
RESEARCH Open Access

An improved algorithm based on Bloom
filter and its application in bar code
recognition and processing
Mai Jiang* , Chunsheng Zhao, Zaifeng Mo and Jing Wen

Abstract

In many cases, databases are incompetent to meet the requirement of the quick query identification and
processing of bar codes, such as the automatic sorting system of giant logistics warehouse. Bloom filter can be
faster than databases, but its high false positive rate may seriously affect the efficiency of work. Although increasing
the width of bit vector and the number of hash functions can reduce the false positive rate, the effect will be not
significant after a certain threshold value, and this approach will increase the cost of processing time. So, it could not
be increased indefinitely. This paper presents an improved algorithm based on Bloom filter and its application in bar
code recognition and processing. The bit vector of Bloom filter is divided into two parts. Every element ai could be
mapped to a part of the bit vector by some hash functions. For each element to amplify the difference by g (), which
makes g (ai) = a*i, the a

*
i is mapped to another part of the bit vector by some hash functions too. This algorithm can

significantly reduce the false positive rate of the Bloom filter, but does not increase much time and space costs.

Keywords: Bloom filter, Hash function, False positive rate

1 Introduction
In many cases, the bar codes need to be quickly identified
and processed in a timely manner. The traditional way is
to scan the bar codes and then read the database to iden-
tify the bar codes; but on some occasions, such modern
logistics warehouse of giant automatic sorting system
using databases often cannot satisfy the requirement of
bar codes recognition speed. Especially nowadays, with
the increasing popularity of online shopping, many logis-
tics systems are processing more and more data, which
puts a lot of pressure on the database. The rapid identifi-
cation of bar codes using Bloom filter is a good option.
However, Bloom filter has a defect that there is a false
alarm rate, which is a bad situation for the bar code’s rec-
ognition system that needs to be quickly identified and
processed. Even sometimes false positives can lead to a lot
of later processing time costs. Although the false positive
rate could be reduced by increasing the length of the bit
vector of the Bloom filter and adding the number of hash
functions, the cost of time and space will also be

increased. However, in systems that require quick recogni-
tion, the increasing of time and space is often restricted.
In addition, the algorithm implementation of various clas-
sical hash functions of Bloom filter can easily result in the
ignoring of the slight difference of similar inputs, which
leads to the improvement of false positive rate. The bar
code itself is often very different. In this paper, an im-
proved Bloom filter algorithm is proposed to reduce the
false positive rate and ensure the speed of bar code recog-
nition. The algorithm proposed in this paper is to reduce
the false positive rate of Bloom filter.
This paper is in the same direction with the author’s

another paper [1]. However, this paper differs from the
reference [1] in the following aspects and improvements.
Firstly, this paper analyzes the reasons why the classical
hash functions in practical applications tend to ignore
the differences of similar elements, which is why similar
elements are more likely to cause conflicts. The argu-
ments of previous articles have been based on
non-existent perfect hashing functions. Secondly, a
new idea is proposed in this paper, that is, the hash-
ing process is carried out after the element has been
transformed to solve the problem of high conflict

* Correspondence: 214694345@qq.com
School of Computer Science, Sichuan University of Science and Engineering,
Zigong, Sichuan, People’s Republic of China

EURASIP Journal on Image
and Video Processing

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139
https://doi.org/10.1186/s13640-018-0375-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0375-6&domain=pdf
http://orcid.org/0000-0002-1506-3931
mailto:214694345@qq.com
http://creativecommons.org/licenses/by/4.0/

rate of Bloom filter caused by approximate input ele-
ments. This transformation is the differential amplifi-
cation transformation. Finally, based on the proposed
algorithm, this paper presents a detailed scheme for
bar code recognition and processing.
We briefly introduce the results and discussion in

Section 2. In this section, the research results are
briefly introduced. Bloom filter and its current
common usage are discussed. We describe Bloom fil-
ters in detail, and we give a hopefully precise picture
of space/computing time/error rate trade-offs. An
improved algorithm is introduced. In section 3, an
application scheme of the algorithm in bar code
recognition is introduced. The last section is the
conclusion.

2 Results and discussion
An improved Bloom filter is proposed in this paper.
This algorithm can effectively reduce the false posi-
tive rate of Bloom filter, but it does not increase
much space and time cost. Moreover, the algorithm
is relatively easy to implement. This paper applies
the algorithm to bar code recognition and processing
and designs a specific scheme. According to the stat-
istical effect of the test, the algorithm reduces the
false positive rate and achieves better test results. At
the same time, the bar code’s automatic identifica-
tion scheme designed in this paper has a favorable
processing speed.

2.1 Bloom filters
Bloom filter [2] was proposed by Burton Howard
Bloom in 1970. It is a compact data structures for
probabilistic representation of a set in order to sup-
port membership queries (i.e., queries that ask: “Is
element X in set Y?”). This compact representation is
the payoff for allowing a small rate of false positives
in membership queries. That is, queries might incor-
rectly recognize an element as a member of the set.
If it is needed to determine whether an element is

in a collection, the traditional solution is to save all
the elements and then compare them. The data struc-
tures such as linked lists, trees, and so on, are the
same idea. But with the increasing of the elements in
the collection, the storage space that they need be-
comes larger and larger, and the retrieval speed be-
comes slower and slower (O(n),O(logn)).
Bloom filter has the advantage that space efficiency

and query time efficiency are much better than ordinary
algorithms. A hash table can be used to determine
whether an element is in a collection or not, and the re-
trieval is very efficient. Nevertheless, Bloom filter does
the same thing with only one fourth or one eighth or
even lower of the space complexity of the hash table

approach. Bloom filter can insert elements, but non-
existing elements can be deleted. Bloom filter is impos-
sible to have a false negative, as long as the elements
exist in Bloom filter. However, Bloom filter has one
major shortcoming that it can produce false positive,
and the more similar elements there are, the greater the
false positive rate will be.

2.2 Usage
Since Bloom proposed this theory in reference [2],
Bloom filter has been used for various purposes:

A. Blacklist

One of the most typical applications is the blacklist.
Bloom filter is used to filter usernames or IP ad-
dresses, e-mails, etc. If the record is not on the black-
list, it can be passed; otherwise, it is not allowed to
pass. If miscarriage of justice occurs, normal users
will be judged as blacklisted users. A whitelist can be
created to eliminate misjudgments.

B. Duplicate URL detection for web crawler

When a web crawler gets a URL, it needs to determine
whether the URL has been accessed. The number of URL
records acquired by web crawlers is often huge, which
makes the storage and processing of these data more diffi-
cult. If Bloom filters are adopted in the web crawler, it can
greatly reduce the storage capacity and improve the pro-
cessing efficiency. If there is a misjudgment, the URL that
has not been accessed will be wrongly judged to have been
accessed [3].

C. File or record lookup

The files on disks or records in databases need to be
stored in Bloom filter as keys. When accessing disk files or
database records, there is no need to access them directly
from disks or databases. Bloom filter can be used to detect
the existence of these data. If the data exist, access is initi-
ated. It can avoid empty queries of disks or databases. If a
misjudgment occurs, files or records that do not exist are
misjudged to be existent. The negative effects of the mis-
judgment are negligible.

D. CDN (content delivery network)

CDN adopts proxy caching technology, and its
proxy cache server adopts distributed cloud storage.
When the CDN server is accessed, firstly, the local
server will be looked for whether it has a cache or
not. If not, other sibling servers will be checked.
Other sibling servers’ caches are stored as keywords

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 2 of 12

in a Bloom filter. To avoid an empty query, the
Bloom filter of the local server should be queried be-
fore going to another server. If a misjudgment occurs,
a cache that does not exist will be misjudged to be
existent. This has little negative impact too.

E. Others

Bloom filter also has some other common uses, such as
“Web Cache Sharing,” [4] “Query Filtering and Routing,”
[5–8] “Compact Representation of a Differential File,” [9]
“Free Text Searching,” [10] “OceanStore”[8, 11]. In sum-
mary, Bloom filter is very versatile. Over time, more new
applications for Bloom filter will be developed. With the
arrival of the big data era, Bloom filter will surely exert
more value.

2.3 Details of Bloom filters
2.3.1 Constructing Bloom filters
There’s a set of n elements. Bloom filter uses the bit vector
V with length m to describe the membership information
of A. Therefore, k hash functions, h1, h2, …, hk with ∀ai ∈
A, hi(ai) ∈ {1. . m1}, are used as described below:
The following program builds a Bloom filter corre-

sponding to set A. The bit vector V of the Bloom filter
has m bits, using k hash functions h1, h2, …, hk:

So, if ai is a member of set A, all bits corresponding to
the hash value of ai are set to 1 in the resulting Bloom
filter V. The following program tests whether an element
belongs to set A:

When new elements are added to a collection, their
corresponding locations are evaluated by the hash func-
tion, and the bits are set in the filter:

If two Bloom filters are to be merged, simple bitwise
OR manipulation is performed between two-bit vectors:

2.3.2 Bloom filters—the math
One striking feature of Bloom filters is that there is
a clear trade-off between filter size and error rate. It
is observed that after n keys are inserted into an
m-sized filter using the k hash function, the prob-
ability of a bit still being zero is:

P0 ¼ 1−
1
m

� �kn

≈ 1−e−
kn
m ð1Þ

It is assumed that all hash functions are perfect, and
they evenly distribute the elements of set A throughout
the space {1..M}. In practice, good results are obtained
using MD5 and other hash functions [12].
Therefore, the probability of a false positive (the prob-

ability that all k bits have been previously set) is:

Perr ¼ 1−p0ð Þk ¼ 1− 1−
1
m

� �kn
 !k

≈ 1−e−
kn
m

� �k
¼ ek1n 1−e−kn=mð Þ

ð2Þ

In Eq. (2), Perr is minimized for k ¼ m
n 1n 2 hash

functions.
The number of hash functions used in practice is not

the more the better. The computational overhead of
each hash function is constant. Initially increasing the
number of hash functions reduces the false positive rate,
but the incremental benefits of adding hash functions
decrease after a certain threshold value (see Fig. 1).
In Fig. 1, the Bloom filter is 32 bits per item (m/n

= 32). At this point, 22 hash functions are used to
minimize the false positive rate. However, adding
hash functions does not significantly reduce the
error rate when more than 10 hash functions have
been used.

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 3 of 12

Equation (2) is the basic formula of Bloom filter.
Error rate (perr), number of hash functions, and bits per
entry (m/n), as long as two of these three parameters
are determined, the remaining one is also determined
(see Fig. 2).
In Fig. 2, different rows represent different numbers

of hash keys. It is worth noting that the error rate of
using 32 keys is not significantly an advantage over
using only 8 keys.

m
n
¼ −k

1n 1−e
1n perr

k

� � bits per entryð Þ ð3Þ

Equation (3) can be derived from Eq. (2). From Eq. (3),
the ratio of the size of the bit vector to the number of
elements is obtained. Multiply both sides of Eq. (3)
by n, then the size m of the bit vector V can be

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 4 7 10 13 16 19 22 25 28 31

)elacsgol(etar
sevitisop

eslaF

Number of hash functions
Fig. 1 The false positive rate corresponding to the number of hash functions. The curve shows the relationship between the number of
hash functions and the false positive rate. The Bloom filter is 32 bits per item (m/n = 32). Initially, the false positive rate decreases as the
number of hash functions increases. After reaching the threshold value (22), the number of hash functions increased, while the false
positive rate increased slightly

0
10
20
30
40
50
60
70

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

yrtnerep
s ti

B

Error rate (log scale)

k=4

k=8

k=16

k=32

Fig. 2 The error rate desired as a function of the size of the Bloom filter (bits/entry). The number of hash functions is k. The curve
represents the relation between error rate and the size of Bloom filter (bits/entry) under the premise of setting the number of
hash functions

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 4 of 12

obtained. In other words, as long as the number of
elements, false positive rate, and hash function is de-
termined, the size of the bit vector V can be deter-
mined accordingly.
To summarize, Bloom filter is a compact data

structure for querying the existence of elements. But
it has a false positive rate. To design Bloom filter,
we need to weigh the error rate (conflict), the num-
ber of hash functions (driver computation overhead),
and the size of bit vectors. Formula (2) is the main
formula of Bloom filter, which is the analysis basis
of Bloom filter.

2.3.3 A modified algorithm

2.3.3.1 Similar elements bring more false positives
Bloom filter produces a hash value by plugging keys
into the hash function. In the theoretical analysis of
the Bloom filter, it is always assumed that the hash
function is perfect with uniform distribution [13].
However, in reality, the perfect hash function does
not exist. Whether the hash function is based on
addition or multiplication or based on the shift, it is
more or less likely to have some clustering of the
hashing value [14], which leads to more conflicts, es-
pecially when there are more approximations. Now,
let us look at a classic hash function in Bloom filter,
Bob Jenkins’ functions; the algorithm is implemented
as follows:

Austin Appleby released a hash function named
MurmurHash in 2008. The algorithm is implemented

as follows:

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 5 of 12

These are all classic hash functions, and they are
all based on shifted hash functions. In the process
of shift, the low and high bits are discarded. This
must result in a loss of precision. For similar ele-
ments, the difference between them is small [15].
The difference bits between similar elements may be
discarded by the shift operation. This leads to dif-
ferences in similar elements being ignored [16]. This
is also a source of false positives in the actual use
of the Bloom filter. The more numbers of similar el-
ements input, the more likely it is to produce false
positives. This is determined by the function. There-
fore, Bloom filter with differential amplification and
rehash is proposed [17].

2.3.3.2 Constructing new Bloom filters There is a set
A = {a1, a2,…, an} of n elements. If ai is an element
of A, mapping ai to a part of the filter by some hash
functions, each element amplifies the difference by
function g (), which makes g (ai) = a*i. Bloom filters
describe membership information of A using a bit
vector V of length m. For this, k hash functions, h1,
h2, …, hk with ∀ai ∈ A, hi(ai) ∈ {1. . m1}, and d hash
functions, f1, f2, …, fd with fj(a

∗) ∈ {m1. . m}, are
used as described below:
The schematic diagram of the algorithm is shown in

Fig. 3.
The following procedure builds an m bits Bloom filter,

corresponding to a set A and using h1, h2, …, hk and
f1, f2, …, fd hash functions:

Therefore, if ai is member of a set A, in the
resulting Bloom filter V, all bits obtained corresponding
to the hashed values of ai are set to 1. The program to test
whether the element elm belongs to Bloom filter is as
follows:

The algorithm for merging two Bloom filters has not
changed. The procedure to add a new element to Bloom
filter is as follows:

2.3.3.3 New Bloom filter—the math In the new Bloom
filter, a*i is mapped to the latter part (m1..m) of the bit
vector by d hash functions. According to the characteris-
tics of Bloom filter, it will inevitably generate false posi-
tive rate, which is set as p’, then:

p
0
≈ 1−e−

dn
m

� �d
¼ ed ln 1−e−dn=mð Þ ð4Þ

Assuming that the false positive rate of the new Bloom
filter is pNew-err, then:

pNew−err ¼ �Perr � p ð5Þ

pNew−err ¼ edk ln 1−e−kn=mð Þ ln 1−e−dn=mð Þ ð6Þ

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 6 of 12

3 Used in bar code identification and processing
3.1 Bar code processing scheme
Nowadays, bar codes are more and more widely used. In
many cases, the speed of bar code processing is increas-
ingly required, such as the sorting system of large logistics
companies [18]. This section describes a bar code process-
ing scheme based on the improved Bloom filter intro-
duced in this article. This scheme can not only improve
the processing speed of bar codes, but also reduce the
false positive rate as much as possible.
A bar code recognition scheme based on improved

Bloom filter is presented below(shown in Fig. 4).
In this scheme, we (1) assume the image is in the ideal

state of identification and verification, (2) cut out the bar
code area from a picture, and (3) properly handle the
detected bar codes so that it is as ideal as possible. The
ideal state is that the bar code generated by code gener-
ator has no defilement of the image, both sides of the

bar code are horizontal and vertical, and the bar code is
positive from left to right.
In this scenario, the bar code area needs to be cropped

from the image that contains the bar code to identify the
bar code from the area. The obtained bar code will be
the input element of the Bloom filter. Of course, the
Bloom filter adopted here is the improved Bloom filter
introduced in this paper. This solution takes advantage
of the high-speed feature of the Bloom filter to automat-
ically recognize the bar code and quickly retrieve it for
further processing.
The bar code area needs to be cropped out of the ori-

ginal image first. The cutting steps of the bar code area
in an image are as follows:(1) morphology gradient oper-
ation, ignore the Y direction gradient, and focus on the
X direction gradient. The grayscale image of the image
was calculated separately, and the x-direction gradient
was subtracted from the y-direction gradient to retain

Fig. 3 Algorithm schematic. The symbol ai represents any element in A. For each element to amplify the difference by function g (), which makes
g (ai) = a*i, the ai is mapped to one part of the filter through d hash functions(hi : X→ {1. . m1}), and a*i is mapped to another part of the filter
through k hash functions(fj : X

∗→ {m1. . m})

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 7 of 12

Start

Load the picture

Calibration of bar code image

Image preprocessing (grayscale,
filtering, binarization)

Scan the bar code to get the
width of bar and space

Check

Cut out the bar code area

Decoding the width
of bar and space

yes no

yes

no

yes

noIs the test
result

correct?
Error correction

Successful
error

correction?
Identification failure

Get the bar code

Use Bloom Filter to query

Is it the right
element?

Subsequent processing 1

Subsequent processing 3

Subsequent processing 2

End

Fig. 4 Bar code recognition processing flow chart. Boxes represent processing steps. The diamond frame represents the selection. The arrow
indicates the direction of execution of the process

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 8 of 12

the x-direction feature and remove the y-direction inter-
ference. (2) Image blur processing and binarization; at
this point, the corresponding fuzzy parameters and
threshold parameters need to be adjusted to get the rela-
tively best results. (3) Closed operation; to eliminate the
black gap, dilation and erosion can be used at this point
to eliminate certain areas connected to the rectangular
area of the bar code. (4) Find the contour, calculate the
maximum area of the contour, and fit the contour rect-
angle to get the final result. After cutting successfully,
the image containing the bar code area can be obtained
(see Figs. 5, 6, 7, 8, and 9).
After the bar code area is cropped, the bar code image

needs to be corrected, preprocessed, and scanned to ob-
tain the width of the bar and space. The bar code infor-
mation is then decoded according to the width of the
bar and space. The obtained bar code information can
be entered into the improved Bloom filter for retrieval,
and then further processing can be conducted according
to the retrieval results.

A bar code is made up of several numbers, letters, or
symbols, and the same company’s bar codes are often
only slightly different [19]. These bar codes, as input ele-
ments, are equivalent to a large number of similar keys
for Bloom filter. When the hash functions of Bloom fil-
ter have some similar input elements, they may ignore
the small differences, resulting in the hash function pro-
ducing the same output on the similar elements and
generating false positives [20]. Because a company’s bar
codes are easy to focus on one section, this will result in
more false positives. However, each bar code is unique,
and the difference between the two bar codes is certain.
Therefore, the characteristic part of the bar code can be
extracted for mathematical transformation to indicate
the difference between similar elements magnified. Thus,
the difference between the keys in the hash function of
Bloom filter can be enlarged and the false positive rate
can be reduced [21].
The following two tables are illustrating the applica-

tion of the scheme(see Table 1 and Table 2). The “a”

Fig. 5 The camera captured the original image. The original image of the bar code is captured by the camera

Fig. 6 Morphology gradient operation. Gradient images are calculated respectively. The X-direction gradient is used to subtract the Y-direction
gradient, so that the X-direction characteristics can be retained and the interference in the Y-direction can be removed

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 9 of 12

is the original input element of the Bloom filter, and
the “value of a” is the value of the bar code. The “a*”
is the result of the mathematical transformation of
the element “a”.

3.2 Test results
A lot of testing has been carried out. According to the
statistical effect of the test, the bar code identification
error rate is lower when using the improved Bloom filter
in the scheme, while the error rate is higher when using
the classic Bloom filter in the scheme. If there are more
similar bar codes in the test sample, the false positive
rate will be greatly reduced. At the same time, the test
results show that this scheme is faster than the trad-
itional scheme using databases.

4 Conclusion
The Bloom filter produces hash values by entering
keys into hash functions. In the theoretical analysis of
Bloom filter, it is usually assumed that the hash
functions are perfect with uniform distribution. In
reality, however, the perfect hash function never

exists. Sometimes, due to the particularity of the data,
some hash functions have different uniform distribu-
tion of hash values due to input sample. This makes
it difficult to evaluate the distribution characteristics
of the hash function. So, the evaluation of the uni-
form distribution characteristics of the hash function
is generally carried out by statistical methods. Regard-
less of the hash function is based on the addition,
multiplication, or based on the displacement, there
will be more or less hash value clustering, which
leads to conflicts, especially when the input keys have
more approximation. The classical Bloom filter and
most of its variants are all directly hashing the ele-
ments, which cannot avoid the higher false positive
rate when there are more approximations.
Therefore, an improved Bloom filter is proposed in

this paper. The bit vector of Bloom filter is divided into
two parts. For each element to amplify the difference by
g(), which makes g(ai) = a*i, the a*i is mapped to another
part of the bit vector by some hash functions. When an
element is retrieved in both parts of the bit vector, it is
shown that the element exists in the Bloom filter.

Fig. 7 Image blur processing and binarization. The image is processed in a fuzzy way and two-valued. Processing should pay attention to
adjusting the corresponding fuzzification parameters and threshold parameters to get the best results

Fig. 8 Closed operation. The closed operation is used to remove the black gap. The closed operator is set according to the condition of the gap

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 10 of 12

Because this algorithm transforms elements through
the function g(), the differences between elements are
magnified. This reduces the collision rate of the Bloom
filter. Especially when the values of input elements are
similar, the effect of reducing collision is obvious. This
algorithm reduces the collision rate of the Bloom filter,
but it does not add much space and time cost. Algo-
rithm implementation is also easy. The results of the sta-
tistics are also better. The algorithm is also applied to
bar code recognition and processing, and a specific
scheme is designed. Because the bar codes of each com-
pany are concentrated, the input elements of Bloom fil-
ter are similar. According to the results of testing, this
algorithm can effectively reduce the conflict rate of bar
codes in Bloom filter. At the same time, the bar code
automatic identification scheme designed in this paper
has an advantage of high processing speed.

5 Methods
The purpose of this study is to find a method to reduce
the false positive rate of Bloom filter, especially when the
input contains a large number of approximate elements.
The same company’s bar codes are extractly the data
with a small difference. This paper uses this improved
Bloom filter to process the bar codes and designs a
complete scheme.
An improved Bloom filter is proposed in this paper.

We divide the bit vector of Bloom filter into two

parts. Consider a set A = {a1, a2,…, an} of n ele-
ments. If ai is an element of A, mapping ai to a part
of the filter by some hash functions, each element to
amplify the difference of g(), which makes g(ai) = a*i.
Bloom filters describe membership information of A
using a bit vector V of length m. Every element ai
could be mapped to a part of the bit vector by some
hash functions. The a*i is mapped to another part of
the bit vector by some hash functions too. When
querying an element, it means that the element be-
longs to the set as long as it has a corresponding
value for both parts of its bit vector.
In many cases, due to the requirement of process-

ing speed, Bloom filter has to be used to deal with
bar codes. However, the bar codes of the same com-
pany often differ slightly, which easily results in the
increasing of the false positive rate of the Bloom
filter. A complete bar code processing scheme is de-
signed in this paper. This scheme adopts the im-
proved Bloom filter proposed in this paper to process
bar codes effectively. The improved Bloom filter pro-
posed in this paper is used in the scheme. The
scheme needs to identify the bar code and get the
corresponding data. The data is then inputted as an
element into the Bloom filter for looking up. If found,
the bar code is the element that exists. For extremely
individual elements, if something goes wrong, they
could also be queried from the original database.

Fig. 9 Crop to the bar code area. The bar code area is cropped from the original image

Table 1 Bar code mapping and differential amplification
transformation

a Value of a Hash value(hi : X→ {1. . m1})

a1 x1x2x3x4x5x6x7x8x9 h1 (a1), h2(a1), …,hj(a1),... ,hk(a1)

a2 y1y2y3y4y5y6y7y8y9 h1(a2), h2(a2), …,hj(a2),... ,hk(a2)

a3 z1z2z3z4z5z6z7z8z9 h1(a3), h2(a3), …,hj(a3),... ,hk(a3)

a4 u1u2u3u4u5u6u7u8u9 h1(a4), h2(a4), …,hj(a4),... ,hk(a4)

a5 v1v2v3v4v5v6v7v8v9 h1(a5), h2(a5), …,hj(a5),... ,hk(a5)

… … …

Element value is the bar code. A certain rule can be followed to amplify the
differences between elements.By the k hash functions {h1, h2, ……, hk} to
obtain the k bits are stored in {1 .. m1} the corresponding position

Table 2 Mapping after transformation

a*i = g (ai) Value of a* Hash value(fj : X
∗→ {m1. . m})

a*1 X1X2X3X4X5X6X7X8X9 f1(a
*
1), f2(a

*
1), …,fj(a

*
1),... ,fd(a

*
1)

a*2 Y1Y2Y3Y4Y5Y6Y7Y8Y9 f1(a
*
2), f2(a

*
2), …,fj(a

*
2),... ,fd(a

*
2)

a*3 Z1Z2Z3Z4Z5Z6Z7Z8Z9 f1(a
*
3), f2(a

*
3), …,fj(a

*
3),... ,fd(a

*
3)

a*4 U1U2U3U4U5U6U7U8U9 f1(a
*
4), f2(a

*
4), …,fj(a

*
4),... ,fd(a

*
4)

a*5 V1V2V3V4V5V6V7V8V9 f1(a
*
5), f2(a

*
5), …,fj(a

*
5),... ,fd(a

*
5)

...

The value of a* is obtained by g(a). Use the d hash functions {f1, f2,, fd} to
obtain d bits stored inc {m1 .. m} in the appropriate location

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 11 of 12

Acknowledgements
This article was also assisted by Mr. Jun Ye and others, and thanks together. In
particular, we would like to thank the reviewers for their valuable comments.

Funding
This work was partially supported by the Sichuan University of Science and
Engineering research fund: 2014KY01, Enterprise Informatization and Internet
of Things measurement and Control Technology Key Laboratory of the
University of Sichuan: 2014WYY04, Support Plan of Sichuan Science and
Technology Department: 15ZC0195, and Sichuan Education Department:
17SB0345.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated
or analyzed during the current study.

Authors’ contributions
MJ is responsible for the algorithm and scheme design and most of the
other work. CSZ participated in the design code. ZFM participated in the
scheme design. JW is involved in the implementation of the scheme. All
authors read and approved the final manuscript

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 26 July 2018 Accepted: 8 November 2018

References
1. M. Jiang, C. Zhao, G. Xiang, in 6rd International Congress on Image and

Signal Processing (CISP 2013). A modified algorithm based on the bloom
filter (2013), pp. 1087–1091

2. B. Bloom, Space, “time trade-offs in hash coding with allowable errors,”.
Commun. ACM 13(7), 422–426 (1970)

3. W.H.A. Yuen, A hybrid Bloom filter location update algorithm for wireless cellular
system. IEEE Intl. Conf. on Communications vol. ICC(3), 1281–1286 (1997)

4. L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a scalable wide-area
web cache sharing protocol (in Proceedings of ACM SIGCOMM’98,
Vancouver, 1998)

5. S.D. Gribble, E.A. Brewer, J.M. Hellerstein, D. Culler, in Proceedings of the
Fourth Symposium on Operating Systems Design and Implementation.
Scalable, “Distributed Data Structures for Internet Service Construction”
(OSDI 2000, San Diego, 2000)

6. S.D. Gribble, M. Welsh, R.V. Behren, E.A. Brewer, D. Culler, N. Borisov, S.
Czerwinski, R. Gummadi, J. Hill, A.D. Joseph, R.H. Katz, Z. Mao, S. Ross, B.
Zhao, The Ninja architecture for robust internet-scale systems and services.
Comput. Netw. 35(4), 473–497 (2001)

7. T.D. Hodes, S.E. Czerwinski, B.Y. Zhao, A.D. Joseph, R.H. Katz, An architecture
for secure wide-area service discovery. Wirel. Netw 8(2–3), 213–230 (2002)

8. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao, in Proceedings of the
Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems. OceanStore: “An Architecture for Global
-Scale Persistent Storage” (ASPLOS 2000, Cambridge, 2000)

9. M. Mitzenmacher, in Twentieth ACM Symposium on Principles of Distributed
Computing. Compressed bloom filters (PODC 2001, Newport, Rhode Island, 2001)

10. J.K. Mullin, A second look at Bloom filters. Commun. ACM 26(8), 570–571
(1983)

11. S. Rhea, W. Weimer, “Data location in the oceanstore”, in unpublished, UC
Berkeley. Journal of Nutrition Education & Behavior 44(4), S25 (1999)

12. M.V. Ramakrishna, Practical performance of Bloom filters and parallel free-
text searching. Commun. ACM 32(10), 1237–1239 (1989)

13. K.W. Choi, D.T. Wiriaatmadja, E. Hossain, Discovering mobile applications in
cellular device-to-device communications: Hash function and bloom filter-
based approach. IEEE Trans. Mob. Comput. 15(2), 336–349 (2016)

14. J. Qian, Q. Zhu, H. Chen, Integer-granularity locality-sensitive bloom filter.
IEEE Trans. Comput. 20(11), 2125–2128 (2016)

15. H. Byun, J. Lee, H. Lim. "Ternary Bloom filter replacing counting Bloom filter",
IEEE International Conference on Consumer Electronics-asia, 2016, ICCE-Asia:
1-4. https://doi.org/10.1109/ICCE-Asia.2016.7804774

16. J. HM, H. Lim, New approach for efficient IP Address lookup using a Bloom
filter in trie-based algorithms. IEEE omputer Society 65(5), 1558–1565 (2016)

17. D. Pellow, D. Filippova, C. Kingsford, Improving Bloom filter performance on
sequence data using k-mer Bloom filters. J. Comput. Biol. 24(6), 547–557 (2016)

18. P. Jiang, Y. Ji, X. Wang, J. Zhu, Y. Cheng, Design of a multiple Bloom filter
for distributed navigation routing. IEEE Transactions on Systems Man &
Cybernetics 44(2), 254–260 (2017)

19. T. Pavlidis, J. Swartz, Y.P. Wang, Fundamentals of Bar code information
theory. Computer 23(4), 74–86 (2002)

20. G. Moualla, P.A. Frangoudis, Y. Hadjadj-Aoul, S. Ait-Chellouche, A bloom-filter-
based socially aware scheme for content replication in mobile ad hoc networks.
Consumer Communications & Networking Conference, 359–365 (2016) https://
doi.org/10.1109/CCNC.2016.7444807

21. H. Ko, G. Lee, S. Pack, K. Kweon, Timer-based bloom filter aggregation for
reducing signaling overhead in distributed mobility management. IEEE
Trans. Mob. Comput. 15(2), 516–529 (2016)

Jiang et al. EURASIP Journal on Image and Video Processing (2018) 2018:139 Page 12 of 12

https://doi.org/10.1109/ICCE-Asia.2016.7804774
https://doi.org/10.1109/CCNC.2016.7444807
https://doi.org/10.1109/CCNC.2016.7444807

	Abstract
	Introduction
	Results and discussion
	Bloom filters
	Usage
	Details of Bloom filters
	Constructing Bloom filters
	Bloom filters—the math
	A modified algorithm

	Used in bar code identification and processing
	Bar code processing scheme
	Test results

	Conclusion
	Methods
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

