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Abstract

Widespread industrial products, which are usually texture-less, are mainly represented with 3D boundary representation
(B-Rep) model for designing and manufacturing, hence the pose estimation of texture-less object based on
B-Rep model is worthy of much studying in industrial inspection. In view of such facts that surfaces are much
crucial both to construction of B-Rep model and to recognition of real object, the edges of the visible surfaces in each
aspect view of B-Rep model are computed and the edges in a search image containing real B-Rep objects
are extracted with modified Hough algorithm. Secondly, the two edge sets are converted into the metric
space for comparison, where each edge is expressed with the tetrad of edge length, angle of middle point,
angle of perpendicular axis, and length of perpendicular axis. In that way, the pose of real B-Rep object in a
search image is estimated by comparing the edge set of every aspect view with the edge set of the search
image with the bipartite graph matching algorithm. The corresponding experiment was taken with some
products in national design reservoir (NDR), and it verified the effectiveness of the texture-less pose estimation approach

based on B-Rep model.
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1 Introduction

The research of pose estimation and orientation of in-
dustrial products, which are typically metallic and
texture-less, has fascinated humans in the recent years
due to industrial applications and augmented reality. It
is the key process to match 3D object features with 2D
image features to determine the existence and pose of
the object in scenes in a variety of vision tasks related to
object recognition [1-3]. So 3D object representation or
3D model becomes the first important problem to solve
in advance, as for industrial object, 3D representation
has existed in fact before manufacturing. Generally
speaking, 3D mesh model is currently the dominant for
visualization and display in the general field; however,
industrial products are extensively designed and manu-
factured according to boundary representation (B-Rep)
model. B-Rep is directly consisted of geometry features
such as surfaces and edges, which generally follows
Standard for Exchange of Product Model Data (STEP) to
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share and exchange in heterogeneous design and manu-
facture platforms.

From a neuropsychological point of view, surfaces are
the primary factors of 3D object recognition. 3D shapes
are spatial configurations of surface fragments encoded
by IT neurons [4]. Ecological psychologist Gibson
regarded that the composition and layout of surfaces to
be perceived constitute what they afford [5]. Gestalt psy-
chologists try to settle how local discontinuities in mo-
tion or depth are evaluated with respect to object
boundaries and surfaces, and it hints that surfaces and
their boundaries be the enhanced and ultimate cognitive
elements of objects [6]. Similarly, Marr believed that 3D
shape representation is to describe surface geometry [1].
The surface-based representation of 3D object is the
intermediate stage between the image-based representa-
tion and 3D shape representation [7]. As a matter of
fact, B-Rep model is just surface centered and usually
converted into an adjacent attributed surface graph
(AAG) in order to recognize and analyze, while the
edges that make up the surface boundary are the most
crucial visual attributes of surfaces. At mean time, it is
mentioned that edges are the most fundamental image
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features, for instance, they are first located by Gabor fil-
ters in the current deep learning mechanism.

In this paper, we first set up the metric space about
edges in order to compare the edges from aspect views
of B-Rep model and the search image, and propose an
algorithm about the pose estimation of texture-less ob-
ject in the search image based on B-Rep model. In view
that surfaces are as the crucial visual and functional fea-
tures from ecological psychology and affordance theory
[5], moreover, considering that surfaces are also the core
elements in B-Rep model, surfaces are first extracted
from the neutral STEP file of B-Rep model, and then the
edges of surface boundary are picked up to constitute
the feature set of B-Rep model. Secondly, when the
B-Rep model is projected to generate a number of aspect
views that make up an aspect graph, the edge sets from
each aspect view that correspond to certain pose param-
eters are computed for next matching. In the same way,
the edges in the search image containing real B-Rep ob-
ject are detected and merged according to contiguity
and continuity rule, and then the search image is charac-
terized into the edge set. Now the object pose can be es-
timated by matching the bipartite graph of two edge sets
from the search image and one of aspect views of B-Rep
model.

In practice, some same problems like in [8] need to be
solved. After placing the camera on one virtual sphere
with constant radius centered at the B-Rep model center,
we ensure the translation invariance and scale invariance
by normalizing the two edge sets in the metric space,
and the rotation invariance due to edge-pairwise com-
parison in a bipartite graph matching, because the origin
of coordinate system is at the center, all B-Rep models
are within the unit sphere, and the bipartite graph
matching is the only best regardless of edge orientations.

Another problem, object off-center, is that the object
does not appear in the center of the search image. In
fact, since this problem is not related aspect views, it
can be solved by partially matching aspect views with
the search image. Meanwhile, this method can solve the
partial occlusion problem.

One main contribution of this paper is that the aspect
graph of B-Rep model can provide more accurate and
fast alignment references because the edges are the in-
herent and direct geometry features of B-Rep model. It
provides the simple edge comparison that the two edge
sets are converted into the four-dimension metric space.
Moreover, the bipartite graph matching is more
complete and accurate in the comparison of the two
edge sets than the template matching.

The rest of the paper is organized as follows. Section 2
gives the related literature. In Section 3, the metric space
for edge comparison and bipartite graph matching algo-
rithm are set up. The surface attributes of B-Rep model
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and the characteristics of projected surface edges in as-
pect views are analyzed in Section 4. In Section 5, the
edges in the search image containing the real B-Rep ob-
ject are detected and simplified. The object pose estima-
tion based on the edge bipartite graph matching
algorithm is described in Section 6. The experiment re-
sults are discussed in Section 7.

2 Related work
Approaches for 3D object recognition in a single image
have been extensively studied. Reference [2] described
the overviews of object recognition from the passive ap-
proaches and the active approaches, and alluded that tit-
illating evidences from neuroscience motivated radically
to rethink the solution to 3D object recognition. It indi-
cated that detectors paid more attention to shape prop-
erties than to color or texture properties, for example,
local shape features, medial axis or skeleton, Fourier de-
scriptors, edge direction histograms, and so on. In
addition, the chain of k-connected approximately
straight boundary aimed at the calculated edges in out-
door images as it simulates the certain characteristics of
human visual system [9]. Coarse and refined object rec-
ognition were performed by SIFT features of interesting
points in images [10]. Other common shape features in-
cluded bounding ellipses, curvature scale-space, elastic
models, and edge direction histograms [11] in CBIR sys-
tems. Fergus detected all the curves by Canny edge op-
erator, and each curve was split into independent
segments at its bi-tangent points to obtain feature vector
of the curve [12]. The singularities or shocks in medial
axes of shape outlines were used to segment the skeleton
of the object into a tree-like structure called shock graph
[13]. There were other shape detector like a log-polar
histogram of points in object boundary [14], the orienta-
tions and principle curvatures of visible patch [15]. Un-
like above, the part-based approaches provide high level
volumetric parts such as generalized cylinders and
super-quadrics to reduce the search space [16, 17].
Though the methods based on descriptors of feature
points can decrease run-time computational complexity,
they were not suitable for shiny metal surfaces [18].
Nonetheless, the aforementioned methods were not
specifically devised for the detection of texture-less
objects. Current texture-less object detectors mainly
involve edge/gradient-based template matching [19,
20], BOLD [21], gradient orientation [22], line [23],
and curve [24]. Some other texture-less detectors also
consider depth information from RGB-D data [25, 26].
Combining with the detectors, the search space of as-
pect views is reduced using prior knowledge [27] or
scale-space hierarchical model [8]. A purely edge-
based method was presented for real-time scalable de-
tection of texture-less objects in 2D images [28]. A
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regularized, auto-context regression framework itera-
tively reduces uncertainty in object coordinate and de-
tects multiple objects by a single RGB image [29]. 3D
object was detected and pose was estimated only from
color images [30].

In this paper, the edges are directly selected from the
STEP file of B-Rep model, and then converted into the
edge set of aspect views in the metric space as accurate
reference. Meanwhile, the edge set of the search image
are extracted by using modified Hough transformation.
The comparison of the two edge sets is completed to es-
timate the object pose with a bipartite graph matching
algorithm.

3 Metric space
We set up the metric space about edge to compare the
edge sets from the aspect views of B-Rep model and the
search image. The four properties of edge, called an edge
tetrad, is used to evaluate the similarity of two edges,
seen in Fig. 1, which can uniquely determine a line sec-
tion. In the four-dimension metric space, similarity dis-
tance satisfies the triangular equality. An edge tetrad is
({, alpha, theta, r), the edge length is /, the angle of mid-
dle point is alpha, the angle of perpendicular axis to the
edge is theta, and the length of perpendicular axis is .
Meanwhile, the bipartite graph matching algorithm, it-
self rotation invariant, is used in the tetrad metric space
to compare the two edge sets from the aspect views of
B-Rep model and the search image. Furthermore, the
two sets need also be normalized beforehand in the
metric space for translation and scale invariance. For
simple calculation, the curve edges of surface boundary
in B-Rep model are segmented and approximated as a
series of line sections. While surfaces in 3D B-Rep
model are projected into 2D views, each aspect view is
consisted of the line sections represented with the tet-
rads. At mean time, the edge tetrads are extracted and
converted from the search image with image processing

< edgelength

« middle point

pe! icular r

theta

<alpha

Fig. 1 An edge metric space
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algorithms such as the combination of Canny Operator
and Hough transformation.

During the matching of bipartite graph, the distance
matrix A need to be calculated in advance, and each
value of the matrix is the distance of a pair of edge tet-
rad separately from one of aspect view and the search
image.

A= [D = cr(s;,s'j’)},
D= W/Zi(xi—yi)z,xi,yi €(l,alpha, theta,r).

What makes this measure robust against occlusion
and clutter is the fact that if some features are missing,
either in the aspect view of B-Rep model or in the search
image, the observed edges will lead to the random match
with idle elements or noise edges, which will overall
contribute to the larger distance sum. In order to obtain
estimation robustness, the matched edge pairs in the bi-
partite graph are divided into two groups, in which one
group, called the nearest edge pairs, has the nearest the
minimum distances, and another has larger distances.
The group with minimum distance returns the more
precise correspondences between the aspect view of
B-Rep model and the search image, which help to pick
up the edges affected not by occlusion or clutter, as de-
tailed in Section 6.

(1)

4 Method—the edge set of an aspect view of B-
Rep model

B-Rep model are designed and stored in proprietary file
format in different CAD platform, and these files are
generally transformed into STEP files for transferring,
sharing, exchanging, and displaying in heterogeneous
CAD environments. B-Rep model is a kind of hierarch-
ical organization in STEP file: solid, topological shell,
topological advanced face, geometrical surface or poly-
gon, topological loop, topological-oriented edge, topo-
logical edge curve, geometrical curve or line, topological
vertex point, Cartesian point. The surfaces of industrial
products bear a variety of functional semantics and re-
flect design intents, and they are spontaneously the core
elements in B-Rep model, which is transformed into ad-
jacent attributed surfaces graph for easy analysis. Surface
attributes are mainly expressed by the boundary edges.
The surfaces in B-Rep model are divided into three
types: free surface, elementary surface, and polygon.
Non-uniform rational B-spline (NURBS) is the only
mathematical approach to define free surfaces in STEP.
Elementary surfaces include conic, sphere, torus, and so
on. Polygon is a planar loop closed with curves or lines,
in which the curves are NURBS curves or elementary
curves.
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The boundary of any surface type is closed with inter-
connecting curves and lines at endpoints. A curve is fur-
ther segmented into some sections at inflection points
or extreme curvature points such as maximum curva-
ture and zero curvature [31], and each curve section ap-
proximates to a straight line, as shown in Fig. 2. Thus
line sections of visible surface boundaries are collected
as an edge set and further converted in the metric space
for next comparison after B-Rep model is projected into
aspect views in 2D space according to the angle between
projection direction and surface normal.

An aspect graph is a series of projection views of 3D
object in certain directions from virtual sphere centered
at the model center. An aspect graph contains the
stable views of the model and the processes from one
stable view to another stable view. An aspect view is
consisted of the visible surfaces along the projecting
direction. An aspect graph is off-line converted into the
reference to store the pose parameters of B-Rep model,
as shown in Fig. 3.

Suppose s| is the projection of a visible edge s; in
B-Rep model, M is the matrix of projecting transform-
ation, s; = Ms;.

An aspect graph is produced according to the evenly
spaced intervals of longitude and latitude of the view
sphere. Due to normalizing the edges from the aspect
views and the search image, the radial freedom need not
to be considered. Higher aspect density helps to obtain
the more refined pose, but it increases the matching
computational complexity. Though we reduce the aspect
density with the hierarchical views [8], the intervals of
longitude angle and latitude angle are not optimized
here.

Compared to the mesh model, it is difficult precisely
to remove all hidden lines of the large surfaces in B-Rep
model. In order to decrease the complexity of project

=

Fig. 2 Segment edges of a surface boundary
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Fig. 3 An aspect graph

computation, we simply determine projective visibility
via the surface normal made up of the three random
points in each surface boundary.

5 The edge set of a search image

Edges in an image have prominent change of gray values
in certain directions, which have the characteristics of
less calculation and abundant information. Surface
boundaries as essential visual features are closed with
straight lines, convex curves, and concave curves. Fur-
thermore, the projection of straight line section retains
same shape or point, and the projection of convex or
concave curve retains same shape or straight line in 2D
projecting space. Therefore, it is crucial to detect lines
and curves in the search image to match the edges of
the aspect view of B-Rep model. In the case that line
sections approximate the short convex and concave
curves by extending line width or pixel number in width,
line edges and curve edges in the search image can be
detected with generalized Hough algorithm.

Sometimes, the same line is disconnected though the
endpoints are very near; another occasion is that some
endpoints are more dense, and these two types of point
overlap in some regions. According to contiguity rule
and continuity rule, these points need be merged into
one point with the nearest neighbor clustering in metric
space.

In another more frequent case that the camera calibra-
tion such as focal length is unknown, the image
normalization is used to eliminate the scale difference
and reduce the projection distortion. The B-Rep object
is usually not in the center of the image in most cases;



Wang and Yan EURASIP Journal on Image and Video Processing

we crop the image by shifting and scaling, and then
normalize the nine sections respectively. The nine sec-
tions are separately matched by moving an aspect view
of B-Rep model, and the sum of match distance is as the
final comparison result. The pose accuracy depends on
the number of segmentations and their combination;
here, just nine cases are listed in Fig. 4. The nine sec-
tions are produced gradually by shifting toward the
center.

6 The pose estimation by matching the bipartite
graph
Suppose the edge set of an aspect view of B-Rep model
be §' = {s|,s),....s. 1,8}, ....s,}, among which s/ is the
projection of edge s; in B-Rep model, and the edge set
of the search image possibly containing B-Rep object be
={s],s5, ..., ’1’ l,s’l’7 s },m=zn, the Euclidean dis-
tance of s and s/ leads to the correlation matrix A of S
and S'A =
next step.
The two sets from an aspect view and the search
image actually form an incomplete bipartite graph, and
the mapping relation can be optimized by the bipartite
graph matching algorithm, thus the minimum sum of
distances of the two edge sets means the best match. For
simple calculation, the empty element ¢ is first inserted

[cr(s],s7)], which is used to match in the
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in the smaller set for the equal number of elements in
the two sets, then the computation of distance sum of
edge pairs is now the optimal bipartite graph matching,
shown in Fig. 5. The element number m determines the
computation complexity, and the complexity of
Kuhn-Munkres [32], which is a popular optimal bipartite
graph matching algorithm, is #* + nn, so the computa-
tion complexity is O(#?) in the worst case.

In these cases, the pose estimation of B-Rep object in
the search image can be realized, and the algorithm is as
follows:

1. Extract the surfaces and the edges from the STEP
file of B-Rep model in the design database.

2. Build an aspect graph by projecting B-Rep model,
and compute the edge set of each aspect view based
on visible surfaces along the projection direction.

3. The edge sets of aspect view are normalized and
converted into the metric space.

4. Segment the search image and get the edge set with
Canny detector, Hough detector.

5. The edge set of the search image is normalized and
converted into the metric space.

6. Compute the distance matrix between the two sets
in the metric space, then the minimum distance
sum and the matched edges with the bipartite
graph matching algorithm, i.e., Kuhn-Munkres.

L
L

Fig. 4 Cropping images for adjusting off-center
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Fig. 5 Bipartite graph matching

Distance matrix: link weight

O
Empty element

7. Divided the matched edges into two groups.
8. The pose is estimated according to the minimum
distance sum and the ratio of the nearest edge pairs.

The matching accuracy is affected by some parame-
ters. The edge number of an aspect view is usually less
than the search image, and it is difficult to specify the
distance between the inserted empty elements and an
edge. At initial stage, the empty distance is equal to the
maximum in the distance matrix; however, if the speci-
fied distance value is too high, some matches with the
minimum distance may be overridden. The occlusion
problem is similar to the empty distance due to the loss
of some inherent points in the search image. In the case
of occlusion, the range about the minimum distance in
the nearest edge pairs needs to be evaluated. Likewise,
the aforementioned threshold in the nearest neighbor

clustering need be specified based on experience to
merge better.

In view of the conditions, a learning mechanism is
proposed to determine these parameters. Inputting the
aspect graphs and the search images from the training
set, and outputting the specified distances, and the pa-
rameters are iteratively adjusted. The training set in-
cludes some simple geometry shapes such as cubes and
cylinders, as shown in Fig. 6.

In the learning mechanism, the parameters are ad-
justed by using regular 3D models such as boxes and
cylinders.

7 Results and discussion

7.1 Accuracy

In general, the more complicated objects have more
edges; consequently, the algorithm need more the
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|
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Fig. 6 The learning mechanism of pose estimation
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runtime. It takes less runtime to use computation paral-
lel online by distributing different groups of aspect views
over different threads and settling down all aspect views
offline.

Evaluations are checked in various cases such as different
shaped objects (rounded and sharp bracket), different dens-
ities of aspect graphs, different focal lengths, as well as dif-
ferent parameters before and after learning. Suppose the
longitude angle is o, the latitude angle is 7, the estimated
pose is ep, the true pose is fp, and the pose error rate er is
defined to measure the accuracy in pose estimation:

0 =(0.0)p=(0.0)
er = (1+ (ep - 1p), ([epllep)) /2. @)

Ten different poses of each object are randomly se-
lected to compute the error rates.

1) Rounded and sharp brackets
Because curves are segmented into line sections
in B-Rep model, the aspect views as the refer-
ences were little affected by the rounded shapes;
however, the edge set of the search image greatly
fluctuated due to the curved edges even though
generalized Hough transformation has been ad-
justed well, as shown in Fig. 7. However, the
edges of B-Rep model are ready-made and deter-
mined by its intrinsic properties, so they are con-
stant in any project direction.

2) The focal length
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It can be deduced that the focal length difference
Adcauses the deviation in the normalized aspect views
by the formula:

¥ =xd/(z+d),y =yd/(z+d), 3)

z=0,% =xz,y =yz.

Thus the shape distortion and change are not related
with the change of focal length.

3) Different densities of aspect graphs

The intervals of longitude angle and latitude angle are
evenly split here, the more density KK the more runtime,
but the less pose error rate, seen in Fig. 8. After all, the
indexes are different according to the complexity of ob-
ject such as cubes and brackets.

4) Before and after learning

Under no occlusion, by adjusting the parameters such
as dmax and dmin, which are the thresholds of the max-
imum distance and minimum distance between the
edges from two edge sets, the error rate can reduce, for
instance, at least 15% at the density of 24.

7.2 Robustness

The robustness to occlusion and clutter is inspected in
Fig. 9, and the brackets could be correctly found. A
rounded object and a sharp object are picked according

0.5 T
I

04f--—-—"---—--

error rate

sharp
- - rounded

T

Fig. 7 Error rates about rounded and sharp shapes
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to five sequences in which the objects were randomly
occluded by 0, 10%, 20%, 30%, 40%, and 50%, respect-
ively. For each sequence, the images were randomly
added with some other shapes such as pipes and boxes.

Figure 9 shows the pose error rates with respect to the
amount of clutter and occlusion. It can be seen that the
error rate of rounded objects increases with high occlu-
sion, and the rate of sharp objects is not significantly in-
fluenced by the amount of clutter and occlusion.

The parameters need to be adjusted, including the co-
efficient of the empty distance based on the maximum
distance, the coefficient of non-occlusion distance based
on the minimum distance, and the gap in Canny and
Hough detectors. The parameters before and after learn-
ing affect the error rate in Fig. 10.

7.3 Limitations

B-Rep model provides our approach with the precise ref-
erence to determine the pose, which simultaneously re-
duces the extracting runtime from the projecting views
of 3D model, and the edge comparison can be well
expressed in the metric space toward either the aspect
views of B-Rep model or the search image.

The major limitation of our approach is that the algo-
rithm of extracting edges from the search image is not
slightly suitable for rounded shapes for replacing arcs
with lines, so the accuracy for such objects is worse than
the objects with sharp edges.

8 Conclusions

Texture-less industrial products are represented as
B-Rep model in designing and manufacturing. In the
paper, the edges and surfaces of B-Rep model are se-
lected from STEP files, the aspect views of B-Rep model
are obtained according to projection transformation, and
the edge sets of aspect views as the accurate references

learning-error rate

T
sharp-before
-~ - shapafter |
—— rounded-before

09F - - o oo Y PR

rounded-after

error rate

occlusion

Fig. 10 Error rates affected by the learning mechanism
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are represented in the metric space. Similarly, the edges
are detected from the search image containing B-Rep
object according to Hough transformation, and the edge
set is also represented in the metric space. The poses of
texture-less industrial object is estimated by matching
the bipartite graph of the two edge sets from the search
image and the aspect views. It is confirmed that our ap-
proach is feasible, though there are still some problems
to be solved. The accuracy of pose estimation needs to
be adjusted by optimizing the above extracting and
matching algorithms; in addition, the industrial object
benchmark based on B-Rep model needs to be estab-
lished in order to check the effectiveness and efficiency
of the related algorithms.

Abbreviations

AAG: Adjacent attributed surface graph; B-Rep: Boundary representation;
NDR: National design reservoir; NURBS: Non-uniform rational B-spline;
STEP: Standard for exchange of product model data

Acknowledgements

The authors thank the editor and anonymous reviewers for their helpful
comments and valuable suggestions. | would like to acknowledge all our
team members, especially Yan Wei.

About the authors

Jihua Wang was born in Yantai, Shandong Province, China in 1966. He
received the B.E. in engine engineering from Tsinghua University, Beijing, in
1990, the M.E. degrees in management science from Shandong University,
Jinan, in 2005, and the Ph.D. degree in management science from Shandong
Normal University, Jinan, in 2009.

From 1990 to 2002, he was an senior engineer with China National Truck
Corp. Since 2010, he has been a Professor with the College of Information
Science and Engineering, Shandong Normal University. He is the author of
more than 30 articles, and more than 5 inventions. His research interests
include visual computation, computer graphics, shape recognition, CAD,
intelligent design, and design ontology (e-mail: jihuaaw@126.com).

Wei Yan was born in Qufu, Shandong, China in 1984. She received the Ph.D.
degree in computer science from University of Strasbourg, France, in 2014.
Since 2014, she has been an Assistant Professor with the School of
Information Science and Engineering, Shandong Normal University. She
published 27 papers, including 8 peer-reviewed journal papers and 19
peer-reviewed conference papers. Her research interests include know-
ledge engineering, semantic similarity, ontology modeling and inference,
and inventive design. (e-mail: wyaninsa@gmail.com).

Funding

This research was supported by the National Natural Science Foundation of
China (61472233) and Natural Science Foundation of Shandong Province
(ZR2014FM018).

Availability of data and materials
We can provide the data.

Authors’ contributions
All authors take part in the discussion of the work described in this paper.
The first author contributed more to this work.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.



Wang and Yan EURASIP Journal on Image and Video Processing

Received: 22 August 2018 Accepted: 15 October 2018
Published online: 01 November 2018

References

1. D. Marr, in Vision. A computational investigation into the human
representation and processing of visual information (MIT Press, Cambridge,
1994), pp. 107-111

2. A Andreopoulos, JK. Tsotsos, 50 years of object recognition: directions
forward. Comput. Vis. Image Underst. 117, 827-891 (2013)

3. L G. Roberts, "Machine perception of three-dimensional solids,” Ph.D.
Dissertation, Dept. Elect. Eng., Ma. Inst. Tech., MA, USA. (1963).

4. Y. Yamane, ET. Carlson, KC. Bowman, Z. Wang, CE. Connor, A neural code
for three-dimensional object shape in macaque inferotemporal cortex.
Nature Neuroscience 11(11), 1352-1360 (2008)

5. JJ. Gibson, An ecological approach to visual perception. The American
Journal of Psychology 102(4), 443-476 (1979)

6. | Kovacs, Gestalten of today: early processing of visual contours and
surfaces. Behavioural Brain Research 82(1), 1-11 (1996)

7. H. Sakata, K.I. Tsutsui, M. Taira, Toward an understanding of the
neural processing for 3D shape perception. Neuropsychologia 43(2),
151-161 (2005)

8. M. Ulrich, C. Wiedemann, C. Steger, Combining scale-space and similarity-
based aspect graphs for fast 3D object recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34(10), 1902-1914 (2012)

9. V. Ferrari, L. Fevrier, F. Jurie, C. Schmid, Groups of adjacent contour
segments for object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30(1), 36-51 (2007)

10.  J. Ma, TH. Chung, J. Burdick, A probabilistic framework for object search
with 6-DOF pose estimation. International Journal of Robotics Research
30(10), 1209-1228 (2011)

11. R Datta, D. Joshi, J. Li, J.Z. Wang, Image retrieval: ideas, influences, and
trends of the new age. ACM Computing Surveys 40(2), 5-60 (2008)

12. R. Fergus, P. Perona, and A. Zisserman, “A visual category filter for Google
images,” in : Proc. ECCV, Amsterdam, pp. 242-256 (2004).

13. K. Siddigi, A. Shokoufandeh, S.J. Dickinson, S.W. Zucker, Shock graphs
and shape matching. International Journal of Computer Vision 35(1),
13-32 (1999)

14. SJ. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(4), 509-522 (2010)

15. TJ. Fan, Describing and recognizing 3-D objects using surface properties
(Springer, New York, 1990), pp. 55-72

16. I Biederman, Recognition-by-components: a theory of human image
understanding. Psychological Review 94(2), 115-147 (Apr. 1987)

17. R.Nevatia, T.O. Binford, Description and recognition of curved objects.
Artificial Intelligence 8(1), 77-98 (1977)

18. V. Lepetit, Key point recognition using randomized trees. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28(9), 1465-1479 (2006)

19. J.Chan, J. A. Lee, and K M. Qian, "BORDER: An oriented rectangle approach
to texture-less object recognition,” in Proc. CVPR. pp. 2855-2863 (2016).

20. E. Munoz, Y. Konishi, V. Murino, and A. D. Bue. “Fast 6D pose estimation for
texure-less objects from a single RGB image,” in Proc. ICRA, Stockholm,
Sweden pp. 5623-5630 (2016).

21. F. Tombari, A. Franchi, and L. D. Stefano, “BOLD features to detect texture-
less objects,” in Proc. ICCV, Sydney, Australia, 2013, pp. 1265-1272

22. S. Hinterstoisser, C. Cagniart, P.S. llic, N.N. Sturm, P. Fua, V. Lepetit,
Gradient response maps for real-time detection of textureless objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34(5),
876-888 (2012)

23. P. David and D. DeMenthon, Object recognition in high clutter images
using line features, in Proc. 10th Computer Vision, Beijing, China, pp. 1581-
1588 (2005).

24.  B. Vijayakumar, D. Kriegman, J. Ponce, Invariant-based recognition of
complex curved 3D objects from image contours. Computer Vision and
Image Understanding 72(3), 287-303 (1998)

25. S, Li, S. Koo and D. Lee, Real-time and model-free object tracking using
particle filter with joint color-spatial descriptor, in Proc. IROS, pp. 6079-
6085 (2015)

26.  C. Choi and H. I. Christensen, 3D pose estimation of daily objects using an
RGB-D camera, in Proc. IROS, Vilamoura, Portugal, pp. 3342-3349 (2012)

(2018) 2018:117

27.

28.

29.

30.

31

32,

Page 10 of 10

CV Bank, D. M. Gavrila, and C. Wohler, A visual quality inspection system
based on a hierarchical 3D pose estimation algorithm, in Proc. DAGM,
Magdeburg, Germany. pp. 179-186 (2003).

Hodan, Tom4, et al,, Efficient texture-less object detection for augmented
reality guidance. Mixed and Augmented Reality Workshops (ISMARW), 2015
|EEE International Symposium on. IEEE 2015

Brachmann, Eric, et al,, Uncertainty-driven 6d pose estimation of objects and
scenes from a single rgb image. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016)

M. Rad, V. Lepetit, BB8: a scalable, accurate, robust to partial occlusion
method for predicting the 3D poses of challenging objects without using
depth. International Conference on Computer Vision (2017)

H. Asada, M. Brady, The curvature primal sketch. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(1), 2-14 (1986)

C. Gary, A first course in graph theory (Dover Publications, New York, 2012), pp. 65-70

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Introduction
	Related work
	Metric space
	Method—the edge set of an aspect view of B-Rep model
	The edge set of a search image
	The pose estimation by matching the bipartite graph
	Results and discussion
	Accuracy
	Robustness
	Limitations

	Conclusions
	Abbreviations
	Acknowledgements
	About the authors
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

