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Abstract

This paper tackles a recent challenge in patrol image processing on how to improve the identification accuracy for
power component, especially for the scenarios including many interference objects. Our proposed method can fully
use the patrol image information from live work, and it is thus different from traditional power component
identification methods. Firstly, we use long short-term memory networks to synthesize the context information in a
convolutional neural network. Then, we constructed the Mask LSTM-CNN model by combining the existing Mask
R-CNN method and the context information. Further, by extracting the specific features belonging to the power
components, we design an optimization algorithm to optimize the parameters of Mask LSTM-CNN model. Our
solution is competitive in the sense that the power component is still identified accurately even if the patrol images
contain much interference information. Extensive experiments show that the proposed scheme can improve the
accuracy of component recognition and has an excellent anti-interference ability. Comparing with the existing R-FCN
model and Faster R-CNN model, the proposed method demonstrates a significantly superior detection performance,
and the average recognition accuracy is improved from 8 to 11%.

Keywords: Power component identification, Long short-term memory, Convolutional neural network,
Anti-interference, Live work inspection

1 Introduction
With the rapid development of artificial intelligence, live
working robots that can perform automatic inspection
have received extensive attention from major power grid
corporations [1]. For power systems, blackouts mean a
drop in economic efficiency [3]. To maintain a good oper-
ating condition of the equipment, machine vision is added
in a live working robot to obtain more information about
the environment [4] and provide the ability of non-contact
measurements. This ability does not pose any danger to
workers and thus improve the safety of the system [2].
Also, machine vision is also able to replace the long-term
work of the human eye so that the continuous monitoring
and identification can be achieved successfully.
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Different from the traditional identification of power
components [5], the images from live working robots
have complex backgrounds, high density of parts, and
high timeliness requirements and contain many interfer-
ence objects. In this sense, traditional power component
identification cannot be applied well to the patrol images
from live working robots because they mainly use manu-
ally designed features and segmentation algorithm, where
classical features include SIFT (scale-invariant feature
transform) [6], edge detector [7], and HOG (histogram of
oriented gradients) [8], while the segmentation algorithms
are mainly based on peripheral contour skeleton [9] and
adaptive threshold [10]. However, applying these methods
to automatic detection is not practical due to the following
drawbacks: (1) they are often based on specific categories
in the design principle so that their accuracy is lower
and the scalability is not stronger. and (2) these methods
always have a loose structure and lack comprehensive uti-
lization of low-level features to achieve the goal of optimal
global identification.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0337-z&domain=pdf
http://orcid.org/0000-0002-3281-1743
mailto: 18817931275@163.com
http://creativecommons.org/licenses/by/4.0/


Lei et al. EURASIP Journal on Image and Video Processing        (2018) 2018:122 Page 2 of 14

Compared with the traditional method, Ren et al.
proposed a new approach, named by Faster-RCNN
(faster region-based convolutional neural network) [11].
Regarding structure, Faster-RCNN has integrated feature
extraction, proposal extraction, bounding box regression
(rectangular refine), and classification into a network. It
leads to a significant improvement in overall performance
and detection speed. R-FCN is another target detec-
tion structure proposed by [12]. It modified the previous
Faster-RCNN structure by moving the convolutions to the
front of the ROI layer. R-FCN used a position-sensitive
feature map to evaluate the probability of each category
and was thus more accurate in positioning. Although the
detection rate was improved, R-FCN cannot recognize
the specific contour of the target. Due to this drawback,
R-FCN has a limited range of application. Mask R-CNN
was proposed by K. He [13], a researcher of Facebook AI,
in 2017. This method expands the object detection tech-
nology and achieves pixel-level segmentation and contour
segmentation of targets by using bilinear interpolation.
Law method, proposed by [14], reduced the loss of space
symmetry and has better recognition effect in scenes with
a transparent background and foreground segmentation.
However, it does not have sufficient adaptability to power
component scenes with many interference factors and
cannot fully exploit the image’s associated information.
To improve the identification precision for power com-

ponent, this paper proposes an efficient power component
identification with long short-term memory and deep
neural network. Based on Mask R-CNN, we design Mask
LSTM-CNN model to integrate context features in the
classification and regression layers through LSTM neu-
ral network [15]. Firstly, we use long short-term memory
networks to synthesize the context information in a con-
volutional neural network. Then, we constructed Mask
LSTM-CNN model by combining the existing Mask
R-CNN method and the context information. Further, by
extracting the specific features belonging to the power
components, we design an optimization algorithm to opti-
mize the parameters of Mask LSTM-CNN model [16].
Extensive experiments show that the proposed scheme
has an excellent anti-interference ability and verify that
the power component is still identified accurately even if
the patrol images contain much interference information.
Comparing with the existing R-FCN model and Faster
R-CNN model, the detection accuracy of proposed
scheme has a significant improvement with a range from
8 to 11%.
The rest of this paper is organized as follows. Section 2

presents several traditional power component identifica-
tion schemes. In Section 3, we provide the details of the
proposed approach and introduce the designing proce-
dure of Mask LSTM-CNN. Subsequently, comprehensive
experiments are performed to evaluate the performance

of the proposed scheme. The experimental results and
corresponding discussions are presented in Section 4,
respectively. Finally, Section 5 concludes the paper.

2 Related works
2.1 Power station identification based on Faster-RCNN

method
Following R-CNN [17] and Fast R-CNN [18], Faster-
RCNN was proposed by [11]. This method can identify
region proposals by using a regional proposal network
(RPN), which replaces previous methods such as Selective
Search [19] and Edge Boxes [20]. RPN and the detection
network share the convolutional characteristics of the
whole map so that detection for a region can take less time
[21]. The structure of the Faster-RCNN neural network is
shown in Fig. 1.
RPN is a full convolutional-based network [22], and it

can simultaneously predict the position of the target pic-
ture area and the target score (the probability value of
the real target) of the input picture. Meanwhile, RPN is
also an end-to-end network training method to generate
high-quality regional proposal boxes for Fast R-CNN clas-
sification detection. With an optimization method, RPN
and Fast R-CNN can share convolution features during
training. Combing these two models, an overall structure,
named by “RPN+Fast R-CNN,” is integrated. In this struc-
ture, RPN network is mainly used to generate high-quality
proposal area boxes, while Fast R-CNN is used to learn
high-quality proposed area features and classification.
Faster R-CNN designs the network RPN to extract

candidate areas and replaces the selective search with

Fig. 1 The structure of Faster-RCNN
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Fig. 2 The structure of R-FCN

lower efficiency. This process significantly improves the
detection speed of the entire model. However, it can only
determine the target’s general location instead of the spe-
cific power component’s position. Overall, this model has
a low recognition rate when the power components are
occluded. Thus, it cannot meet the on-site requirements
for power component identification.

2.2 Power station identification based on R-FCNmethod
The target detection of the regional-based full convolu-
tional network [22] is divided into two steps: position-
ing a target and then classifying the target to a specific
category. First, R-FCN model uses a rudimentary con-
volutional network to generate a feature map. Then, the
regional feature map is used to generate the feature map
before and after the full map is constructed. The model
determines the target’s outline by searching and filtering
[23] scene images through these feature maps. Finally, the
classification framework recognizes the target.
Figure 2 demonstrates the structure of R-FCN model.

The target image is passed through a basic convolutional
network to generate feature maps and input these feature
maps into a full-volume network to generate a score bank
of position-sensitive score maps. The results of the basic
convolutional network go through the RPN network to
generate RoI. For a RoI of size w×h (obtained by the RPN
network), the target frame is divided into k × k subar-
eas, each subarea is of size w × h/k2. For anyone subarea
bin

(
i, j

)
, j ≤ k − 1, define a location-sensitive pooling

operation:

rc(i, j|∇) =
∑

(x,y)∈bin(i,j)

1
n
zi,j,c(x + x0, y + y0|∇) (1)

where rc(i, j|∇) is the pooled response of subarea bin(i, j)
to c categories and zi,j,c stands for a location-sensitive
score map corresponding to subarea bin(i, j). x0 + y0
represents the coordinates of the upper left corner of
the target candidate box, n is the number of pixels in
subarea bin(i, j), and ∇ represents all the learned param-
eters of the network. The model calculates the average

of pooled response output rc(i, j|∇) for k × k sub-
regions and uses the softmax regression classification
method to obtain the probability that it belongs to each
category.
R-FCN integrates the target’s position information into

ROI pooling by position-sensitive score map, which solves
the problem that the ROI pooling of Faster-RCNN net-
work has no translation invariance. Thus, this model
improves the accuracy of target detection and classifi-
cation so that the operating efficiency of the model is
significantly superior. However, it is evident that the R-
FCN model still cannot detect the specific location of
the target and lacks the robustness to the scene of power
components with many interfering objects.

3 Recognition of power components based on
Mask LSTM-CNN

Although the Faster-RCNN and R-FCNmethods improve
the processing speed and accuracy of part identification
models, they cannot refine the specific contours of power
components so that live working robots cannot accurately
identify components’ orientations through such methods.

Fig. 3 The structure of Mask LSTM-CNN
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Fig. 4 The schematic diagram of RPN

Moreover, the recognition rate of above two methods will
obtain an inferior performance and cannot meet the com-
plex industrial environment if power components suffer
some. In this section, we combine Mask-RCNN to con-
struct an efficient Mask LSTM-CNNmodel to sufficiently
reduce the influence of obstructions on the recognition of
targets.

3.1 Neural network model for power component
identification

Proposed Mask LSTM-CNNmodel consists of four parts:
pre-training CNN model, RPN network, RoI-Align layer,
and detection network layer and Mask layer. The specific
structure of the model is shown in Fig. 3. The model

uses LSTM to correlate ROI information before the tar-
get is identified to reduce the effect of obstacles on the
power component. The model improves the accuracy of
power component recognition by learning the dependen-
cies between regions.
(1) Pre-training CNN model
Inspired by the existing CNN model, we use ResNet

(a further comparison during the experiment) to pre-
train the data in the coco2017 image classification task.
The data collected from the collected power compo-
nent inspection data is used to improve and eventually
build a complete CNN model. The CNN model is the
basis of the proposed method, and it provides the fea-
ture map required for subsequent RPN networks and
detection networks [24]. The feature map contains fea-
tures from the deep convolution of the input image, and
Euclidean distances between features of objects are pro-
portional to the differences between those objects. That
is to say that the feature map can differentiate objects
well [25].
(2) RPN network
The power component image generates a multi-channel

feature map through the previous CNN network. The
RPN network applies a sliding window to these feature
maps and uses the anchor mechanism to determine and
classify the target region of the feature map. Finally, the
back-propagation algorithm is used to tune the regional
proposal network.
A plurality of convolution kernels in the output layer

is used to perform a convolution operation, and then, a
three-dimensional tensor is obtained. The tensor is used
as the input of two independent convolution layers to con-
vert the information in the feature map into the position
information of the candidate region and the probability
information of the context. As shown in Fig. 4, the red area
in the figure is the search area. In the picture, only part of
the search target box is drawn.

Fig. 5 The schematic diagram of bilinear interpolation
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Fig. 6 The structure of detection and Mask layer

RPN uses nine search boxes to search for an area with
aspect ratios of 1:1, 1:2, and 2:1. The RPN network can
get approximate 20,000 search boxes from an original
input image. In practical applications, some search boxes
beyond the border of the image are removed. Mean-
while, NMS (non-maximal suppression) [26] method
is used to handle the overlapping of search boxes
on the same target. The above strategies can signifi-
cantly improve the search efficiency of candidate target
boxes.
RPN completes the search of candidate areas on the

output layer of the rudimentary convolutional network
and provides candidate areas for the subsequent target
detection network, which improves the efficiency of the
entire model.
(3) RoI-Align layer
RoI-Align optimizes the problem of pixel bias and

uses bilinear interpolation to obtain the image values
at the pixels whose coordinates are floating-point num-
bers. Finally, the entire feature aggregation process is
integrated into continuous operation. ROI-Align layer
traverses each candidate areas and keeps floating-point

boundaries unquantified. Thexn, it divides the candi-
date area into k × k units and holds the boundaries of
each unit unquantified. Inside each unit, the fixed four
coordinate positions are calculated by bilinear interpo-
lation. The interpolation method calculates the values
of these four locations and then performs the maxi-
mum pooling operation. The specific process is shown in
Fig. 5.
In the back-propagation of the RoI-Align layer, xi × (r, j)

is the coordinate position of a floating point (sample point
calculated during forwarding propagation). In the feature
map before pooling,each point within the window that has
size two by two and centers at xi × (r, j) should receive
the gradient w.r.t the corresponding point yrj gradient,
the back-propagation formula of the RoI-Align layer is as
follows:

∂L
∂xi

=
∑

r

∑

j

[
d(i, i × (r, j))< 1

]
(1− �k) (1 − �w)

∂l
∂yrj

(2)

Fig. 7 The structure of hidden layer A
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Fig. 8 Illustrations in the sample: a “original image” and b “training sample”

where d represents the distance between two points,
and �k and �w describe the difference between xi, the
longitudinal coordinate, and xi ∗ (r, j), the transverse
coordinates. Here, the bilinear interpolation coefficient is
multiplied by the original gradient.
The RoI-Align layer solves the problem of RoI misalign-

ment between the feature map and the original image, and
it obtains better measurement results through more rig-
orous positioning metrics, which relatively improves the
accuracy of the mask.
(4) Detect network layer and Mask layer
The result of the regional proposal generated accord-

ing to step (3) is the input of the detection network
and the Mask layer, wherein the detection network is
composed of a classification network and a regional
location network. The specific structure is shown in
Fig. 6.
The detection network uses the convolutional network

to pre-convolve each ROI and its top, bottom, left, and
right regions to extract the high-dimensional feature vec-
tor as the input to lstm [27][28]. The connection status

of the memory unit and various doors are shown in
the blue area in Fig. 6. In the figure, xt denotes the
input of different regions, and ht denotes the output of t
region. The sigmoid function transforms the input infor-
mation by multiplying point by point. Forget gate deter-
mines whether to save the previous area from the stored
state-ht . The input gate determines the information that
needs to be updated. The entire unit updates the storage
status through forget and input gates ct . The output gate
[29] determines whether to store information in the mem-
ory for output. Through five inputs xt and each hidden
output ht , the final output is h5. The concrete structure
of hidden layer A is shown in Fig. 7. When the tth block
region of the sequence enters the network, the input of
the LSTM hidden layer includes the current input xt of
the network, the hidden layer output vector xt − 1 at the
previous time, and the hidden layer state ct − 1. The task
of the hidden layer is to calculate and output the vector
ht and update the state to obtain ct . For this hidden layer,
the oblivion gate ft , the input gate, and the output ot gate
are added. Oblivion gate ft determines which information

Fig. 9 Three classification results based on normal samples
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Fig. 10 Three classification results based on disturbed samples

in state ct is discarded. Input gate it determines which of
the updated information from xt and ht − 1 can be used
for status ct updates. After oblivion gate and the output
gate, state ct update is completed. The purpose of adding
the hidden layer state in the LSTM is to make it affect the
output ht of the hidden layer, so the output gate ot is used
to determine how the state ct affects the calculation of
the ht .
The sigmoid activation function is shown in δ in Fig. 7.

The calculation expressions of the three new additions,
the hidden layer output ht , and status update ct are calcu-
lated as follows:

ft = δ
(
Wf · [xt , ht−1] + bf

)
(3)

it = δ (Wi · [xt , ht−1] + bi) (4)

ot = δ (Wo · [xt , ht−1] + bo) (5)

ct = tanh (Wc · [xt , ht−1] + bc) + ft · ct−1 (6)

ht = ot · tanh(ct) (7)

The last output connects two layers of full-connected out-
put k + 1-dimensional array p and 4 × k-dimensional
array t, and array p represents the probability of belonging

to class k and background. Output a discrete probability
distribution for each RoI (Region of Interesting):

p = (p0, p1 · · · , pk) (8)

p is computed using softmax from the k + 1 full con-
nection layer. The array t represents the parameters
that should be pan-scaled when belonging to the k-type
respectively:

tk =
(
tkx , tky , tkw, tkh

)
(9)

k denotes the index of the category, tkx and tky are the trans-
lations invariant w.r.t the scale of the object proposal, tkw
and tkh are the height and width of the object relative to
the object proposal in space. The probability correspond-
ing to the real classification u determines the value of loss
function Lcls of the classification layer:

Lcls(p,u) = − log pu (10)

The loss function Lbox of box frame detection is obtained
by comparing the difference between the prediction pan-
ning scaling parameter tu and the real panning scaling

Fig. 11 Proposed model and Mask R-CNN recognition results: (a or red) “Mask R-CNN,” (b or green) “Mask LSTM-CNN,” c “comparative results,” and
(blue) “original object”
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parameter v, which corresponds to the actual classifica-
tion. The specific formula is as follows:

v = (vx, vy, vw, vh) (11)

Lbox(tu, v) =
4∑

i=1
smoothL1

(
tui − vi

)
(12)

Among them, smoothL1 loss function:

smoothL1(X) =
{
0.5x2(if |x| < 1)
|x| − 0.5(otherwise) (13)

The last layer of the full convolutional layer is predicted
from the probability that the candidate region box belongs
to each category, the score, and themore appropriate loca-
tion of the target object’s outer frame, which uses four
parameters relative to the two region translation and two
scaling of the candidate region frame [30].
The Mask layer has an output of k × m2 dimensions for

each RoI, K (class number) binary mask with resolution
m×m. Therefore, the author uses a per-pixel sigmoid and
defines Lmask as the average binary cross-entropy loss. For
a RoI belonging to the kth category, Lmask only considers
the kth mask (other mask inputs do not contribute to the
loss function). Such a definition would allow the algorithm
to generate a mask for each category, and there would be
no inter-class competition. Mask layer loss function:

Lmask(Cls_k) = Sigmoid(Cls_k) (14)

The total loss function can be represented as the sum of
the loss functions w.r.t classification error, detection error,
and segmentation error.

L = Lcls + Lbox + Lmask (15)

Finally, the network is fine-tuned using the back-
propagation algorithmthroughpre-marked information [31].

3.2 Detection and identification process
As can be seen from the above process, the two networks
can eventually share the same characteristic information,
which improves the information utilization rate. The RoI-
Align layer reduces the loss of spatial symmetry and cor-
relating the knowledge of the upper and lower regions of
the ROI enhances the robustness of the model. The Mask
layer can achieve pixel-level segmentation.
The process of detection and identification is as follows:
Step 1: A series of convolution operations are per-

formed on the entire image to obtain a feature map.
Step 2: Generate a large number of candidate areas on

the feature map by the regional proposal network.
Step 3:Non-maximum suppression of candidate region

boxes, retaining the first few boxes with higher scores.
Step 4: Take out the feature in the candidate region

frame on the feature map to form a high-dimensional fea-
ture vector. Calculate category scores from the detection

Table 1 Comparison of two models mAP, recall, and mEAO

Model mAP mRecall mEAO

Mask R-CNN normal 0.793 0.82 0.83

Proposed model normal 0.833 0.85 0.91

Mask R-CNN disturbed 0.532 0.67 0.64

Proposed model disturbed 0.694 0.78 0.79

network and predict more appropriate target peripheral
frame positions.
Step 5: The corresponding binary mask is predicted for

each feature map according to the classification in (4).
The method shows through experiments that under the

identification of power components with obstructions,
solved the problem when the recognition rate is low.

4 Results and discussion
In this section, we validate the proposed scheme by some
images from a real power station. Live working robot
captures images with high resolution, including rapid
zooming of the target size. The angle of the captured
image is diverse and random. Three types of power com-
ponents are considered: transformers, isolation switches,
and circuit breakers.

4.1 Training sample processing
The dataset comes from the substation inspection image.
The original image size is 1200 × 900 (Fig. 8)a, and we
intercept the square block image with the target as the
main body and uniformly reduce it to 800 × 600 (Fig. 8)b
as a training sample.

4.2 Training sets and test sets
In this test, for each type of component of transformers,
isolation switches, and circuit breakers, 1200 training
samples were used. A total of 3600 samples constitute
a training set; 400 test images of each type and a
total of 1200 images constitute a test set. The outer
box is marked for the power components in each
picture in the training set. For the test set, all the
electric components appearing in each picture are
marked.

Table 2 Comparison ofmodels mAP based on different basic CNN

Faster-RCNN R-FCN Proposed model

VGG-19 0.763 0.791 0.813

ResNet-50 0.781 0.797 0.831

ResNet-101 0.789 0.817 0.846

ResNeXt-50 0.791 0.821 0.845

ResNeXt-101 0.821 0.839 0.869
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Table 3 The comparison of the recall rate of three models based
on ResNeXt-101

Faster-RCNN R-FCN Proposed model

mRecall 0.74 0.84 0.85

mEAO 0.83 0.87 0.92

During the test, it is considered as an auspicious recog-
nition when the overlapped area of the identified outer
frame and marked outer frame reaches more than 80% of
the marked outer frame. In this experiment, average pre-
cision, recall rate, and effective area occupancy rate are
used to judge the accuracy of identification. Among them,
the AP (average precision) is as follows:

AP = ncP
ncA

(16)

where ncP indicates the correct number of outer frames for
the target category and ncA indicates the number of outer
frames marked. The recall rate is as follows:

Recall = nbP
nbA

(17)

nbP is the number of the outer frame that the target
category correctly marks, and nbA is the number of all
standard outer frames. EAO (effective area occupancy):

EAO = mP&&mA
mP

(18)

where mP is the area predicted by the model and mA is
the actual area of the target area. Since there are only
three types of categories identified in this experiment,
mAP (mean average precision), mRecall (mean recall), and
mEAO (mean effective area occupancy) of each type of
power component are separately counted.

4.3 Experimental results
In this section, we use the same rudimentary convolu-
tional network and performance parameters to compare
the performance of Mask R-CNN and Mask LSTM-CNN.

Table 4 The time required for three models (based on
ResNeXt-10) to deal with each picture

Faster-RCNN R-FCN Proposed model

Time 300 ms 180 ms 800 ms

The average precision and recall rate of the two models
were tested with 1200 normal samples, as shown in Fig. 9.
As can be seen in this figure, the proposed method is
slightly higher than Mask R-CNN in classification accu-
racy of circuit breakers, isolation switches, and trans-
formers. To further test the improved advantages of the
proposed method, we prepare a particular sample set
including 600 power components with shielding, which
are shown in Fig. 10. We can see that Mask LSTM-CNN
has a clear advantage over Mask R-CNN in these samples.
Figure 11 shows the case that there are many obstruc-
ters in images. The blue marker is the actual segmentation
result of the sample, the red marker is the segmenta-
tion result of the Mask R-CNN model, and the green
marker is the segmentation result of the Mask LSTM-
CNN model. The figure demonstrates that the accuracy
of Mask LSTM-CNN segmentation is better than that of
Mask R-CNN, and Mask R-CNN identifies more inter-
ference backgrounds as part of the target. There are
three possible reasons for this exciting phenomenon. The
method proposed in this paper incorporates a long-term
and short-term memory network before a fully connected
decision layer. The method saves the picture information
of the upper and lower areas through the intermediate
state. The proposed method uses the intermediate state as
the input to influence the judgment of the next area. In
this way, the proposed model enhances the basis for the
model to judge the regional information, and it effectively
solves the problem that the model has reduced ability to
identify interference factors due to the disappearance of
gradients during the training of the model.
Based on the two kinds of samples, further experi-

ments are performed to calculate the mAP, mRecall, and
mEAO of the two models under different samples. The
experimental statistics are in Table 1. In this table, the
recognition effect of Mask LSTM-RNN model on normal

Fig. 12 The recognition effect of three models on the circuit breaker: (a or blue) Faster-RCNN, (b or yellow) R-FCN, (c or red) Mask LSTM-CNN, and
d comparative results
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Fig. 13 The recognition effect of three models on transformer: (a or blue) Faster-RCNN, (b or yellow) R-FCN, (c or red) Mask LSTM-CNN, and
d comparative results

samples is better than that of Mask R-CNN model. The
recognition accuracy of is evidently superior on samples
with obstructions. The mAP surpasses Mask R-CNNwith
an improvement of 16%, mRecall exceeds with a gain of
11%, and mEAO surpasses Mask R-CNN with an increase
of 15%.
The power of the site is usually complicated because

there are more obstructions before the power component
target.Mask LSTM-CNNdemonstrates amore significant
improvement in this task. The reason is that Mask LSTM-
CNN associate ROI information with LSTM before box
identification. Through the image information of the
nearby areas, it helps to judge the existence of obstacles,
strengthens the judgment basis of the neural network, and
further improves the accuracy of the classification. And
the judgment of the Mask layer depends on the classifica-
tion result. The result of the classification determines the
type of mask that the target generates, so the accuracy of
the classification layer directly relates to the accuracy of
the Mask.
In addition, we use different basic convolutional frame-

works such as VGG, ResNet, and ResNet as the basic
network of RCNN and compare the effects of different
basic convolutional frameworks on the accuracy of Faster-
RCNN, R-FCN, and Mask LSTM-CNN models with the
same performance parameters. The classification results
and the regional selection of mAP (mean average preci-
sion) are shown in Tables 2 and 3.
From Table 2, we conclude that the mAP of the model’s

underlying network when using ResNet is higher than that
of VGG. When the model uses ResNet as the underly-
ing network, its map is highest. When the model uses
ResNet-101 as the underlying convolutional network, its
mAP is as high as 87%. The reason is that ResNet proposes
a residual structure compared to VGG. Through reformu-
lation, ResNet decomposes a problem into multiple scales
and direct residual issues, which can be used to opti-
mize the training effect. ResNet retains ResNet’s stack-
ing blocks. ResNet splits a single path, simplifying the
model structure and improving computational efficiency.

From the side comparison in Table 2, the LSTM-CNN
of Mask LSTM-CNN has significantly enhanced mAP on
Faster-RCNN and R-FCN in three basic convolutions.
Because the method proposed in this paper contains the
mask layer structure, it enables identification of the model
at the pixel level, which ultimately leads to a higher recog-
nition rate.
FromTable 3, themRecall ofMask-RCNN and R-FCN is

almost equal, which is better than Faster-RCNN. ResNet-
101-based Mask LSTM-CNN mEAO is significantly bet-
ter than the other two models.
We further compare the time required for the three

algorithms to process each image based on the same basic
convolutional network. Results in Table 4 show the R-FCN
model has the fastest processing speed.Mask LSTM-CNN
is significantly slower than the other two algorithms, but
it is also within the acceptable range.
Mask LSTM-CNN is better than Faster-RCNN and R-

FCN in both mAP and recall rate. It takes more time to
process each picture than the other two models. However,

Fig. 14 The influence of dropout on the model
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Fig. 15 The approximate size of the three targets: a circuit breaker, b isolating switch, and c transformer

Mask LSTM-CNN can refine the detailed profile of com-
ponents. It is more conducive to the live working robot
to determine the position of the various parts of the parts
and the details of the accessories, and it has a better adap-
tation to the target shielding. These advantages are due
to the alignment between the extracted features and the
input of the ROI-Align layer in the Mask-RCNN model.
The proposed model uses the matrix instead of vectors
to predict each ROI. It reduces the loss of spatial infor-
mation. The method proposed in this paper associates
the features in the nearby ROI before the fully connected
layer. This approach enhances the robustness of object
recognition with obstacles. It effectively solves the prob-
lem of the gradient disappearing during the process of
judging the occlusion object information by a model.
From the following experimental results, as shown in

Figs. 12 and 13, the recognition effects of the three models
can be seen. The red mark represents the Mask LSTM-
CNN, the yellowmark represents the R-FCN, and the blue
mark represents the Faster-RCNN. Among the Faster-
RCNN tagging boxes, the correct number of outer boxes
in the target category tag is less than the actual number
of outer peripheral boxes. The Mask LSTM-CNN and R-
FCN are relatively accurate, and the Mask LSTM-CNN
can refine the specific outline of the part.
According to the previously mentioned advantages of

Mask LSTM-CNN, we optimize the performance of the

Mask LSTM-CNNmodel based on ResNet-101. TheMask
LSTM-CNN model involves some parameters, such as
dropout ratio and nms (non-maximum suppression), and
the number and size of the ratio and anchor. These param-
eters have a more significant impact on the mAP, and we
will discuss them as follows.
Due to the massive time consumption of network train-

ing, we only tried 10 different dropouts. As shown in
Fig. 14, when the dropout ratio increases from 0.5 to 0.95,
the accuracy gets themaximum value at approximate 0.65.
At present, dropout often depends on experience. We tra-
verse according to the specific experimental environment
and obtain the relatively optimal value. According to the
above experimental results, we set dropout as 0.65 and
change the number of anchors. The number of commonly
used anchors is set to 9, which belong to three cate-
gories and have three aspect ratios (1:1, 1:2, 2:1). Since the
scene identified this time is a power accessory, the recog-
nition object has a fixed characteristic. According to the
size ratio of the power accessories, the anchor is further
optimized in this paper.
In experimental results in Fig. 15, the size of the isola-

tion switch in the area of about 5:1 is more appropriate,
while 1:4 for the circuit breaker and 5:3 for the trans-
former.
Based on these three ratios, three new dimensions

are scaled. This article adds nine new anchors. These

Fig. 16 Comparison of the recognition effect of the model to the circuit breaker: (a or red) “unimproved model,” (b or green) “improved model,” and
c “comparative results”



Lei et al. EURASIP Journal on Image and Video Processing        (2018) 2018:122 Page 12 of 14

Fig. 17 Comparison of the recognition effect of the model to the isolation switch: (a or red) unimproved model, (b or green) improved model, and
c comparative results

nine anchors are used to obtain the various parts of the
power device, making us more comprehensive and accu-
rate. Further experiments were conducted to compare
with the original model. The experimental results are in
Figs. 16 and 17. The red mark indicates that the recog-
nition effect of the model is not improved without nine
anchors, and the green mark indicates the recognition
effect of the improved model with nine anchors. The
Mask LSTM-CNN model is more accurate in the area
selection of power components, and the contour recog-
nition of components is more accurate. In regions with
high density of power components, there is a significant
improvement in recall rate of recognition. According to
Table 5 (box-map is the average accuracy of the area
recognition, and Mask LSTM-CNN means the average
accuracy of the mask), the improved power component
recognition model has a noticeable improvement in area
selection, contour subdivision, and recall rate.
The model uses a dropout of 0.67 and an anchor type

of 18. It changes the image crossover ratio of the nms to
IoU and tests its impact on mAP. The result is in Fig. 18.
According to Fig. 18, as the IoU of nms decreases, mAP
also gradually decreases. The reason is that the smaller the
IoU is, the fewer the candidate areas remain after nms,
which leads to a decrease in the accuracy of the detection
result. A higher IoU cannot achieve the goal of eliminat-
ing the redundancy box by increasing the efficiency of the
nms. Therefore, point A in Fig. 18 corresponds to IoU of
0.86. After point A, the model’s accuracy growth has been
slow. Thus, the image of the nms IoU ratio is 0.86.

4.4 Discussion
We have presented corresponding experimental results
in above section. The proposed method is compared
with several state-of-the-arts, e.g., original Mask R-CNN

Table 5 The influence of the number of A on the model

Anchor-number Box-map Mask-map Recall

9 0.886 0.834 0.874

18 0.893 0.867 0.943

method and Faster-RCNN, R-FCN, and other methods.
Objectively, since we integrate context features in the
classification and regression layers, the proposed method
obtains better parameter values, such as mAP, mRecall,
and mEAO. Tables 1, 2, and 3 show that Mask LSTM-
CNN is superior to Mask R-CNN, faster-RCNN, and
R-FCN, and the average accuracy is up to 93%. This
demonstrates that our proposed method is more effec-
tive. Subjectively speaking, the method proposed in this
paper is better than Mask R-CNN, Faster-RCNN, and R-
FCN in identifying power components. Especially when
the power components are blocked, the method proposed
in this paper is greatly improved in the recognition rate.
Actually, Mask LSTM-CNN can associate ROI informa-

tion with LSTM before target classification. A series of
convolution operations are performed on the entire image
to obtain a feature map: First, generation of a large num-
ber of candidate areas on the feature map by the regional
proposal network. Next, non-maximum suppression of
candidate region boxes, retaining the rst few boxes with
higher scores. Then, taking out the feature in the can-
didate region frame on the feature map to form a high-
dimensional feature vector. Last, calculation of category

Fig. 18 The influence of Iou on the model
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scores from the detection network and prediction of more
appropriate target peripheral frame positions. Finally, the
classification accuracy is improved significantly. Since the
judgment of the Mask layer depends on the classification
result, which determines the type of mask that the target
generates, the accuracy of the classification layer directly
relates to the accuracy of the Mask.
This paper provides the research theory for the image

recognition and target positioning of the charged detec-
tion robot. Even with complicated working conditions on
the scene, the identification accuracy for power compo-
nents is still improved greatly. Moreover, we design a long-
term and short-term memory network to further improve
the recurrence of operations and reduce the recognition
speed. In the further work, we hope to lower the compu-
tational efficiency of the model. A distributed deep neural
network may help us to solve this problem. This issue is
left as our future work.

5 Conclusions
Based on the analysis of the current and more advanced
methods for target detection and identification, this paper
verifies the accuracy and efficiency of the recognition of
power small parts using Mask LSTM-CNN algorithm.
The influence of different parameters on the detection
results of Mask LSTM-CNN was analyzed. After combin-
ing the features of power components to further optimiza-
tion of the model, experiments show that Mask LSTM-
CNN model can accurately detect, locate the power com-
ponents in real time, and provide a good foundation for
automatic maintenance of components in live working
robots.
Finally, we point out that a more extensive sample

library that can further improve the identification per-
formance. In this sense, there may be room for further
improvement. Also, a more elaborate identification cate-
gory, including the types of fault images for various power
components might also be helpful to improve the per-
formance. In addition, it is also possible to apply image
detection and recognition in other fields. The above three
issues are left as our future work.
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