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Abstract

In order to effectively improve the flexural strength and fracture toughness of ceramics, two methods can be used to
control the growth rate of grain during sintering of ceramic materials by adding a certain amount of (W,Ti)C material.
Therefore, on the one hand, the paper simulates the composite ceramic materials based on cellular automata (CA) to
optimize the ratio of two formulations. On the other hand, in order to optimize sintering process, CA modeling is also
carried out for the sintering process of composite ceramics. Finally, in order to detect the temperature of the firing
zone of the ceramic kiln by using the characteristics of the flame image of the firing zone, the K-means clustering
method is used for the color segmentation of the flame image of the firing zone of the ceramic kiln. The experimental
results show that the size of the grains is in accordance with the actual situation of the simulation and the
microstructure evolution of the composites can be simulated well by using the CA theory to simulate the composites;
with the increase of simulation time, the grain size distribution is basically unchanged, which accords with the normal
distribution, and the simulation process of grain growth is very stable. Based on the K-mean clustering segmentation
method, the segmentation of the flame image of ceramic kiln firing zone is realized. This method also provides a good
technical means for feature extraction of flame image in ceramic kiln firing zone.
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1 Introduction
Ceramic material has high hardness, high wear resistance,
and good high temperature stability, as well as good elec-
trical and thermal conductivity and chemical resistance
[1]. Therefore, there is a great prospect in the field of re-
fractories, nozzles, cutting tools, and bearings. In addition,
ceramic material belongs to the boron-containing series
ceramics and can generate boron oxide lubricating film
dissolved with other elements under friction and high
temperature (800–1000 °C) driving, which can realize
self-lubricating and is a very good self-lubricating material
[2]. Ceramic material has good neutron control capabil-
ities and can be used in the nuclear industry. However, the
sintering densification of ceramic materials is more diffi-
cult in bending strength, and the defects of low fracture
toughness limit its application scope. It often fails because

of damage [3]. Related studies have shown that [4]
(W,Ti)C composites can effectively increase the bending
strength and fracture toughness of composite ceramic ma-
terials. With the increasing demand for composite mate-
rials in modern engineering, during the preparation of
composite ceramic materials, if the formulation is not op-
timized, ceramic material grain growth and abnormal
growth may occur during the preparation process.
(W,Ti)C grain distribution is not uniform and will not
achieve the purpose of improving the performance of
composite ceramic materials. Therefore, optimizing the
proportion of the two components in composite ceramic
materials is very important to improve the performance of
composite ceramic materials. In addition, adding (W,Ti)C
composites to ceramic material can also significantly im-
prove its mechanical properties. The level of mechanical
properties of [5] is closely related to the microstructure.
But the mechanical properties are closely related to the
microstructure. The grain growth during sintering deter-
mines the evolution of the microstructure and the local
topological structure of the sintered body, and the bending
strength of the sintered body. Fracture toughness and
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hardness play an important role. Therefore, it is of great
significance to study the grain growth in the sintering
process of ceramic materials and optimize the sintering
process to improve the bending strength, fracture tough-
ness, and hardness of the materials.
In recent years, many studies have been carried out on

the grain growth in the process of preparing materials
by computer simulation. The commonly used research
methods are [6]: phase field method, Monte Carlo
method, and so on. However, the models also have some
defects, such as the low efficiency of [7] Monte Carlo
method, the complexity of phase field theory model, the
large amount of calculation, and the gap between [7]
Monte Carlo method and the actual model. In 1991,
Hesselbarth et al. [8] firstly used CA method to simulate
the kinetics of recrystallization nucleation and grain
growth of materials and obtained the same results as
that of JAMK theory. With the increasing of simulation
research on grain growth based on CA method, Liu [9]
proposed a two-dimensional grain growth model combin-
ing MC method and CA method. Geiger et al. [10] pro-
vided the CA method based on thermodynamics which is
proposed to simulate the two-dimensional growth of
grains. Ding [11] et al. established two-dimensional and
three-dimensional CA models based on the minimum en-
ergy principle. Raghavan et al. [12] proposed a small incre-
ment processing method for cells. Guan Xiaojun et al. [13]
and Ma Xiaofai et al. [14] also simulated the grain growth
by CA method. CA shows complex behaviors through cel-
lular interaction through simple operation rules. It has be-
come the main tool for modeling complex systems.
However, the application of CA method to the simulation
of grain change in the sintering process of composite cer-
amic materials is relatively rare.
In the process of industrial production, the sintering

zone temperature of ceramic kiln is an important factor
affecting the firing quality of ceramic products, so it is
very necessary to study the advanced detection and con-
trol methods of ceramic kiln firing belt condition. In re-
cent years, with the development of image processing
technology, most of the industrial production control
through the extraction of flame characteristics of the
analysis of the state of material combustion. Effective
flame segmentation is one of the key techniques to
detect temperature by flame image, so it is necessary
to study the effective flame image segmentation tech-
nology. The common image segmentation methods
include threshold method and clustering analysis. The
threshold method is suitable for gray image segmenta-
tion, but not for flame image color segmentation.
K-means clustering algorithm is a mature clustering
analysis method, which has been successfully applied
to face image segmentation and remote sensing image
analysis and other fields.

Therefore, this paper starts with two aspects. On the
one hand, CA theory is used to simulate the composite
materials, and the relationship between grain distribu-
tion and microstructure is analyzed. It is of great signifi-
cance to select the preparation process reasonably, save
the experiment cost, shorten the experiment period, and
improve the experiment efficiency. On the other hand,
using CA theory, the CA model of grain growth during
sintering of composite ceramic materials is established.
The grain growth of ceramic materials was simulated.
The relationship between grain size distribution and
simulation time was analyzed, and the growth index was
calculated and compared with the prepared ceramic ma-
terials. In addition, in the Lab color space, the K-mean
clustering is applied to the segmentation of the flame
image of the combustion zone of the ceramic kiln and
the experiment is carried out. Finally, the segmentation
and contrast experiments are carried out in different
color modes.

2 Method—establishment of CA model
2.1 CA model
CA can be considered to be composed of many grids.
Each cell in the grid is a cell and only takes a finite
discrete state. All of them follow the same local trans-
formation rules and update [15] synchronously. A large
number of cells form the dynamic evolution of the sys-
tem through simple interaction and can form a complex
evolutionary state. CA [16] is not defined by a definite
function, but is determined by simple rules. That is, CA
model is the general name of dynamic system which sat-
isfies certain rules. The states of each variable are only
limited, and the rules of state change are local.
Cells, cellular spaces, neighbors, and rules make up a

CA. The most basic unit of CA is a cell, which is located
on a discrete grid of one-dimensional, two-dimensional,
or multidimensional spaces. The state of a cell may con-
sist of {0~1}, or it may be a discrete set in the form of an
integer [17]. The space dot set of cellular distribution is
called cellular space, and its geometric partition can be
Euclidean space partition of arbitrary dimension.
One-dimensional and two-dimensional CA are the focus
of current research. One-dimensional CA has only one
form of cell space partition, and two-dimensional cell
space division is very flexible. It can be arranged in tri-
angle, square, or hexagonal grid [18], as shown in Fig. 1.
The (a) diagram in Fig. 1 is a cell space partition form of
one-dimensional CA. The (b), (c), and (d) diagrams are
the cell space partition forms of two-dimensional CA,
which are the triangle, square, and hexagon, respectively.
The cellular space can be extended infinitely in every

dimension, which is helpful to the theoretical study, but
this ideal condition cannot be realized in practical appli-
cation. Therefore, it is very important to define different
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boundary conditions. There are generally three types of
boundary conditions: reflection type, fixed value type, and
periodic type [19]. In some cases, random forms can be
used to simulate real-time natural phenomena, that is, to
generate random numbers at the boundary in real time.
The cellular space and the cellular space represent only

the static components of the system, and the dynamic sys-
tem is formed by adding the evolution rules to the system.
These rules in CA are defined in a local space, and a cell
will determine the state of the next moment according to
its own state and the state of its neighbor’s cell; therefore,
the definition of neighbor rules is the premise of CA oper-
ation, and it must be clear which one cell neighbor has.
One-dimensional CA can determine neighbors according
to radius. Two-dimensional CA defines neighbors more
complex, and there are two general ways: One is a von
Neumann neighbor, where the cell’s neighbors are com-
posed of four cells adjacent to each other from the top,
bottom, left, and right. The radius is 1. The other is the
Moorish neighbor, where the cell neighbors are composed
of upper, lower, left, right, upper, lower right, lower left,
and lower left cells [20].
The rule is the dynamic basis of CA evolution and the

dynamic function to determine the state of the cell at
the next moment, that is, [21].

f : Stþ1
i ¼ f Sti ; S

t
N

� � ð1Þ

where f denotes the evolution rule of the state and Sti de-
notes the state of the cell I at the t moment and the
state, while StN represents the state of the neighbor cell
of the cell I at the time of t.

2.2 Simulates the composite ceramic materials based on
CA (simulation of grain structure evolution)
2.2.1 The physical significance of the model
Grain boundary energy is the driving force of grain growth,
which is closely related to the curvature of grain boundary.
The movement of grain boundary is determined by the

change of grain boundary energy and curvature of grain
boundary. If the grain boundary energy is isotropic, the
grain boundary energy Ei of cell I can be expressed as [22].

Ei ¼ Jki
Xnn
k

1−δSiδSkð Þ ð2Þ

where J ki is a measure of the grain boundary energy
between the cell i and the adjacent k, the total number
of the adjacency of n is the cell i. δ is the orientation of
the Kronechaer symbol, Sk being the adjacent k. If the
orientation value of the cell I is changed to the orienta-
tion value of the cell j, then the change of the grain
boundary energy is recorded as ΔEi, j, that is, [23].

ΔEi; j ¼ E j−Ei ð3Þ

2.2.2 Simulation of grain structure evolution
The simulation process of grain structure evolution con-
sists of four main steps: discrete simulation space,
initialization of lattice points, presupposition of parame-
ters, and determination of evolution rules.

� Discrete simulation space

In this paper, a two-dimensional square cell space is
used to divide the simulated region, and the adjacent rela-
tion is of the Moore-Moore-Moore type, as shown in
Fig. 2. At this time, the neighbor of the cell is composed
of eight cells located in the upper, lower, left, right, upper,
lower and lower left, and the lower left of the eight adja-
cent positions.

� Initialization lattice

The initial lattice is to initialize the state of all the
cells. At the beginning of the simulation, each cell is
given a random orientation value. If the orientation
value of the adjacent cell is the same, it will be

a

b c d
Fig. 1 a–d One-dimensional and two-dimensional CA space partitioning
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regarded as the same particle, and if different, it will
be regarded as different grain. The state of the cell E
is expressed as [24].

E tð Þ ¼ f Aðt−Δtð Þ;B t−Δtð Þ;C t−Δtð Þ;D t−Δtð Þ; E t−Δtð Þ;
F t−Δtð Þ;G t−Δtð Þ;H t−Δtð Þ; I t−Δtð ÞÞ

ð4Þ

where Δt is the time step.

� Prediction parameters

The prediction parameter is to give a predetermined
value to each parameter in the simulation process.

� Deterministic evolution rule

The evolution rules used in this paper contain four
conditions:

(1) If the state of cell E at t is the same as that of eight
adjacent cells, then the state of E remains
unchanged in the next time step.

(2) If any three of the nearest neighbor cells of cell E
are states a at t, the state of E will change to a at
the next time step.

(3) If any three of the next nearest neighbor cells of cell
E are states b at t, the state of E changes to b in the
next step.

(4) If the above conditions are not satisfied, a cell is
randomly selected from the eight adjacent cells,
and the grain boundary of the system can
changeΔEi, j after calculation. According to the
transition probability P, the change of the cell is

determined, and P uses the following reorientation
probability model:

P ¼
1 ΔEi; j < 0

0:5 ΔEi; j ¼ 0
0 ΔEi; j > 0

8<
: ð5Þ

In each time step of the simulation, the order of the
transition of cellular orientation state is as follows: con-
dition 1, condition 2, condition 3, and condition 4.
When one of the conditions is satisfied, the correspond-
ing orientation state transition is carried out, and the
subsequent judgment steps can be omitted. Finally, all
the other cellular orientation state transitions are judged
in turn, and a time step of the cell state transition
process is completed.
In this paper, the initial modeling is carried out ac-

cording to the material performance parameters shown
in Table 1, and the simulation is carried out according
to the content of each component in Table 2. The whole
process includes discrete simulation space, initialization
of lattice points, presupposition of parameters, and de-
termination of evolution rules, programming, simula-
tion, and result analysis.

2.3 Carry out CA modeling for sintering process of
composite ceramics
In order to optimize the sintering process, a CA model
of grain growth in the sintering process of composite
ceramics was established, which can simulate the grain
growth of ceramic materials. The growth index is solved
by analyzing the relationship between grain size distribu-
tion and simulated time. Generally, the CA modeling
process of sintering process of composite ceramics
mainly includes determining the initial conditions of
simulation, determining the unit grain boundary energy,
and pore initialization.

� Determining the initial conditions of simulation

In this paper, a quadrilateral mesh structure of 600 × 600
is used, and periodic boundary conditions are used. The
actual size of the side length of each cell is 0.12 μm. A

Fig. 2 Neighbor definition of Moore type for two-dimensional
cellular automata

Table 1 Each component performance parameters in the ZrB2/
(W,Ti)C composites

Material Density
`(g/cm3)

Thermal
expansion
coefficient

Poisson’s ratio Modulus of
elasticity (GPa)

ZrB2 5.2 6.21 0.21 550

(W,Ti)C 9.13 5.5 0.3 553

ZrO2 6.12 9.3 0.25 200
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random orientation number is given to each cell before the
simulation. The orientation number of ceramic matrix is
in the range of 1001≤S1i ≤1500, and the orientation num-
ber of other particles is in the range of 1≤S2i ≤1000, which
represents the value of each cell; crystallographic orienta-
tion of different cells in grains. Two percent of sintering
auxiliaries were used as inert particles to give a fixed
orientation value. After the ratio of composite materials to
sintering auxiliaries was set, the program was randomly
distributed in the matrix. Here, it is assumed that the sin-
tering auxiliaries neither migrate nor react and diffuse
with other phases during the simulation process.

� Determining the unit grain boundary energy

In the two ball densification model of simple cubic
stacking, the relationship between two angles and grain
boundary energy is

J ss ¼ 2 J sv cos
φ
2

ð6Þ

In formula: JSS is the grain boundary energy (J) be-
tween solid phase and solid phase, JSV is the grain

boundary energy (J) between solid phase and gas phase,
and φ is the angle of two sides.

� Pore initialization

The average size of stomata can be determined by the
following formula.

da ¼ 2Da 1− fð Þ
3 f

ð7Þ

In formula, da is the average diameter of pores (μm),
Da is the average diameter of powder particles (μm), and
f is the density of plain billet. In the simulated
initialization structure, the porosity is 20%, then f = 0.8.
According to formula (7), Da = 0.29 Da can be obtained.
It is necessary to initialize the structure first and then
add the stoma to initialize the hole at 0. 29 Da.

2.4 Image segmentation of ceramic kiln flame based on
K-means clustering
The K-means clustering algorithm is iterative implemen-
tation of image classification and extraction of all kinds
of eigenvalues. Its basic ideas are as follows: First, the
average value of each class is first removed, then the
pixels are reclassified according to the newly generated
mean, and then the previous steps are iterated to the
new generated class. In this paper, the K-means cluster-
ing algorithm based on criterion function is used for
flame image segmentation. The general process consists
of two steps:

2.4.1 Color space conversion
First, transform the RGB color space image into Lab color
space. The purpose of image segmentation is to separate
the target part. Based on the K-means clustering segmen-
tation method, the segmentation of the flame image of
ceramic kiln firing zone is realized. This provides a good

Table 2 Proportion of composition of composite materials

Sample name V((W,Ti)C) (%) V(ZrB2) (%) V(ZrO2) (%)

ZW0 0 93.3 6.7

ZW0 5 88.3 6.7

ZW10 10 83.68 6.32

ZW15 15 78.68 6.32

ZW20 20 73.8 6.2

ZW25 25 65.8 9.2

ZW30 30 62.4 7.6

ZW35 35 58.4 6.6

ZW40 40 52.4 7.6

Fig. 3 a, b Simulation of microstructure of ZW series composite ceramic materials
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technical means for feature extraction of flame image in
ceramic kiln firing zone distributed into simple geometry.
Therefore, the flame can be separated from the image by
K-means clustering according to the color information.
The commonly used color space models are HSV, RGB,
and Lab. Among them, the Lab color model is a color
model made by the CIE (International Lighting Commit-
tee). Its color space is larger than the RGB space and can
be expressed in all colors in nature. Therefore, this paper
converts the RGB color space to XYZ color space. Then,
the XYZ color space is converted to Lab color space.

2.4.2 Flame image segmentation using K-means clustering
The general steps are as follows:

(1) Initialize. Any K attribute value vector is taken as
the center of the initial clustering. According to the
maximum cycle number or the convergence error
tolerance principle of the cluster center, the
iteration termination condition is set.

(2) Iteration. According to the similarity criterion, the
data objects are assigned to the nearest cluster
center, and K clustering data sets are obtained.

(3) Updated cluster center. The average value of each
point in the cluster dataset is calculated, and then,
the average value of each class is used as the new
clustering center to reassign the data object.

(4) Judge whether clustering is completed. If the
clustering center is no longer changed or the sum

a

b

c
Fig. 4 The curves of the a relative density, b bending strength, and c fracture toughness of ceramic materials with the content of TI-C

Gu and Sun EURASIP Journal on Image and Video Processing        (2018) 2018:110 Page 6 of 11



of square errors is local minimum, then the
iteration is terminated and the clustering
segmentation is completed. Otherwise, the second
and third steps are repeatedly executed until the
suspension condition is satisfied.

3 Experimental results and discussions
3.1 CA simulation experiment of composites
3.1.1 Experiment
In this paper, three kinds of materials with different pro-
portions of ZrB2/(W,Ti)C/(ZrO2) are used, as shown in
Table 1. The raw materials of ZrB2 and (W,Ti)C were re-
spectively milled in anhydrous ethanol for 50 h, then
dried at 150 °C for 24 h, and then sifted in a vacuum
dryer to obtain more uniform fine powder. The primary
refined ZrB2 was used as the matrix material, the
strengthening phase, ZrO2, was used as the toughening
phase, and the addition of MgO sintering aid was carried
out. The prepared raw materials were poured into a bea-
ker with anhydrous ethanol as the medium, and the
ultrasonic wave was oscillated and stirred for 30 min for
prevention of material agglomeration. The mixture was
milled with anhydrous ethanol for 200 h and dried in a
vacuum drying box at 150 °C for 24 h. The homoge-
neous fine powder suitable for sintering was obtained.
The mixed raw material powder was put into the high
strength graphite mold, and the hot pressing sintering
process was adopted in vacuum environment.

3.1.2 Comparison of results between ZW10 and ZW30
The simulation of microstructure of ZW series com-
posite ceramics is shown in Fig. 2. From Fig. 3, it can
be seen that when the content of (W,Ti)C increases
gradually, the grain size decreases, the grain boundary
becomes smooth and straight, the grain number is in-
creasing, and the grain boundary length in the simu-
lated region decreases gradually. From the grain shape,
the grain turns from larger cells to three sides. In con-
trast, the grain size of ZW30 is obviously smaller than
the grain size of ZW10, and the distribution is more
uniform, mainly because the proportion of ZW30
(W,Ti)C is more reasonable.

3.1.3 Comparison of relative density, flexural strength, and
fracture toughness of ceramic materials with different
proportions
Figure 4 shows the curves of the relative density,
flexural strength, and fracture toughness of ZW
series ceramic materials with the change of (W,Ti)C
content.
It can be seen from Fig. 4 that the density, bend-

ing strength, and fracture toughness of ZW30 com-
posite ceramics are the highest. The density, flexural
strength, and fracture toughness of ZW0 composite
ceramics are increased by 13.58 and 132%, respect-
ively, so the ratio of ZW30 composite ceramic mate-
rials is the best.

Fig. 5 Microstructure evolution of grain growth from time to time from 500 to 2500 CAS

Fig. 6 Logarithmic relationship between average grain diameter and simulated time
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3.2 CA simulation of grain growth during sintering of
composite ceramics
3.2.1 Experiment
The simulation object is the grain growth of ZrB2/
(W,Ti)C with 6.32% ZrO2 particles during sintering.
According to the formula (5), at the initial stage of
sintering, because the two balls did not penetrate,
the two sided angle phi = 0, JSS/JSV = 3. The ratio of
unit grain boundary energy is JS1S1 : JS2S2 : JS1V = 2 : 3 :
3 : 1. First, give the matrix a random orientation
value.
The composite ceramics and sintering additives

were randomly added to the matrix according to the
set proportion. After running 300 CAS, the average
grain diameter reached about 0.85 μm and the por-
osity was initialized. At this time, 40% of the grains
were randomly selected according to the number of
grains, and the orientation value was assigned to
1501, which was defined as porosity. Because of the
different grain size, the area of the simulated area is
about 32%, that is, the density of the green is 0.68.
Figure 4 is the microstructure image of composite
ceramics with simulated time step. The white grain
is ZrB2/(W,Ti)C grain, the gray grain is ZrO2 grain,
the dark gray square grain is sintering aid, the light
gray line is grain boundary, and the black area is
pore.

It can be seen that the adjacent pores are through, and
the distribution state is very similar to the distribution of
pores in the billet.

3.2.2 Comparison of grain size distribution in different time
steps
Figure 5 shows the grain size distribution of different
simulated time steps. When the time step is 500 CAS,
the distribution of grain size is relatively stable, the num-
ber of grains of each size is normal distribution, the
grain size of middle size is the majority, the grain size of
smaller size is very small, and the case of abnormal grain
growth is also rare. With the increase of simulation time,
the grain size distribution is basically unchanged, and all
of them accord with the normal distribution, which
shows that the grain growth process is very stable.

3.2.3 Variation of average grain diameter with simulated
time
The curvature driven grain growth satisfies the following
equation

Rg ¼ ktð Þn ð8Þ

where n is the grain growth index, the shear slope of
the lnRg-lnt curve is obtained. The grain size in this
paper is characterized by the diameter Da. As

a b

Fig. 7 Comparison between a CA method and b MC method for simulating grain growth process

a b
Fig. 8 Contrast of a original image to b Lab color space
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Da

2
¼ ktð Þn ð9Þ

As shown in Fig. 6, the logarithmic diagram of grain
mean diameter with simulated time shows that the loga-
rithmic diagram of grain mean diameter with time is ba-
sically a straight line, and its slope is 0.82. It shows that
the growth index simulated in this paper is slightly
lower. The average grain size obtained in the simulation
process may be slightly smaller than that of the real
microstructure.

3.2.4 The comparison between CA method and MC method
In order to verify the performance of CA method ap-
plied to the simulation of grain growth in the sintering
process of composite ceramics, CA method and MC
method are used to simulate the grain growth in the sin-
tering process of composite ceramics under the same
conditions. The simulation results are shown in Fig. 6, in
which the time step is from 500 to 1500 CAS.
As can be seen from Fig. 7, the grain size distribution

in (a) diagram is more stable than that in (b) diagram.
The number of grains of various sizes is normal distribu-
tion, the majority of grains are of middle size, and the
few grains of smaller size and the abnormal growth of
grains are very few. And with the increase of simulation
time, the grain size distribution in the (a) diagram is ba-
sically unchanged, which is in good agreement with the
normal distribution. And the crystal particles in (b) dia-
gram are still increasing slowly. It can be seen that the
grain growth process in (a) diagram is very stable.
Therefore, the effect of CA simulation is more stable
than that of MC simulation in the simulation of grain
growth in the sintering process of composite ceramics.

3.3 Flame image segmentation in ceramic sintering
process
According to the characteristics of ceramic kiln flame
image, the RGB color space image is first converted into
Lab color space. The picture effect is shown in Fig. 8.
Finally, according to the experimental results and experi-
mental results, the K-means clustering segmentation of

ceramic kiln flame images has achieved good results
when K and n are taken as 3, as shown in Fig. 8. Accord-
ing to the K-means clustering method of Fig. 9, the
image of ceramic kiln fired with flame is segmented well,
and every part of the image is well distinguished after
the segmentation.
In order to quantify the segmentation results, PRI

(Probabilistic Rand Index), VOI (variation of information),
GCE (Global Consistency Error), and BDE (Boundary Dis-
placement Error) are used to analyze and evaluate the seg-
mentation results from different perspectives. PRI is the
ratio of the total number of pixels to the total number of
pixels between statistical machine segmentation and man-
ual separation. VOI is used to measure the distance be-
tween two segmented images, indicating the randomness
of the segmented image relative to manual segmentation.
GCE is used to measure the consistency of segmented im-
ages compared with manual segmentation. BDE measures
the edge average error of two segmented images, which is
defined as the distance between a pixel on the edge of the
automatic segmentation and the nearest pixel of the artifi-
cially segmented image. In this experiment, 10 flame im-
ages with different air volume are selected and segmented
by Otsu, K-means, FCM, and MCWT, respectively. The
mean and standard deviations of PRI, VOI, GCE, and BDE
of each segmentation method are calculated, and the time
required for segmenting the flame image is also calculated.
The performance of the segmentation algorithm is evalu-
ated objectively. The comparison results are shown in
Table 3 and Fig. 10.
As can be seen from Table 3 and Fig. 10, Otsu seg-

mentation time is the shortest, but its segmentation ac-
curacy is too low to provide reliable information for
flame detection. The K-means segmentation time is

c d e
Fig. 9 c–e Clustering segmentation results

Table 3 Comparison of time required for segmentation of
flame images using different algorithms

Time Otsu K-means FCM MCWT

Max 0.004 0.602 6.942 2.198

Min 0.002 0.124 2.331 1.181

Average 0.003 0.320 4.213 2.101
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relatively short, the PRI of the algorithm is larger, and
the VOI and BDE are smaller. It shows that the K-means
algorithm has higher accuracy and better stability. The
segmentation time is relatively short. Therefore, com-
bined with various evaluation indexes, the K-means algo-
rithm has the best segmentation effect.

4 Conclusions
It is difficult to densify its flexural strength, and its appli-
cation range is limited by its low fracture toughness, so
as to improve the flexural strength, fracture toughness,
and hardness of ZrB2 ceramic material. In order to im-
prove the flexural strength, fracture toughness, and
hardness of ZrB2 ceramic material, it can be added to
ZrB2 ceramic material by adding a certain proportion of
(W,Ti)C and optimizing sintering process. However, with
the addition of (W,Ti)C and how to optimize the sinter-
ing process of composite ceramic materials, the CA the-
ory is used to simulate the composite materials and the
relationship between grain distribution and microstruc-
ture is analyzed in this paper. Choose the best propor-
tion of composite ceramic materials. The grain growth
in the sintering process of composite ceramic materials
was also established based on long CA model. The grain
growth of ceramic materials was simulated. The relation-
ship between grain size distribution and simulation time
was analyzed, and the growth index was calculated.
Finally, in Lab color space, the K-means clustering is
used to segment the flame image of the combustion

zone in ceramic kiln and the experiment is carried out. Fi-
nally, a comparison experiment is carried out under differ-
ent color modes. Through simulation experiments, it is
found that:

(1) With the increase of (W,Ti)C content, the
morphology of the grains continues to evolve. The
grain size of ZW30 is obviously smaller than that of
ZW10, and the distribution is more uniform, which is
mainly due to the reasonable proportion of (W,Ti)C
in ZW30 formula, and the grain size of ZW30 is
smaller than that of ZW10, and the grain size of
ZW30 is smaller than that of ZW10, and the grain
size of ZW30 is more uniform than that of ZW30.

(2) The density, flexural strength, and fracture toughness
of ZW30 composite ceramic material were improved
by 13.58, 160, and 132%, respectively.

(3) With the increase of simulation time, the grain size
distribution is basically unchanged, which accords
with the normal distribution, and the simulation
process of grain growth is very stable. The
simulated grain growth index n is 0.42.

(4) Based on K-means clustering method, the image seg-
mentation of ceramic kiln fired with flame is presented.

Abbreviations
BDE: Boundary Displacement Error; CA: Cellular automata; CIE: International
Lighting Committee; GCE: Global Consistency Error; HSV: Hue saturation
value; PRI: Probabilistic Rand index; RGB: Red green blue; VOI: Variation of
information

Fig. 10 a–d Four evaluation indexes of flame image segmentation algorithm
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