shows a moving truck imaged through medium
turbulence (Ci was measured to be around 10™'* m™??) at
a distance of 2.5 km. When we apply our global turbulence
mitigation method with a global translation-only motion
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model, the results shown in Fig. 5c and particularly Fig. 5d
reveal a substantial motion blur on the background. Here,
the global motion estimator has converged on an estimate
that corresponds to the movement of the truck. Local mo-
tion estimation using the TV-L1 optical flow provides a
much better solution as shown in Fig. 5e, f. This motion es-
timate leads to good turbulence mitigation both on the ve-
hicle and the background, as witnessed by the sharpness
and lack of motion blur in Fig. 5f compared to Fig. 5b, d.
Notice in particular the increased sharpness around the
windows of the truck, which indicates that the turbulence
was mitigated on the moving object itself. Some boundary
effects are visible in Fig. 5f at the edge between the top of
the truck and the background, where part of the back-
ground is erroneously warped in the direction of the truck’s
movement.

The result in Fig. 5e required an accurate motion esti-
mate on both the truck and the background. We com-
pared three common optical flow estimation algorithms
on their ability to achieve this: the Lucas-Kanade algo-
rithm [18], the Horn-Schunck algorithm [19], and the
TV-L1 algorithm [20]. Figure 6 shows the turbulence miti-
gation result obtained with these algorithms in the left col-
umn. The middle and right column of this figure shows
the estimated motion in respectively the horizontal and
vertical direction in the image. These results show that

.

Fig. 5 Turbulence mitigation on a moving truck in front of a set of test charts. The top row shows a still from the raw video (a) and a cut-out
around the top of the truck (b). The middle row shows (c-d) the processing results with the global turbulence mitigation method and the
bottom row (e-f) shows the result for dynamic turbulence mitigation with TV-L1 optical flow. The truck is about 530 x 210 pixels in size
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units of pixels per frame

Horizontal motion

Fig. 6 Comparison of three optical flow methods: Lucas-Kanade (a-c), Horn-Schunck (d-f), and TV-L1 (g-i). The left column shows the turbulence
mitigation results for the same frame as Fig. 5, whereas the middle and right column show the estimated motion per pixel for that frame expressed in

Vertical motion

the TV-L1 algorithm provides the sharpest segmentation
between the motion of the vehicle and the background, as
its horizontal motion field has the sharpest edge at the top
of the vehicle. Also, it provides for a fairly homogeneous
estimated motion across the truck, as would be expected
for a rigid object such as a truck. The Horn-Schunck algo-
rithm has larger inhomogeneities in the estimated motion
on the truck due to sun glints on the windows, compared
to the Lucas-Kanade and TV-L1 algorithms. This derives
from its L2-regularization on the gradients of the esti-
mated motion, which heavily penalizes sharp transitions
in the estimated motion per pixel. Therefore, transitions
in the estimated motion tend to be smooth around occlu-
sion boundaries or sun glints, even when the local image
content in the current frame was not visible in the previ-
ous frame and thus no correct motion estimate exists.
Thus, we conclude that the TV-L1 algorithm provides a
more accurate solution in scenarios such as these where
the background exhibits much image contrast right be-
hind the moving vehicle. It should be noted that in some
cases, the optical flow solutions do exhibit local outliers in
the estimated motion, particularly around repeated pat-
terns in the images, such as the checkerboard charts or
the power lines in Fig. 11j. The TV-L1 algorithm appears
to be somewhat more vulnerable to this than the other
two algorithms.

Another application of the TV-L1 optical flow algo-
rithm is shown in Fig. 7. Here, the top row shows the
raw image which was recorded under medium turbu-
lence conditions, using the same camera and lens as
used for Fig. 4. For this application, an ROI of 880 x 408
pixels was used from the full frame. The persons on the
golf course in this ROI were located approximately

2.5 km from the camera. The middle row shows the re-
sult of our global turbulence mitigation processing with
a global translation-only motion model. In this case, we
applied less conservative thresholds for moving object
detection than for Figs. 3, 4, and 5. Specifically, the max-
imum difference in the pixel values between raw input
frame and the output of the previous DSR step of back-
ground pixels was lower here than before. In pixels
which are classified as belonging to a moving object, we
provide the raw pixel values instead of the DSR result in
the output, which forms the input for the sharpening
step. Evidently, the movements of the persons in this
scene are only partially detected, which is typical under
such conditions. The images in the bottom row of the
figure show the results of turbulence mitigation using
TV-L1 optical flow. A slight motion blur can be ob-
served on the walking person, which may relate to the
deviating motion of their swinging arms. However, the
moving persons appear sharper in these images, while
the turbulence mitigation in the background still per-
forms well, as evidenced by the sharp and straight
shadow of the tree to the left.

An important challenge for the methods demonstrated
thus far is their application to scenes with pronounced
occlusion effects. The results so far were obtained with-
out applying an occlusion compensation method to miti-
gate these effects. Consider for example the turbulence
mitigation results in Fig. 8, obtained for a different ROI
(of 880 x 416 pixels) from the same video as the one
used for the results in Fig. 4. The scene shows a highway
with moving vehicles at approximately 3 km from the
camera. Figure 8d shows artifacts across the moving
truck because of mixing of image contents of the truck
and the occluded background. This result from the
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Fig. 7 Turbulence mitigation on a golf course scene. The top row shows a still from the raw video (a) and two cut-outs around the hole (b) and
a walking golf player (c). The middle row shows the processing results with the global turbulence mitigation method and the bottom row shows

the result for dynamic turbulence mitigation with TV-L1 optical flow. The walking golf player is about 25 x 70 pixels in size
- J

underlying assumption of the optical flow algorithm variance of the motion field is high, the DSR output is

used that scene contents in the current frame were vis-
ible in previous frames as well. This assumption is vio-
lated at the front and back of the truck and around the
edges of the tree in front of the truck to the left. In the
bottom row of Fig. 8, we reduced these artifacts by
modifying the DSR step: in pixels where the local

replaced by a weighted average of the DSR output and
the raw input frame. This occlusion compensation does
indeed reduce the line artifacts across the truck, as seen
in Fig. 8h. However, a distortion in the background due
to erroneous image motion estimation can be still seen
in front of the truck. What is noteworthy however is the

Fig. 8 Turbulence mitigation on a highway scene. The top row shows a still from the raw video (a) and two cut-outs (b-c). The middle row
shows (d-f) the processing results for dynamic turbulence mitigation with TV-L1 optical flow without occlusion compensation. The bottom row

(g-i) shows the result when the occlusion compensation is applied. The height of the truck is about 100 pixels
. J
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accuracy of the vertical segmentation between moving
truck and the background: the structures above are
hardly affected by the moving truck.

3.2 Image stabilization results

The turbulence mitigation results in the previous section
showed that in many cases the local motion estimation
with optical flow provides for sharp output images with
reduced noise levels. In this section, we evaluate the per-
formance of the stabilization step in the proposed turbu-
lence mitigation method.

Figure 9 illustrates this effect for the ship shown in
Fig. 3. Figure 9a shows the difference between the raw
frame in Fig. 3a and the subsequent raw frame, whereas
Fig. 9b shows the difference between the output of the
sharpening step for that frame and the next frame.
Clearly, large frame-to-frame differences are present, in-
dicating substantial apparent movements of all parts of
the ship relative to each other even though the ship is a
rigid object. Figure 9c shows how this is resolved with
the local unadaptive stabilization scheme as detailed in
Eq. 5, for a parameter value g = 0.05. The frame-to-frame
differences in the center of the ship are much smaller.
The remaining differences on the bow, stern, and mast
of the ship are consistent with the rotational motion of
the ship in the waves, and consequently the ship appears
rigid in the stabilized output imagery.

The result in Fig. 9 illustrates the benefit of locally sta-
bilizing the output imagery. However, the ship’s move-
ment is relatively slow. When we consider the moving
truck in Fig. 5, it becomes apparent that the stabilization
scheme in Eq. 5 may introduce a substantial lag between
the current position of the truck and its position in the
stabilized output. This is shown in Fig. 10, where Fig. 10a
shows the current raw frame in magenta and the output
stabilized with the scheme in Eq. 5 with fixed g=0.2 in
green. When the raw frame and stabilized frame are lo-
cally exactly aligned, the corresponding pixels appear
black, white, or gray. Clearly, the truck’s position is lag-
ging substantially behind the current position. In this
case, the lag is roughly five frames (data not shown). Fig-
ure 10c shows the result when the stabilization scheme
is modified to account for moving objects as discussed
at the end of Section 2, which is referred to as the local
adaptive stabilization scheme. The lag parameter § was
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set here to a value of 10. The difference between the raw
frame and the stabilization output is much reduced, as
evidenced by the apparent reduction in green and ma-
genta regions in the image. Figure 10d shows the previ-
ous frame in green instead, and the apparent alignment
with the stabilization output of the current frame in ma-
genta shows that the truck’s positions lags by only about
1 frame relative to its current position.

3.3 Comparison of methods across datasets

In the previous sections, we presented different possi-
bilities for mitigating the effects of atmospheric turbu-
lence when imaging several different scenes: several
choices in optical flow algorithms, three types of image
stabilization, and the possibility to use an occlusion
compensation scheme or not. The utility of each
method was demonstrated on a different dataset each
time. In this section, we will evaluate all methods on
each of the datasets to assess their relative performance
in each case. In addition, we will provide an overview
of how the different methods affect the different deter-
minants of the image quality for the different datasets.

Firstly, we will compare the various motion estimation
algorithms presented before: global motion estimation
with a single motion vector describing only the transla-
tion over time in the image sequence, and Lucas-
Kanade, Horn-Schunck, and TV-L1 optical flow estima-
tion. The resulting image quality for each of the datasets
is demonstrated in Fig. 11. From these results, we can
draw several conclusions.

The results for the sea scenario shown in Fig. 11a—e
demonstrate that all optical flow methods in Fig. 11c—e
obtain a similar image quality. All of them can account
for the rotational motion of the ship. Similarly, the op-
tical flow methods show similar performance on the golf
course dataset shown in Fig. 11m—o. The key similarity
here is the relative lack of occlusions of moving objects
or background, because the backgrounds in these cases
have limited image structure which may affect the mo-
tion estimation on the moving objects. Interestingly, the
Lucas-Kanade exhibits the best image quality on the
moving helicopter.

Both the results for the Horn-Schunck and TV-L1 al-
gorithms exhibit motion blur on the helicopter. This

N

=l

Fig. 9 Stabilization results for the ship in Fig. 3. Frame-to-frame differences are shown between the raw frames (a), the processing results with a
global motion model estimated in the center of the ship (b), and for the proposed dynamic turbulence mitigation with Lucas-Kanade optical flow (c)




Nieuwenhuizen et al. EURASIP Journal on Image and Video Processing

(2019) 2019:2 Page 12 of 22

Overlay with current frame

Fig. 10 Stabilization result for the truck sequence in Fig. 5. Overlays are shown between the stabilized processing result in magenta and the
corresponding raw frame (left) and preceding raw frame (right). In (a, b), the stabilization does not distinguish between background and
moving object. In (¢, d), the stabilization results are shown when the stabilization is modified to take into account moving objects, which
leaves an overlay with less color and hence less mismatch between the stabilization output and particularly the previous raw frame

Overlay with previous frame

suggests that the regularization of these algorithms fa-
vors a smooth motion field over an accurate motion esti-
mate on the small moving helicopter. Instead, the
Lucas-Kanade algorithm, which only uses a small local
image patch for motion estimation, is not affected by
more distant static scene elements and does not cause
motion blur on the helicopter. Figure 11j also illustrates
the vulnerability of the TV-L1 algorithm to outliers in
the estimated motion, which are sometimes observed
near repeated scene elements such as the two power
lines. On the other hand, Fig. 11p-y clearly shows that
in scenes with complex backgrounds right behind the
moving trucks, the TV-L1 algorithm provides a superior
image quality. In particular, the TV-L1 shows the least
shearing of background structures above the moving ve-
hicles. Additionally, Fig. 11w, x exhibits artifacts due to
blending of the moving truck and the signpost in the
background, which indicates that the transitions in their
motion field were not sharp enough to allow occlusion
compensation.

To further visualize the impact of the different optical
flow methods, Fig. 12 shows temporal cross-sections for
a single image line for each of the regions of interest in
Fig. 11. These results support the same conclusions as
Fig. 11, but further emphasize that the global motion es-
timation is prone to oversegmentation of moving ob-
jects. This refers to the extent to which the moving
object detection in our global motion estimation-based
method tends to break up the moving objects in the
scene into multiple patches, some of which are classified
as moving object and some of which are not. The bot-
tom row in Fig. 12 also shows that the TV-L1 algorithm
has a clear benefit when it comes to the back of the
moving truck, which exhibits less ghosting, i.e., blending
of the moving truck into the background image in parts
of the image where it has already passed. Finally, these

results show that in general the different optical flow
methods substantially reduce the turbulence-induced
background motion, which can be seen from the lack of
wavelike perturbations on the more or less horizontal
lines corresponding to static scene elements.

The use of occlusion compensation for the different
datasets is evaluated in Fig. 13. In this figure, a compari-
son is made between results obtained with and without
occlusion compensation, when the same optical flow al-
gorithms are used for each dataset as in the preceding
sections. The results in Fig. 13a—i suggest that in the ab-
sence of occlusions in the imagery, the application of oc-
clusion compensation has little effect on the resulting
image quality. No artifacts show up in images where the
compensation is applied in the absence of an occlusion.
However, occlusion compensation does prevent artifacts
due to streaking of the sun glint on the moving truck in
Fig. 131 and blending of the moving truck and the back-
ground in Fig. 130. Therefore, we conclude that the pro-
posed occlusion compensation seems to provide a
robust means of improving image quality.

The different methods for motion stabilization are
compared in Figs. 14 and 15. Like Figs. 9 and 10, the ef-
fect of the stabilization is visualized in terms of
frame-to-frame differences between output images and
in terms of the difference between output frames and
corresponding raw input frames. Frame-to-frame differ-
ences are used to assess whether apparent variations in
the background over time due to turbulence are sup-
pressed. Accurate stabilization should show few frame-
to-frame differences on the static background. Both the
local unadaptive and local adaptive stabilization obtain
a better result on this criterion than the raw frames or
the global stabilization scheme. However, Fig. 14s and
Fig. 15k does show that the unadaptive stabilization
causes a curved deformation on the upper part of the
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Raw Global motion

C

area in the raw input image
A\

Lucas-Kanade

Fig. 11 Application of the different motion estimation methods to each of the datasets in this article. Each column (a-y) shows the
results in a representative region of interest for one of the motion estimation methods. The leftmost column shows the corresponding

Horn-Schunck TV-L1

J

moving truck. These deformations are caused by inaccur-
acies in the motion estimation at the top of the truck in
some of the previous frames, likely due to the sun glints.
Figure 15 shows that the local adaptive stabilization
scheme causes a much smaller lag between the moving
objects in the output frames and raw input frames than
the local unadaptive stabilization: the right column
shows a much smaller mismatch between the positions
of the moving vehicles in the magenta and the green

color channel than the middle column. Taking all these
results into account, we conclude that the local adap-
tive stabilization scheme is generally to be preferred
over the other stabilization methods, as it provides
good results over wider range of conditions.

The results discussed so far show that there are a var-
iety of different factors that determine the perceived
image quality of the turbulence mitigation outputs.
These factors include both the general sharpness and
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Global motion

-

Fig. 12 Temporal cross-sections of the different motion estimation methods to each of the datasets in this article (b-f, h-l, n-r, t-x, z-dd).
The leftmost column (a, g m, s, y) shows region of interest in the first frame of each temporal cross section. The red lines indicate the
vertical image lines which for which temporal cross-sections are shown in the other columns

Lucas-Kanade Horn-Schunck

stability of static background elements of scenes and
various artifacts caused by processing of moving objects.
Based on the results in the preceding paragraphs and
sections, we have summarized the factors influencing
our assessment of the perceived image quality into a set
of more general categories. To obtain an independent
evaluation of the relative performance of each method
on these categories, we performed an observer experi-
ment with three test subjects from Adimec, a possible
customer for the techniques reported here: two optical
designers and one image processing expert. The sub-
jects, although active in the field of imaging with atmos-
pheric turbulence, were not otherwise involved in the
research reported here and could thus independently as-
sess the different methods. Subjects were first shown all

results videos for all methods. Next, they were shown all
result videos of one of the methods, without indication
of which methods was used, and were asked to inde-
pendently and without deliberation write down a single
score on each category for all videos. In particular, they
were asked to score the performance of each method
relative to the raw input images before mitigation on a
five point scale, where performance was expressed in
terms of their ability to perceive the scene in regions of
the scenes which could be affected by influences from
each category. Table 1 shows the median result of the
test subjects’ scores for all categories and methods. Note
that in this table, one of the scoring criteria is the over-
segmentation of moving objects. This refers to the ex-
tent to which the moving object detection in our global
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Raw No occlusion comp. Occlusion comp.

Fig. 13 Comparison of turbulence mitigation results with occlusion compensation (right column) and without (middle column). Lucas-Kanade

optical flow estimation was used for the datasets shown in subfigures (a-f) and TV-L1 optical flow estimation for subfigures (g—o)
- J
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ROI

Raw

Fig. 14 Comparison of stabilization results. The left column (@, f, k, p, u) shows the region in the raw frame for which results are visualized per row.

Subsequent columns show the difference between the previous frame and current frame for respectively the raw frames (b, g, |, g, v), global stabilization (c,
h, m, r, w), local unadaptive stabilization with a fixed update rate according to Eq. 5 (d, i, n, s, ), and local adaptive local adaptive stabilization with a variable
update rate according to Eq. 6 (e, j, 0, t, y). Each difference image has the same normalization as the other difference images in the same row of the figure

motion estimation-based method tends to break up the
moving objects in the scene into multiple patches, some
of which are classified as moving object and some of
which are not.

The scores in Table 1 show several noteworthy results.
Firstly, our new proposed methods do indeed seem to
resolve the negatively scored aspects of our previous glo-
bal motion estimation-based method. However, against

our expectations, the TVL1 motion estimation receives
a strongly negative on image shearing, even though
most of the results for stabilization and occlusion com-
pensation were also obtained with that motion estima-
tion. The test subjects do positively evaluate the local
adaptive stabilization compared to the other types of
stabilization. The unadaptive stabilization results in
spatially varying lag across moving objects. This
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Global Local unadaptive Local adaptive

Fig. 15 Comparison of stabilization results. The columns show the difference between the current output (magenta) and raw input frame (green)
for respectively global stabilization (a, d, g, j ,m), local unadaptive stabilization with a fixed update rate according to Eq. 5 (b, e, h, k, n), and local

adaptive local adaptive stabilization with a variable update rate according to Eq. 6 (¢, f, i, |, 0)
A\
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Table 1 Comparison of methods on the main factors determining the image quality. Three independent test subjects scored the
performance, in terms of their ability to perceive the scene, relative to the raw input images before mitigation as: large improvement [+
4], improvement [+], no significant improvement or deterioration [0], deterioration [—], and large deterioration [——]. High scores on
oversegmentation and deformation thus indicate positive contributions to image quality. The results for the different motion estimation
methods (LK, HS, TVL1) are reported assuming local adaptive stabilization but not occlusion compensation. The results for dynamic
turbulence mitigation with stabilization or occlusion compensation are reported assuming the best performing motion estimation

method for a given scene

Sharpness Sharpness  Sharpness  Oversegmentation  Ghosting on or  Image shearing  Dynamic Lag of
of static of large of small of moving objects  around moving on motion deformation  moving
background  moving moving objects boundaries of scene objects
objects objects
Global motion + stab. + + + - - - + o
Dynamic turb mit. + LK + o + o - - + o
Dynamic turb mit. + HS ++ o o} o - - + o
Dynamic turb mit. + TVL1 ~ + + + o o) — + o
Dynamic turb mit. + + + + o o o + o
global stab.
Dynamic turb mit. + local ~ + o} - o o - - o
unadaptive stab.
Dynamic turb mit. + local ~ ++ + o e} - o ++ o
adaptive stab.
Dynamic turb mit. + local ~ + + o o o o - 0
adaptive stab. + occlusion
compensation
Fishbain et al. o o o o o 0 0 o
Oreifej et al. - + - — — o + o

variable lag was interpreted as a dynamic deformation
which was both more unfavorable than the lagging
average position of moving objects and more un-
favorable than the deformation from the turbulence
induced shifts. Based on the score for global
stabilization, it appears that the remaining deform-
ation after local averaging of small-scale turbulence
effects was not deemed to be very consequential by
the subjects. It remains unclear why the occlusion
compensation was ranked negatively on the presence
of dynamic deformation. The most notable difference
compared to the results obtained with dynamic
turbulence  compensation and local adaptive
stabilization only is the reduction in ghosting arti-
facts around occlusion boundaries. This reduction is
also attested to by the improved score on the ghost-
ing on or around moving objects. A possible explan-
ation may be that the order of displayed results
affected on which parts of which videos the subjects
focused their attention. In summary, the general pic-
ture that emerges from these results is that the
changes from global turbulence mitigation to dy-
namic turbulence mitigation and from global to local
adaptive stabilization are positively evaluated by the
subject, but that the choice of preferred local motion
estimation method and the utility of using occlusion

compensation are not ambiguous and may depend
on the specific application.

3.4 Comparison with existing methods in the literature

The results so far demonstrated the performance of the
methods proposed in this paper on various scenarios. In
this section, we make a comparison between these
methods and two methods representing the current
state-of-the-art in turbulence mitigation in the literature:
the approach by Fishbain et al. [8], which is considered as
a representative for methods that aim to detect moving
objects based on displacements relative to a reference
frame, and the recent three-way decomposition approach
by Oreifej et al. [12] For more details on these methods,
the reader is referred back to Section 1. For the Fishbain
approach, the data of the published results are available,
but the source code for their method is not. For the Orei-
fej approach, both data and source code are available, but
since their data only contain very small targets, they are
not relevant for evaluation of turbulence mitigation with
large moving objects. In our application of the Oreifej ap-
proach, the source code was applied with default parame-
ters. No retraining was undertaken of the parameters of
the classifier which is used in this approach to initialize
the confidence of pixels belonging to background or mov-
ing objects. For brevity, we only show results of our
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Fig. 16 Comparison of turbulence mitigation results on a thermal infrared recording of a car appearing from behind a set of trees. The different
rows show different frames in the sequence. Columns show respectively from left to right: raw frames (a, e, i, m), results obtained with our
method (b, f, j, n), results obtained by Fishbain et al. [9] (c, g, k, 0), and results obtained with the method by Oreifej et al. [13] (d, h, |, p)

Fishbain et al. Oreifej et al.

-

A ¥

dynamic turbulence mitigation methods with the previ-
ously best performing motion estimation, adaptive
stabilization and occlusion compensation.

Figure 16 shows the turbulence mitigation results on
several frames of a challenging video from the data Fish-
bain et al. The video shows a thermal infrared recording
of a car appearing from behind a set of trees. The inten-
sity of the car in the imagery is similar to the ground in

between the two lanes of the road. This lack of contrast
causes the background to bleed through in the top part
of the car in the results of Fishbain et al. (third column
from the left) and the three-way decomposition ap-
proach. (right column), but much less so in the results
of our dynamic turbulence mitigation (second column
from the left). However, the three-way decomposition
approach performs well on the bottom part of the car,
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Global motion Dynamic turb. mit.

Fig. 17 Comparison of turbulence mitigation results on grayscale imagery of a golf course scene, scene with a helicopter flying over a city, and
highway scene. Columns show respectively from left to right: raw frames (a, f, k), results obtained with our global turbulence mitigation
method (b, g, I), results obtained with our dynamic turbulence mitigation with TV-L1 optical flow and occlusion compensation (¢, h, m), and
results obtained with the three-way decomposition approach shown as images (d, i, n) and temporal cross-sections (e, j, 0)

Oreifej et al.

which has a high contrast with the road, whereas our dy-
namic turbulence mitigation in Fig. 16f results exhibit
artifacts near the occlusion boundary between the trees
and the car. This indicates that the motion estimation
and occlusion compensation were inaccurate.

Because of the available source code, the three-way
decomposition approach can also be compared to our
dynamic turbulence mitigation method on datasets pre-
sented in this manuscript. Such a comparison is made
in Fig. 17, which shows respectively from left to right
the raw input frames, results of our global turbulence
mitigation, results of our dynamic turbulence mitiga-
tion method, and results obtained with the three-way
decomposition approach. The figure shows results on
grayscale converted images rather than on the original
color images. The latter lead to artifacts in the three-
way decomposition approach, due to different assign-
ments of which pixels contain moving objects in the
different color channels. The results show that the three-
way decomposition approach detects more of the moving
object pixels than the global turbulence mitigation ap-
proach, but also incorrectly identifies regions in the im-
ages with strong edges as moving objects, such as the

power lines in the top row of the figure. Moreover, the
background in the results obtained with the three-way de-
composition approach mostly appears stable in the tem-
poral cross-sections in the rightmost column of Fig. 17,
but much less sharp than in the results obtained with our
global and dynamic turbulence mitigation methods.

When combining the above comparisons, we conclude
that no single method performs best on all datasets. The
three-way decomposition approach performs slightly
better on the video from Fishbain et al., whereas our dy-
namic turbulence mitigation approach exhibits fewer ar-
tifacts in Fig. 17. The most evident difference between
these datasets is the availability of fine details in the im-
ages to enable accurate optical flow estimates. This is es-
sential for the performance of our dynamic turbulence
mitigation approach, particularly for accurate occlusion
compensation. However, a more elaborate comparison
on more datasets would be needed to identify the cir-
cumstances in which either method is favored over the
other. It should be noted here that the three-way de-
composition approach only detects moving objects in
the images and is thus not able to mitigate the effects of
turbulence on those objects themselves, such as the ship



Nieuwenhuizen et al. EURASIP Journal on Image and Video Processing

in Fig. 3. Conversely, our dynamic turbulence mitigation
method is not able to accurately mitigate the turbulence
on the small moving objects in the data shown in Oreifej
et al. [12] to evaluate their three-way decomposition
method.

The performance of the methods of Fishbain et al. and
Oreifej et al. has also been scored in Table 1, similar to
our own methods. These scores mostly match our expec-
tations. Most significantly, however, the test subjects did
not notice substantial negative impacts from the ghosting
and oversegmentation artifacts of the method by Fishbain
et al. This is attributed to the relative low contrast be-
tween moving cars and background for the single video
on which this method was assessed and may not generally
hold if the method could be applied to other data.

4 Conclusion

In summary, we propose a new approach for dynamic
turbulence mitigation on both the background and on
large moving objects. Large moving objects here are
considered to have linear dimensions on the order of tens
of pixels or more, such that their motion can be accurately
determined using the discussed optical flow methods. In
our approach, we modify our previous global turbulence
mitigation method in three ways. Firstly, we replace the
global motion estimation with optical flow motion estima-
tion that provides an estimate of the frame-to-frame mo-
tion for each pixel, where different choices are possible for
the optical flow algorithm. Secondly, we introduced a
method to compensate for occlusion effects in the im-
agery. Thirdly, we introduced local image stabilization
methods to suppress deformation of both moving objects
and background: a simple temporal autoregressive filter of
the frame-to-frame motion and a modification of this filter
that accounts for moving objects.

The proposed method enables turbulence mitigation
not only on static backgrounds but also on certain mov-
ing objects, in contrast to most previous turbulence
mitigation methods in the literature which only aim to
detect moving objects and represent them by the raw
pixel values in output imagery. In a direct comparison,
our methods exhibit competitive performance relative to
the representative state-of-the-art methods of Fishbain
et al. [8] and Oreifej et al. [12] on challenging datasets.
Small moving objects, such as the helicopter in Fig. 4,
may suffer from motion blur in our method, because the
motion cannot be accurately determined using the op-
tical flow algorithms considered in this paper. To the
best of our knowledge, the approach by Anantrasirichai
et al. [13] is the only other published method designed
for turbulence mitigation on moving objects. We expect
that the advanced fusion scheme employed in this
method may be beneficial for the background sharpness.
Conversely, our method likely performs better on large
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moving objects because of the lack of a hard classifica-
tion of pixels into moving objects and background,
which is key benefit compared to the method of Fishbain
et al. [8], and the motion estimation which was opti-
mized for performance on moving objects.

We qualitatively evaluated the new approach on both
sea and land scenarios. For the ship at sea, the approach
showed good performance in terms of sharpness as well
as stability on the heaving ship. Also, for the land sce-
narios, we qualitatively demonstrated improved turbu-
lence mitigation on moving objects compared to our
previous global approach, while retaining a good per-
formance on the background. In particular, we demon-
strated that increased sharpness could be achieved on a
heaving ship, a flying helicopter, and a moving truck.
Our results on the data showing the walking golf player
and vehicles on the highway did not show significant im-
provements on image quality on the moving objects, but
also no substantial degradation due to artifacts.

The choice of optical flow algorithm depends on the
application. The Lucas-Kanade algorithm shows good
turbulence mitigation results for scenes with limited oc-
clusion of moving objects or background, such as the
heaving ship at sea or the flying helicopter. The more
computationally expensive TV-L1 optical flow typically
provides much better segmentation between the motion
of large moving objects and background, as shown on
the driving car and golf players. Conversely, the Lucas-
Kanade algorithm shows more accurate motion estima-
tion on the small moving objects such as the helicopter
than the TV-L1 optical flow. It appears that in the heli-
copter case, the TV-L1 optical flow prefers a smooth so-
lution where the estimated motion is the same for the
background and the small moving object, rather than a
field where the estimated motion on the helicopter dif-
fers from the background. In some cases, the TV-L1 so-
lution also exhibits local outliers in the estimated
motion, particularly around repeated structures in the
images. Taken together, we conclude that in terms of
image quality, the faster Lucas-Kanade algorithm is pre-
ferred for small moving objects and simple backgrounds,
whereas the TV-L1 algorithm is preferred for large mov-
ing objects and complex backgrounds.

Occlusion events provide one of the greatest chal-
lenges for the application of dynamic turbulence miti-
gation. Future work will therefore focus on accurately
identifying occlusions and accounting for them in the
image restoration and stabilization, for example when
vehicles disappear behind buildings. Another chal-
lenge which will be addressed in the future work is
to investigate how motion blur may be prevented on
small moving objects, whose motion could not be ac-
curately estimated using the optical flow considered
in this paper.
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DSR: Dynamic super-resolution; HR: High resolution; HS: Horn-Schunck;
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L1: Total variation L1 regularization

Acknowledgements

This manuscript is in part based upon a proceedings article for the SPIE
conference on Electro-Optical and Infrared Systems: Technology and
Applications XIV in 2017 in Warsaw, Poland [23]. We thank Adimec for
the raw video data corresponding to the results shown in Figs. 4, 7, 8,
11, 12, 13, 14, 15, and 17. Also we acknowledge NATO SET-226 for support
in the acquisition of the field trial data for Figs. 5,6 and 10, 11, 12, 13, 14, and 15.

Funding
The work presented in this paper was partly funded by Adimec.

Availability of data and materials

The data that support the findings of this study corresponding to the results
shown in Figs. 4, 7, and 8 are available from Adimec but restrictions apply to
the availability of these data, which were used under license for the current
study, and so are not publicly available. Data are however available from the
authors upon reasonable request and with permission of Adimec.

The data that support the findings of this study corresponding to the results
shown in Figs. 5 and 6 are available from NATO SET-226 but restrictions
apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Data are however available
from the authors upon reasonable request and with permission of NATO
SET-226. The other datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable request.

Authors’ contributions

RPJN and KS devised the stabilization and occlusion compensation methods
in this manuscript. RPJN implemented the algorithms, processed the data for
this manuscript, and conducted the observer experiment. All authors contributed
to the processing framework, analysis of results, and writing of the final

manuscript and have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 11 July 2018 Accepted: 22 November 2018
Published online: 03 January 2019

References

1. M.C. Roggemann, BM. Welsh, BR. Hunt, Imaging through turbulence
(CRC Press, Boca Raton, 2018)

2. JW. Goodman, Statistical Optics (John Wiley & Sons, 2000)

3. J.Gilles, T. Dagobert, C. De Franchis, in International Conference on Advanced
Concepts for Intelligent Vision Systems (Springer, Berlin Heidelberg, 2008), pp.
400-409

4. M. Hirsch, S. Sra, B. Scholkopf, S. Harmeling, in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (IEEE, San Francisco, 2010), pp. 607-614

5. M. Van lersel, AM. Van Eijk, in Free-space laser communications X. Int Soc
Optics Photon 7814, 78140Q (2010)

6. AW. van Eekeren, K Schutte, J. Dijk, P.B. Schwering, M. van lersel, N.J.
Doelman, In infrared imaging systems: design, analysis, modeling, and
testing XXIII. Int Soc Optics Photon 8355, 83550Q (2012)

7. X.Zhu, P. Milanfar, Removing atmospheric turbulence via space-invariant
deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 157 (2013)

8. B.Fishbain, L.P. Yaroslavsky, L.A. Ideses, Real-time stabilization of long range
observation system turbulent video. J. Real-Time Image Proc. 2(1), 11 (2007)

9. E. Chen, O. Haik, Y. Yitzhaky, Detecting and tracking moving objects in long
distance imaging through turbulent medium. Appl. Opt. 53(6), 1181 (2014)

10.  CS. Huebner, In infrared imaging systems: design, analysis, modeling, and
testing XXIII. Int Soc Optics Photon 8355, 835501 (2012)

(2019) 2019:2

20.
21.
22.

23.

Page 22 of 22

KK. Halder, M. Tahtali, S.G. Anavatti, Geometric correction of atmospheric
turbulence-degraded video containing moving objects. Opt. Express 23(4),
5091 (2015)

Q. Oreifej, X. Li, M. Shah, Simultaneous video stabilization and moving object
detection in turbulence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 450 (2013)
N. Anantrasirichai, A. Achim, D. Bull, in 2018 25th IEEE International Conference
on Image Processing (ICIP) (IEEE, Athens, 2018), pp. 2895-2899

D. Li, Suppressing atmospheric turbulent motion in video through trajectory
smoothing. Signal Process. 89(4), 649 (2009)

T.Q. Pham, M. Bezuijen, LJ. Van Vliet, K. Schutte, CL.L. Hendriks, in visual
information processing XIV. Int Soc Optics Photon 5817, 133-145 (2005)

K. Schutte, D.JJ. de Lange, S.P. van den Broek, In infrared imaging systems:
design, analysis, modeling, and testing XIV. Int Soc Optics Photon 5076,
92-101 (2003)

J. Dijk, K. Schutte, RP. Nieuwenhuizen, In electro-optical and infrared
systems: technology and applications XIll. Int Soc Optics Photon 9987,
99870E (2016)

BD. Lucas, T. Kanade, in Proceedings of the 7th international joint conference
on Artificial intelligence (Morgan Kaufmann Publishers Inc, San Francisco,
1981), pp. 674-679

B.K. Horn, BG. Schunck, Determining optical flow. Artif. Intell. 17(1-3), 185
(1981)

C. Zach, T. Pock, H. Bischof, in Joint Pattern Recognition Symposium
(Springer, Berlin Heidelberg, 2007), pp. 214-223

S. Baker, D. Scharstein, J. Lewis, S. Roth, M.J. Black, R. Szeliski, A database and
evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1 (2011)
D.J. Butler, J. Wulff, G.B. Stanley, MJ. Black, in European Conference on Computer
Vision (Springer, Berlin Heidelberg, 2012), pp. 611-625

RP.J. Nieuwenhuizen, AW. van Eekeren, J. Dijk, K. Schutte, in electro-optical
and infrared systems: technology and applications XIV. Int Soc Optics Photon
10433, 104330S (2017)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Introduction
	Methods
	Results and discussion
	Turbulence mitigation results
	Sea scenario
	Land scenarios

	Image stabilization results
	Comparison of methods across datasets
	Comparison with existing methods in the literature

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

