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Abstract

Histopathology image analysis is a gold standard for cancer recognition and diagnosis. But typical problems
with histopathology images that hamper automatic analysis include complex clinical features, insufficient
training data, and large size of a single image (always up to gigapixels). In this paper, an image semantic
segmentation algorithm based on feature Pyramid (ResNet50-GICN-GPP) is proposed. Firstly, the patch
sampling method is adopted to resample the image, reduce the size of a single sample, and expand the
number of training samples. Secondly, design the whole convolution network based on ResNet50 learning
feature location information, then use GICN structure and deconvolution network to integrate multi-level
features. Finally, in order to solve the problem that the GICN structure may lose the small object, the GPP
structure should be joined to explore the multi-scale semantic information. The proposed method achieves

multi-scale information localization is more accurate.

Multi-level features, Depth learning

63% of the average segmentation accuracy (Dice coefficient) on Camelyon16 and Gastric WSIs Data,
compared with U-Net, FCN and SegNet which has 10~20% improvement, and fully demonstrates the
effectiveness of this method in different types of cancer. By experimentally comparing the segmentation
accuracy of various scales of cancerous tissues, the performance of ResNet50-GICN-GPP is balanced and the
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1 Introduction

Medical image segmentation is the basis of various
medical image applications, especially in computer-aided
diagnosis (CAD), image-guided surgery (IGS) and
oncology radiation therapy (ORT) [1]. In recent years,
Whole-Slide Images (WSIs) [2] have driven the shift of
pathological section to high resolution, where in
all-digital workflows, the huge amount of information it
contains provides a big data backdrop for quantitative
analysis tasks (classification and segmentation). Com-
bined with the rapid development in the field of com-
puter vision, the quantitative analysis of pathological
sections can not only save the doctors free from looking
for candidate lesions one by one in a boring environ-
ment but also improve the accuracy of pathological
diagnosis.
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Segmentation of digital histopathology images presents
three challenges: complex clinical features, inadequate
training data, and the huge size of a single histopatho-
logical image.

The first one is the complex clinical features. Histo-
pathology of different types of cancers show different
morphologies, sizes, textures, and color distributions,
making it difficult to find a general pattern for tumor
image segmentation. Ilea et al. [3] studied an image seg-
mentation algorithm that only extract texture features,
and Tashk et al. [4] studied one that only extract tex-
ture features. Belsare et al. [5] proposed a hyper-pixel
generation method based on similarity, combined with
the text representation to form the space-texture-color
map of breast histology images. Xu et al. [6] proposed
an unsupervised SNMF algorithm, which is divided into
two steps: color unmixing and spatial segmentation.
However, the particularity of these designs limits the
application of them in other types of tumor image
segmentation.
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The second problem is the lack of large-scale medical
image data. The number of images depends on the num-
ber of occurrences of the disease, which can make the
collection process more difficult if the frequency of dis-
eases studied is low. In addition, manual annotation of
data requires a lot of workforce, but some clinical diag-
nosis is difficult to quantify, manual annotation is also
not clear essentially.

The last problem is that a single histopathological
image contains a huge amount of information. A typical
WSI scan will produce an image with the size of more
than 100,000 x 100,000 pixels that contain over one mil-
lion descriptive objects. Due to the large-scale nature of
the data, the feature extraction model is required both
for efficiency and accuracy, and the learning algorithm
should be designed to extract as much information as
possible from these large images.

With the advent of deep convolutional neural net-
works (CNNs), CNN activation features have achieved
great success in computer vision [7, 8]. There are
many visual databases, such as ImageNet, with more
than 10 million images and more than 20,000 cat-
egories [9], which enable CNN to learn a rich and
varied feature description from these images. Xu et al.
[10] studied the image abstraction provided by Ima-
geNet in different responses of CNN hidden layer,
transferred these features to histopathological images,
then solved the problem of limited training data of
medical images. Jia et al. [11] proposed an algorithm
called DWS-MIL that takes multi-instance learning
framework of full convolutional neural network (FCN)
as the baseline and conducts multi-scale learning
under weak supervision. The annotation process only
requires a little extra work; then, the segmentation
accuracy will be improved significantly. Although
CNN itself is capable of image segmentation, it is un-
wise to segment the histopathology image with CNN
directly. On the one hand, the size of a single histopatho-
logical image is extremely large, and it is impractical to
construct CNNs with huge input size; on the other hand,
scaling up the entire histopathological image to the ac-
ceptable input size of CNN will lose a great deal of details.
Based on this fact, this paper uses the patch sampling
technique [12] to sample the initial data and obtain the ac-
ceptable input data of CNN.

The work in the literature [7, 8, 10, 11] is mostly
based on the classification network of the existed
framework (AlexNet, VGGNet, GoogleNet, etc.). Peng
et al. [13] found that the need of classification and
segmentation tasks is contradictory. For classification
tasks, the model needs to be invariant to various
transformations, such as translation and rotation, but
for the task of segmentation, the model needs to be
sensitive to the transformation, that is, to locate the
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semantic category of each pixel precisely. For these
reasons, this article attempts to design a new archi-
tecture to overcome these problems. Firstly, it should
be designed on the principle of positioning (location) and
should abandon the full connection layer and the pooling
layer, because these layers will lose the spatial information.
Then, use the large-size convolution kernel from the view
of classification, to ensure the structure connect densely.
The experiments in Section 4.2 show that when the con-
volution kernel size increased to the same size as charac-
teristics (features), the classification effect is more
obvious. Based on these two principles, this paper presents
Global Inception Convolution Networks (GICN), as is
shown in Fig. 2. To reduce the loss of contextual informa-
tion in different sub-regions, this paper used the global
average pooling [14] and built a global pyramid pooling
(GPP) structure. Different size outputs in GPP contain in-
formation on different scales and different sub-regions.

In this paper, we proposed a simple and effective com-
bination of feature pyramid for segmentation of histo-
pathological images and verified the validity of the
method on two data sets. The contribution of the frame-
work has the following points:

(1) Sampling the initial data using patch sampling
technology, solve the problem of the extremely large size
of training data; it also added training samples.

(2) The GICN structure at different feature levels con-
stitutes a multi-level feature pyramid that solves the
contradiction between classification and location.

(3) The Global average pooling with different sizes
constitutes a multi-scale feature pyramid that facilitates
the integration of contextual information of different
sizes and regions.

This paper is organized as follows: The second section
briefly reviews the semantic segmentation algorithm in
the field of natural images. The third section details the
ideas and specific methods mentioned in this article. Fi-
nally, the fourth section provides the experimental results.

2 Segmentation algorithm of natural image
domain

Before deep learning was applied to computer vision, re-
searchers typically used methods such as TextonForest
and Random Forest to build semantic-partitioned classi-
fiers. Later, with the extensive application of deep learn-
ing, image block classification techniques utilize the
image blocks surrounding each pixel to classify each
pixel into a corresponding category. In 2014, Long et al.
proposed FCN [15], which promoted the original CNN
structure and spatially densely predicted without full
connectivity layer. Compared with the image block clas-
sification, FCN can generate any size of the split map
and improve the processing speed.
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In addition to the full connected layer, another problem
with image segmentation using the CNN network is the
pooling layer structure. The pooling layer also discards
part of the location information while increasing the
upper layer convolution core and aggregated background
information. However, the semantic segmentation method
is sensitive to the position information of the feature map.
To keep this information as far as possible, the researchers
propose two structures to solve this problem.

2.1 Encoder-decoder structure

The encoder uses the pooling layer to reduce the spatial
dimension of the feature map. The decoder gradually
restores the target details and the corresponding spatial
dimension through the deconvolution layer. For ex-
ample, Noh et al. [16] use deconvolution to up-sample
low-resolution feature responses. U-Net [17] connects
the encoder features to the corresponding decoder
though the jump layer connection to help the decoder
recover the target details better. SegNet [18] recorded
the pooling index of the feature map in the encoder. The
decoder extracted the information and mapped it to its
original location. LRR [19] uses Laplace Pyramid to recon-
struct the network and multiplicative gating integrates ef-
fectively the underlying position information and
higher-level semantic information. Recently, RefineNet
[20] demonstrated the validity of the semantic
segmentation problem based on the coder-decoder struc-
ture, which has also been practiced in the target detection.

2.2 Dilated convolutions structure

The use of dilated convolutions [21] instead of the pooling
layer ensures that the original network, such as FCN, re-
tains its original receptive filed and the size of the feature
map that have not lose the information. PSPNet [22] uses
dilated convolutions to improve the ResNet network and
connect the feature graph of the ResNet to the upper sam-
ple output of the Pyramid parallel pool layer. DeepLab-V2
[23] imported different size images into extended convo-
lution layers with different sampling rates to achieve se-
mantic segmentation of multi-scale images.

In addition to the improvements in both of the above
network architectures, some researchers used condi-
tional random field (CRF) to improve segmentation in
post-processing. The CRF method is a graph model of
“smooth” segmentation based on the pixel strength of
the underlying image, and the points of the pixel inten-
sity are marked in the same category at runtime.
Addition of conditional random field method can im-
prove the final score of 1-2% [24].

3 Methods
Due to the lack of data sources and difficulties in data
collection, medical image databases are often much less
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than the natural scene image data sets. It is not appro-
priate to apply the previous machine learning algorithms
to the medical image data sets directly. Drawing on the
successful semantic segmentation algorithm in natural
scene images, we put forward a general solution to
histopathological image segmentation in this paper.
Firstly, we resample the data using patch sampling
method. Secondly, we analyzed the contradiction
between classification and segmentation, introduced new
GICN structure using ResNet50 as the baseline method,
and discussed the importance of spatial information to
semantic segmentation. Finally, we proposed to use GPP
structure to explore multi-scale semantic information
aiming at the problem that the large convolution kernels
may loss the small targets.

3.1 CNN architecture

ResNet showed good performance in image classifica-
tion tasks once proposed. Experiments show that the
residual network is easier to optimize and can improve
the accuracy by increasing the depth of the network.
Due to the limitation of the computing power of the
experimental equipment, this paper selects ResNet50 as
the basic method; uses cascading Res-2, Res-3, Res-4,
and Res-5 for multi-level feature integration; and adds
additional networks to the Res-5 for multi-scale feature
integration. And finally, the two features are fused to
get the prediction result. The overall network structure
is shown in Fig. 1.

3.1.1 Resampling

For the large size of the WSI data, it is necessary for local
feature extraction. This paper selected x 40 magnification
data (about 151,872 x 151,872 pixels, the size of the data
collected by different machines may be different), de-
signed a rectangular grid with the size of 512 x 512 and
the 512 strides, and obtained the patches traversing each
WSI, as shown in Fig. 1a,b. In order to filter “bad data”,
the RGB value of all the pixels in patch generation cannot
be larger than 220(the experience value); otherwise, the
patch data will be considered to contain only white back-
ground which should be discarded.

3.1.2 The multi-level feature pyramid

The ResNet50 input is a 3-channel image with the size
of 512 x 512, shown in Fig. 4 in Appendix for more de-
tails. The full connection layer and the pooling layer in
the original ResNet50 network will lose spatial informa-
tion. Based on the principle of “positioning priority” in
semantic segmentation, the network down-sample using
a CNN with a stride size of 2 to replace the pooling
layer. In the new Resnet50 structure, Res-2, Res-3,
Res-4, and Res-5 form the encoder part of the entire
structure. Then, in the point of classification, the
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on pixel-level prediction. f Ground Truth

C Pyramid GICN Module

Fig. 1 The semantic segmentation network structure. a Digital histopathology images. b Sampling data for patch sampling (size 512 x 512). ¢
Multi-level feature pyramid to extract spatial information. d Multiscale features pyramids focus on smaller targets. @ Segmentation results, based
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encoder features need to be strongly connected to each
pixel classifier to enhance the network’s ability to handle
various conversions. Figure 1c shows the Pyramid GICN
Module structure in which the GICN network and the
deconvolution layer together form the decoder section.

As mentioned before, the large CNN can establish
dense connection; however, the large core structure
brings the problems of high computational cost and too
many structural parameters. In order to optimize the
model and relieve the high computation, we designed
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Fig. 2 GICN structure
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the GICN structure with reference to the GoogleNet
network model (as shown in Fig. 2) which replaces the
large-core CNN network. The GICN structure is con-
nected to the k*k region on the encoder feature using
(I*k + k*1) + (K*1 + 1*k) in which compared with the sin-
gle k*k, the network does not need any nonlinear behind
the convolutional layer with the just O(3)computing cost
and the count of parameters.

In the decoder part, four GICN structures are respect-
ively connected to the corresponding decoder features,
where the GICN-1 mapping with Res-2, GICN-2 mapping
with Res-3, and so on. The GICN-1 feature layer is com-
posed of 32 128 x 128 feature maps, and the GICN-2,
GICN-3, and GICN-4 are all composed of 32 64 x 64 fea-
ture maps, in which it used the transpose convolution to
up-sample with the kernel size of 3 x 3 and the strides 2.
Deconv-1 outputs 32 128 x 128 feature maps. The features
consisting of the DeConv-1 outputs and GICN-1 used
transpose convolution to up-sample with convolution ker-
nel size of 3 x 3 and stride size of 2. In the Deconv-2 out-
put 32 256 x 256 features, the network generate the
feature map with the same size of original image by using
transpose convolution to the DeConv-2 output with the
size of 2 x 2, and stride of 2. At this point, we completed
the multi-level feature pyramid feature extraction.

3.1.3 Multi-scale features pyramid
This part of the work is shown in Fig. 1d Pyramid GPP
Module. We took the 2048 64 x 64 features of the Res-5
module as input. Due to that the Pyramid GICN module is
difficult to identify small and insignificant cancerous tissues,
we proposed the GPP to make up for the semantic infor-
mation deficiency of Pyramid GICN in small-scale target.
In Fig. 1, the green pool structure is actually a global
average pooling layer. We covered the entire area of the
Res-5, 1/4 zone, 1/9 zone, and 1/36 zone using pooling
kernels with the size of four different scale (10 x 10,
20 x 20, 30 x 30, 60 x 60). The structure can not only ob-
tain the features of different positions by sampling differ-
ent sub-regions, at the same time, the output of different
Pooling cores contains different size features. Next, the
1x1 CNN is used to reduce the dimensionality of the
context features generated by each Pooling kernel, in
which the uniform dimension is 512 and the sizes are
6x6, 3x3, 2x2, and 1x1, respectively. Finally, we
linearly interpolated these dimensionality reduction fea-
tures and output 512 64 x 64 feature maps on all four
channels. Due to that the original image size is 512 x
512, we need to up-sample the GPP output. Firstly, we
implement fast connection between the feature maps of
Res-5 and GPP four-channel feature maps; Secondly, as
shown in Fig. 1, the blue up-sampling structure up-samples
in many times in the quick connection use transpose
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convolution with size of 3 x 3, stride of 2 and until feature
size becomes 512 x 512.

Here we completed the feature extraction work of the
multi-scale feature pyramid. The GPP output 64 512 x
512 feature map at last. We connected the GPP output
with the output of the Pyramid GICN and use the 1x1
CNN dimension reduction to obtain two 512 x 512 prob-
ability maps as the segmentation results in this paper.

3.2 Training

The loss of the network training consists of two parts:
one part is the loss of the regression location and the
other is the classification loss. The total loss function
can be expressed as:

L(y,c,P) = Lconf(ya ¢) + 9Lisc(y, P) (1)

Where a is the weight coefficient, set to 0.5, ¢ is the
confidence of each classification, y is the true value, and
P is the predicted value. L.,,Ay, c)is the loss of categorize
confidence which used Softmax loss with multiple cat-
egories. Lj,.(y, P)Describes the degree of similarity be-
tween the two models

lynP| + k

Lige(y,P) = 05— — 21 TR
toc (3, P) ] + |P| + 2k

(2)

Due to that some medical images do not have cancer-
ous tissues, there will be the phenomenon of empty
map, and the smoothing value & is introduced to correct
the function. In this paper, we use k = 5e-4.

In addition, we used data augmentation to adjust the
positive and negative sample ratios and to increase the
number of training samples. The optimization function
momentum = 0.9, weight decay 0.0001.

3.3 Evaluation

The experiment used the Dice coefficient to evaluate the
model. The Dice coefficient is a set of similarity func-
tions that evaluate the degree of similarity between two
samples. Dice coefficient as (3) shows:

2|XnY|

Score X[ 17| (3)

Where X is Ground Truth and Y is the predicted
value. The |X nY] represents the count of intersection
pixels in two samples. The |X| + |Y| represents the sum
of the pixels of Ground Truth and the predicted value.
When X and Y are equal, the Dice coefficient is 1; when
X and Y do not intersect at all, the Dice coefficient is O.
Therefore, the larger the Dice coefficient, the closer X
and Yare, and the more accurate the segmentation.
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Table 1 Camelyon16 segmentation results comparison
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FCN-VGG16 U-Net SegNet Resnet50-GICN (k=7) Resnet50-GPP Resnet50-GICN-GPP (k =7) (proposed method)
Score 46.55 374 50.82 59.18 61.33 63.70
Params 134 M 7M 31 M 832K 2619 K 3176 K
Test time 210 ms 73 ms 143 ms 69 ms 77 ms 102 ms
Stride 32 16 32 8 16 8

Score means segmentation accuracy (%). Params is the number of network model parameters. Test time means how long a 512 x 512 size image takes in the test.

Stride means the maximum multiple of subsampling

4 Experiments and results analysis

In order to verify the effectiveness of the ResNet50
-GICN-GPP digital pathological image segmentation al-
gorithm proposed in this paper, we will train the model
on the Camelyon16 and Gastric WSIs Data to test the seg-
mentation accuracy of the model, and compare it with
other semantic segmentation algorithms. Experiments use
the Tensorflow deep learning framework as a develop-
ment and training tool. Inter (R) Xeon (R) CPU E5-2683
v3 @ 2.00GHZ dual-core processor machine is equipped
with Ubuntu 14.04 operating system as a hardware experi-
mental environment. Its memory is 256GB, and GPU pro-
cessor is the NVIDIA M40.

4.1 Camelyon16

The Camelyonl6 Challenge is the classification and loca-
tion of pathological sections of breast cancer transference
in the lymph nodes. The competition provided 110 pieces
of tumor tissue and 130 pieces of normal tissue and marked
the cancer area. This article focuses only on tumor data to
achieve the segmentation of cancerous regions.

The maximum resolution x 40 image matrix of Camel-
yonl6 is about 300,000 x 150,000, while a single sample
requires 5G of storage space, beyond the PC’s computing
power. It is not practical to use CNN directly. Before
training the model, it is necessary to segment the ROI
region from 80% of the white background by using the
technique in Section 3.1.1. After data preprocessing,
over 700,000 sample data of 512 x 512 size and the cor-
responding label data were obtained.

Due to limited hardware environment, we finally ran-
domly select 10 tumor data as a training set, two tumor
data as a test set. The training set contains a total of
85,261 images, and 1000 k training iterations, with the
initial learning rate of 5e-4, 10 k times per iteration and
the learning rate reduce to 0.98 before.

Table 1 shows the segmentation accuracy of various
segmentation methods. The Dice coefficient of
ResNet50-GICN-GPP proposed in this paper reaches

Table 2 Scores of different k-sized GICNs on the test set
k 1 3 5 7 9 1 13
Score 583 60.0 62.6 63.5 64.2 64.0 644

63.7%, which is 10~20% higher than other methods,
and is better than ever in model parameters and sin-
gle test time.

4.2 Gastric WSIs Data

Gastric WSIs Data is a digital pathological sample of
gastric cancer provided by the “Key Laboratory of Bio-
medical Imaging and Imaging Big Data of Shanxi Prov-
ince”. It is for routine HE staining at a magnification of
x 20 and with a picture size of 2048 x 2048 pixels. The
competition data is used for partial area of whole sec-
tion. All data will be marked by pathology experts in the
form of “double-blind assessment + validation”. The data
will be marked with or without cancer and the tumor
area profile was drawn with lines (double-blind assess-
ment + validation).

Gastric WSIs Data contains 100 patient cases with a
total of 1000 pathological images in the ratio of training
set to test set by 7: 3. To study the effect of different
convolution kernel sizes on the accuracy of pathological
image segmentation, the ResNet50-GICN model was
trained on a data set. The network input is 512 x 512,
with 58,000 training samples of the original data. The
initial learning rate was set at le-4 for a total of 500 K it-
erations. The 380 K-460 K learning rate is reduced to
le-5 and 460 k is set to le-6 later. The stochastic gradi-
ent descent method was used to train the network. After
training the model, the average accuracy in the test set is
as shown in Table 2.

The results in Table 2 show that as kernel size increases;
score is also growing. However, the control group of the
first experiment does not directly explain the performance
improvement brought by GICN, so we designed the sec-
ond experiment in this chapter. By replacing the CNN
with kernel size k*k with the GICN structure, the model

Table 3 GICN and CNN experimental comparison, params
means model training parameters

k 3 5 7 9 11
Score (GICN) 59.0 62.6 63.5 64.2 64.0
Score (CNN) 564 57.1 573 56.8 56.2
Params (GICN) 358 K 595 K 832 K 1069 K 1306 K
Params (CNN) 614 K 1302 K 1990 K 2678 K 3366 K
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Table 4 Segmentation accuracy of model to multi-scale target
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FCN-VGG16 U-Net SegNet ResNet50-GICN (k=7) ResNet50-GPP ResNet50-GICN-GPP (k =7) (proposed method)
XS score 34.80 4536 4852 4520 59.29 63.11
XL score 4814 2267 5243 6248 57.17 64.03

was trained on the experimental data I. After comparison,
the experimental results are shown in Table 3.

Table 3 demonstrates that GICN works better than
using a large kernel directly and requires fewer training
parameters. Another purpose of this paper is to improve
the segmentation effect of the model on cancerous tis-
sues with different scales. Experiment III is designed,

and the comparison results are shown in Table 4. This
experiment set the connectivity area pixels and cancer-
ous tissue less than 50,000 as small targets (XS represen-
tation), while others as large size targets (XL).

In Table 4, the higher the score is, the better the segmen-
tation effect is. It can be seen that the ResNet50-GICN does
not work well for small-size target segmentation, even

Whole-Slide
Images

Ground
Truth

U-Net

SegNet

ResNet50-
GICN-GPP

Fig. 3 Comparison of U-Net, SegNet and ResNet50-GICN-GPP segmentation results
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lower than U-Net and SegNet. But it greatly improves on
large-size target segmentation over FCN, U-Net and Seg-
Net. ResNet50-GPP performs well on all scales of target
segmentation. ResNet50-GICN-GPP connects the GICN
and GPP features quickly, and the segmentation accuracy
of the small object is significantly higher than that of the
ResNet50-GICN. And the accuracy of the large object is
also high, which shows the feasibility of the method in this
paper.

Finally, in order to demonstrate the segmentation effect
of different network architectures more intuitively, U-Net,
SegNet and ResNet50-GICN-GPP models are trained on
the experimental data I. The test results are shown in
Fig. 3. Due to the shallowness of the U-Net network, the
learning of the image space information is insufficient,
and only a small part of the cancerous tissue can be seg-
mented. When the image content becomes complicated,
the segmentation accuracy is greatly descending. SegNet
uses VGG-16-like network structure in the coding layer.
Through the learning of the characteristic boundary infor-
mation, SegNet is greatly effective in multiscale tasks of
cancerous tissue segmentation. The last line in Fig. 3 is
the segmentation result of ResNet50-GICN-GPP. Com-
pared with the first two, it can segment more cancerous
tissues and has better segmentation result and higher seg-
mentation accuracy.

First row shows the medical image that we need to
segment; the 2nd row shows the ground truth of the
image segmentation result. From 3rd row to 5th row,
they show the segmentation results of different methods,
where ResNet50-GICN is the proposed method in this
this paper.

5 Results and discussion

Histopathology image analysis is a gold standard for can-
cer recognition and diagnosis. But typical problems with
histopathology images that hamper automatic analysis
include complex clinical features, insufficient training
data, and large size of a single image (always up to gigapix-
els). In this paper, an image semantic segmentation algo-
rithm based on feature Pyramid (ResNet50-GICN-GPP) is
proposed. Firstly, the patch sampling method is adopted to
resample the image, reduce the size of a single sample, and
expand the number of training samples. Secondly, design
the whole convolution network based on ResNet50 learning
feature location information, then use GICN structure and
deconvolution network to integrate multi-level features. Fi-
nally, in order to solve the problem that the GICN structure
may lose the small object, the GPP structure should be
joined to explore the multi-scale semantic information. The
proposed method achieves 63% of the average segmenta-
tion accuracy (Dice coefficient) on Camelyonl6 and Gastric
WSIs Data, compared with U-Net, FCN and SegNet which
has 10~20% improvement, and fully demonstrates the
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effectiveness of this method in different types of cancer. By
experimentally comparing the segmentation accuracy of
various scales of cancerous tissues, the performance of
ResNet50-GICN-GPP is balanced and the multi-scale infor-
mation localization is more accurate.

6 Conclusions

In this paper, we propose a digital pathology image seg-
mentation algorithm based on feature pyramid, which
integrates high-level semantic feature information and
high-resolution low level location information, increas-
ing the accuracy of classification and positioning, and
making full use of the multi-level features of Pyramid. It
also addresses the loss of semantic information for small
objects in multi-level features; multi-scale feature pyra-
mids are designed to extract global context information
from high-level features. Through experimental com-
parison, the two feature pyramid models all help to im-
prove the segmentation accuracy, and at the same time,
the effect is better. The proposed method is tested on
the Camelyonl6 and Gastric WSIs Data datasets, and
the average accuracy is higher than other methods,
which fully demonstrates the effectiveness of the pro-
posed method. The segmentation results in Section 4.1
are rough, and the next step is to introduce the CRF into
the network and to train a new end-to-end network to
further improve the accuracy.

1 Appendix

module« output sizes ResNet50+
convl [3x3, 64, stride 2]-
RootBlock« 256x256+ conv2 [3x3, 64, stride 1]«
conv3 [3x3, 128, stride 1]«
1x1, 64, stride 2 1x1, 64, stride 1+
Res-2¢ 128x128- 3x3, 64, stride 1 | + | 3x3, 64, stride 1 |x 2«
1x1, 256, stride 1 1x1, 256, stride 1
= =
1x1, 128, stride 2 1x1, 128, stride 1
Res-3 64x64- 3x3, 128, stride 1| + | 3x3, 128, stride 1| x 3.
1x1, 512, stride 1 1x1, 512, stride 1
\ \
1x1, 256, stride 1+
Res-4¢ 64x64. 3x3, 256, stride 1 | x 6«
1x1, 1024, stride 1
1x1, 512, stride 1+
Res-5¢ 64X64- 3x3, 512, stride 1 | x 3«
1x1, 2048, stride 1
J
Fig. 4 The structure of ResNet50 network with the shape of “1x1, 64,
stride 2" indicates that the size of the convolution kernel is 1 x 1, the
number of the output feature maps is 64, and stride 2 indicates the
convolution step
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