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Abstract

cross-boundary scribbles.

Semi-automatic 2D-to-3D conversion provides a cost-effective solution to the problem of 3D content shortage. The
performance of most methods degrades significantly when cross-boundary scribbles are present due to their inability
to remove unwanted input. To address this problem, a residual-driven energy function is proposed to remove
unwanted input introduced by cross-boundary scribbles while preserving expected user input. Firstly, confidence of
user input is computed from residuals between the estimation and user-specified depth values, and it is applied to
the data fidelity term. Secondly, the residual-driven optimization is performed to estimate dense depth from user
scribbles. The procedure is repeated until a maximum number of iterations is exceeded. Input confidence based on
residuals avoids the propagation of unwanted scribbles and thus enables to generate high-quality depth even with
cross-boundary input. Experimental results demonstrate that the proposed method removes unwanted scribbles
successfully while preserving expected input, and it outperforms the state-of-the-art when presented with
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1 Introduction
2D-to-3D conversion aims to estimate depth from 2D
images and generates stereoscopic views from the depth,
which is a key technology to produce 3D content [1].
Existing approaches are mainly categorized into two
groups: automatic and semi-automatic methods.
Automatic methods try to create depth from 2D images
using various depth cues, such as dark channel [2], motion
[3], lighting bias [4], defocus [5], geometry [6], boundary
[7], etc. Each cue is only applicable to certain scenes [8],
and thus, these methods are hard to provide acceptable
results in any general content. Recently, neural networks
have been employed to learn the implicit relation between
depth and color values [9-12]. However, these learning-
based methods are limited to the trained image types [13].
Semi-automatic methods address these issues by intro-
ducing human interactions. The objective of these
approaches is to produce a dense depth-map from user
scribbles which indicate the labeled pixels are farther or
closer from the camera [14]. In order to solve the problem
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of 3D content shortage, many methods have been devel-
oped for depth estimation from user input. Guttmann
et al. [15] employed user scribbles to train a support vec-
tor machines (SVM) classifier that assigns depth to image
patches, but results may be inaccurate due to misclassifi-
cations. S'ykora et al. [16] proposed an interactive method
for user adding depth (in)equalities information and for-
mulated depth propagation as an optimization problem,
but it may produce several artifacts due to the incor-
rect estimation of contour thickness. Rzeszutek et al.
[17] utilized the random-walks (RW) algorithm to gen-
erate dense depth-maps from user input, but RW has
problems in preserving strong edges. Phan et al. [18]
appended graph-cuts (GC) segmentation to the neigh-
bor cost in RW to preserve depth boundaries. Xu et al.
[19] proposed a similar method which uses a fast water-
shed segmentation to replace GC. Zhang et al. [20] com-
bined automatic depth estimation from multiple cues and
interactive object segmentation to obtain the final depth.
Zeng et al. [21] utilized occlusion cues and shape pri-
ors to obtain a rough approximation of depth and refined
the estimation using an interactive ground fitting. These
segmentation-based methods can preserve strong edges
but may generate artifacts due to incorrect segments.
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Yuan et al. [22] incorporated non-local neighbors into
the RW algorithm to improve depth quality. Liang et al.
[23] extended this scheme to support video conversion
using spatial-temporal information. Wang et al. [24] prop-
agated user-specified sparse depth into dense depth using
an optimization method originally used for colorization
[25]. Wu et al. [26] improved this method with depth
consistency between superpixels. Liao et al. [27] used
a diffusion process to generate a depth map from user
coarse annotations.

Depth-map is typically made of smooth regions sepa-
rated by sharp transitions along the boundaries between
different objects [28]. Therefore, existing semi-automatic
methods require that user scribbles do not cross object
boundaries; otherwise, the quality of produced depth
degrades significantly. As shown in Fig. 1, when user scrib-
bles cross object boundaries, the state-of-the-art methods
[18, 22, 24] will produce depth artifacts. In 2D-to-3D
conversion, the cross-boundary scribbles are introduced
by users carelessly. As for a cross-boundary scribble, its
longer part is usually user expected input and shorter part
is unwanted input. It can be seen from Fig. 1f that the
proposed method can remove depth artifacts caused by
unwanted user input from cross-boundary scribbles.

Semi-automatic image segmentation methods have
addressed the problem of cross-boundary scribbles
[29-31]. Although Subr et al. [29] and Bai et al. [30] can
reduce artifacts caused by cross-boundary scribbles, they
focus on the foreground object segmentation and are hard
to apply in 2D-to-3D conversion. Oh et al. [31] used occur-
rence and co-occurrence probability (OCP) of color values
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at labeled pixels to estimate the confidence of user input.
This method can be used for 2D-to-3D conversion, but it
may mistake expected scribbles for unwanted ones.

Surprisingly, there are few methods to consider the
impact of cross-boundary scribbles on 2D-to-3D con-
version. To address this problem, we propose a robust
method based on residuals between the user-specified
and estimated depth values during the iteratively solving
process. Thanks to the confidence of user scribbles mea-
sured by the residuals, experimental results show that the
proposed method can remove depth artifacts caused by
cross-boundary scribbles. The two most relevant to this
work are Wang et al. [24] and Hong et al. [32]. Unlike
the optimization model in Wang et al. [24], the proposed
method utilizes residuals to eliminate the depth artifacts
caused by cross-boundary scribbles. The main difference
to Hong et al. [32] is that they use residuals to determine
the relative weight between data fidelity and regulariza-
tion, whereas this paper leverages residuals to compute
the confidence of user scribbles.

Recently, Ham et al. [33] proposed a static dynamic filter
(SDF) to reduce artifacts caused by structural differences
between guidance and input signals. Although SDF [33]
can handle differences in structure, it is not robust to out-
liers introduced by cross-boundary scribbles. Yuan et al.
[34] proposed an ¢; optimization method to remove user
erroneous scribbles. However, £1 norm assumes that input
image can be approximated by the sum of a piecewise-
constant function and a smooth function [35]. Depth
artifacts will be introduced when the assumption does
not hold.

d

f

Fig. 1 Depth estimation with cross-boundary user input (depth artifacts caused by cross-boundary scribbles are marked by yellow rectangles).
a Input image with user scribbles (the cross-boundary scribble is marked by the yellow rectangle). b Groundtruth. ¢ Hybrid GC and RW [18].
d Nonlocal RW [22]. e Optimization [24]. f Proposed. Please zoom in to see details
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Fig. 2 A flowchart of the semi-automatic 2D-to-3D image conversion with the proposed method

The remainder of this paper is organized as follows. In
Section 2, the proposed method is described. The experi-
mental results are given in Section 3. Finally, conclusion is
given in Section 4.

2 Method

The workflow of 2D-to-3D image conversion based on
the proposed method is shown in Fig. 2. Firstly, the user
specifies sparse depth on an input image, where scrib-
bles indicate the labeled pixels are closer or farther from
the camera. Secondly, a sparse depth-map is extracted
according to the intensities of user scribbles. Thirdly, the

confidence of user scribbles is calculated based on the
residuals between the estimated and user-specified depth
values. Then, an energy function constraint by the confi-
dence is designed and minimized to obtain the estimated
dense depth-map. The procedure is repeated from the
confidence computation step, until a maximum number of
iterations is exceeded. Finally, the stereoscopic 3D image
is generated by depth image-based rendering (DIBR).

2.1 Model
Let O be the set consisting of pixels with user-specified
depth values. The objective of this paper is to estimate
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Table 1 SSIM of estimated depth on RGBZ datasets when cross-boundary scribbles are present

RW HGR NRW OPT OoCpP SDF 0 Proposed

RGBZ_01 0.836 0.776 0.852 0.842 0.873 0.839 0.894 0.932
RGBzZ_02 0817 0.849 0.827 0.821 0.821 0817 0.878 0.931
RGBZ_03 0.853 0.868 0.868 0.867 0.861 0.855 0.808 0.890
RGBZ_04 0911 0911 0.923 0.928 0.897 0917 0.808 0.944
RGBZ_05 0.901 0.904 0916 0.906 0911 0.903 0.935 0.929

RGBZ_06 0.907 0.885 0.906 0.879 0.880 0.905 0.909 0.921
RGBz_07 0.895 0.872 0.889 0.886 0.906 0.892 0.904 0.912
RGBZ_08 0.933 0.906 0.934 0.933 0.944 0.932 0.934 0.951
RGBZ_09 0.927 0.750 0.938 0916 0.926 0.925 0.900 0.950
Average 0.887 0.858 0.895 0.886 0.891 0.887 0.885 0.929

The first and second best SSIM at each row are shown in bold and italics, respectively

an accurate dense depth-map d from the user input and
the given image I even when cross-boundary scribbles
are present. It can be expressed as solving the energy
minimization problem:

d=arg min Z ri(d;—u)* + Z Z sz(di_dj)z, (1)

deR" jeco i=1 jeN;

data fidelity regularization

where d; and u; denote the estimated and user-specified
depth values at pixel i, respectively. # is the size of the
input image I. \V; represents the set of 8-connected neigh-
bors for pixel i. w;; is a weighting function to make pix-
els with similar colors have similar depth values and is
defined as

exp (=p [L—1%) itj e N,

0 otherwise,

2)

where I; and I; are the color values of image I at pixel i and
j, respectively. 8 in Formula (2) is a parameter controlling
the strength of the weight w;;.

r; in Formula (1) is a confidence measure of the user-
specified depth value at pixel { and is defined asz

L . 2 oo
ry= { exp (—n(di—u)?) ifi € O, )

0 otherwise.

Here, n is a constant that controls how dissimilar two
depth values are. In Formula (1), the data fidelity term
enforces the estimated depth values of labeled regions to
approximate the user-specified ones. Unlike Wang et al.
[24], the proposed method maintains this consistency only
when user inputs are confident. The confidence 7; is low
when the residual (d;—u;)? is high. The regularization term
is used to penalize the difference of the estimated depth
values between each pixel and its neighbors.

2.2 Solver

Formula (1) is nonlinear to d and thus is an unconstrained,
non-linear optimization. A fixed point iteration strategy
is adopted to solve Formula (1). Let dk = [df] and u

nx1

denote vectors representing the estimated depth image in
iteration k and user-specified depth values, respectively.
The i-th element of u is user-specified depth value u; if
i € O and 0 otherwise. Then, in iteration k, the objective
function to be minimized is expressed as

T
E(d) = (dF —u) RF(d“ - u) +2d"Ld, @)
where R is a n x n diagonal matrix and its i-th diagonal
2
element is rf_l. Here, r{f_l = exp (—n (df_l —ui) ) ifi e

O and 0 otherwise. L is the # x n sparse Laplacian matrix.
Its element L;j = —w;; (i # j) and L; = Zje./\/,- wij. To

Table 2 SSIM of estimated depth on Middlebury datasets when cross-boundary scribbles are present

RwW HGR NRW OPT ocCP SDF £ Proposed
Tsukuba 0.724 0.716 0.723 0727 0.708 0.724 0.722 0.731
Venus 0.969 0.961 0.968 0.970 0.966 0.969 0971 0.974
Teddy 0.861 0.846 0.865 0.862 0.860 0.861 0.868 0.865
Cones 0.900 0.871 0.900 0.902 0.850 0.897 0.885 0.903
Average 0.864 0.848 0.864 0.865 0.846 0.863 0.862 0.868

The first and second best SSIM at each row are shown in bold and italics, respectively
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i j k 1
Fig. 4 Results of RGBZ_01 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.

f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details

Fig. 5 Results of RGBZ_02 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details
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i j k 1
Fig. 6 Results of RGBZ_03 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;.1 Depth of the proposed method. Please zoom in to

see details
d
h
1

Fig. 7 Results of RGBZ_04 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.

f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;.1 Depth of the proposed method. Please zoom in to
see details

i i k
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Fig. 8 Results of RGBZ_05 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details

i i k 1

Fig. 9 Results of RGBZ_06 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details
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Fig. 10 Results of RGBZ_07 with cross-boundary input. a Input image. b User-labeled image. € Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details
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Fig. 11 Results of RGBZ_08 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;.1 Depth of the proposed method. Please zoom in to
see details
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minimize the energy function in Formula (4), taking its
derivatives on dX, Formula (5) can be obtained.

JE (dX)

—ar = oRF-1 (dk - u) +2aLd. )

The energy function in Formula (4) can be minimized by

aE(dk)

setting — ¢
(6) is obtained.

(Rk—l + AL) df = R 1y, ©6)

in Formula (5) equal to zero, and Formula

The linear system in Formula (6) is sparse, and thus,
it can be solved using standard methods such as pre-
conditioned conjugate gradient.

2.3 Analysis
It can be seen from Formula (4) that in each iteration,
user-specified depth values can only be preserved if the
residuals between estimated and user-specified depth val-
ues are small.

Specifically, the unwanted user input introduced by
cross-boundary scribbles will make the depth values of
labeled pixels differ from their neighbors. Meanwhile, the
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regularization term will enforce the estimation to be con-
sistent with their neighbors, and thus make the estimated
depth to deviate from the user input. As a result, the resid-
ual between the estimated and user-specified depth values
of the unwantedly labeled pixel will be increased, and
the confidence computed from the residual in Formula
(3) will be decreased to zero during the iterative solu-
tion process. Therefore, the proposed method can remove
unwanted user input introduced by cross-boundary
scribbles.

As for user-expected input, the specified values of
labeled pixels are consistent with their neighbors; thus,
the estimation mainly depends on the data fidelity term
which enforces the estimated depth to approximate the
user input. Therefore, the residuals of expectedly labeled
pixels are almost 0, and their confidence will be remained
at 1 with the proper setting of # in Formula (3). For this
reason, the proposed method can preserve the expected
user input.

Figure 3 shows the change curve of confidence
from wuser scribbles in an input image. It can be
seen that confidence of the unwanted input rapidly
drops to 0 while confidence of the expected input
remains at 1.

e f g h
i j k 1

Fig. 12 Results of RGBZ_09 with cross-boundary input. a Input image. b User-labeled image. ¢ Sparse depth. d Groundtruth depth. e Depth of RW.
f Depth of HGR. g Depth of NRW. h Depth of OPT. i Depth of OCP. j Depth of SDF. k Depth of £;. 1 Depth of the proposed method. Please zoom in to
see details
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3 Experimental results and discussion

3.1 Experimental details

RGBZ (red, green, blue plus z-axis depth) datasets [36]
are used for comparison which include objects, human
figures, and multiple human interaction. Performance
are also evaluated on four Middlebury stereo datasets,
Tsukuba, Venus, Teddy, and Cones [37]. The source code
and more experimental results can be downloaded from
https://github.com/tcyhx/rdopt.

In the proposed method, the bandwidth parameters, 7,
are empirically set to 9000. A maximum number of five
iterations is used to solve Formula (1). 8 is set to 100 for
RGBZ datasets and 50 for Middlebury datasets. Results of
the proposed method are compared to the state-of-the-

Page 10 of 16

art: RW [17], hybrid GC and RW (HGR) [18], nonlocal
RW (NRW) [22], optimization (OPT) [24], OCP [31], SDF
[33], and £¢; [34]. Note that OCP originally aims for inter-
active segmentation, and this paper applies it to 2D-to-3D
conversion by replacing the confidence in Formula (3)
with the aggregation of the OCPs in a local neighbor-
hood. Structural similarity (SSIM) [38] is used for perfor-
mance evaluation since it can predict human perception
of image quality. The standard deviation of SSIM in the
experiments is set to 4 so as to evaluate the similarity of
semi-global structure [39].

In the experiments, a trained user is asked to draw scrib-
bles with a standard brush by referring to the groundtruth
depth values, where higher intensities indicate the labeled

q r

Fig. 13 Results of Tsukuba with cross-boundary input. a User-labeled image. b Sparse depth. ¢ Groundtruth depth. d Synthesized view using c.

S t

e Depth of RW. f Synthesized view using e. g Depth of HGR. h Synthesized view using g. i Depth of NRW. j Synthesized view using i. k Depth of OPT.
I Synthesized view using k. m Depth of OCP. n Synthesized view using m. o Depth of SDF. p Synthesized view using 0. g Depth of £;. r Synthesized
view using g. s Depth of the proposed method. t Synthesized view using s. Please zoom in to see details
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pixels are closer to the camera. Since depth propagation
from user scribbles relies on color or intensity similarity
between neighboring pixels, more scribbles are drawn in
high textured areas. To make the comparison as fair as
possible, a sparse depth-map is extracted from user scrib-
bles, and each algorithm estimates a dense depth-map
from the sparse depth-map.

3.2 Experiments with cross-boundary user scribbles
In this section, a user is asked to assign the initial
depth values manually by drawing some scribbles across
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object boundaries. Tables 1 and 2 show the SSIM val-
ues of the proposed algorithm in comparison with other
methods on the RGBZ and Middlebury datasets, respec-
tively. As shown in Tables 1 and 2, the proposed method
achieves the highest average SSIM among all of the com-
peting methods for both datasets. Except for the com-
parison with ¢; in RGBZ_05 and Teddy, the SSIM values
of the proposed method are higher than those of the
other methods.

For RGBZ datasets, qualitative comparisons are shown
in Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12. Qualitative

q r

S t

Fig. 14 Results of Venus with cross-boundary input. a User-labeled image. b Sparse depth. ¢ Groundtruth depth. d Synthesized view using c.

e Depth of RW. f Synthesized view using e. g Depth of HGR. h Synthesized view using g. i Depth of NRW. j Synthesized view using i. k Depth of OPT.
1 Synthesized view using k. m Depth of OCP. n Synthesized view using m. o0 Depth of SDF. p Synthesized view using o. q Depth of £;. r Synthesized
view using g. s Depth of the proposed method. t Synthesized view using s. Please zoom in to see details
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comparisons on Middlebury datasets are given in
Figs. 13, 14, 15, and 16. The rendered images based
on depth are only shown for Middlebury datasets in
order to avoid making the lengthy paper. In each
figure, the yellow rectangles on depth-maps or synthe-
sized views represent artifacts caused by cross-boundary
scribbles while the purple ones denote artifacts caused
by other issues. The cross-boundary scribbles of user-
labeled images are marked by the yellow rectangles
(Figs. 4,5,6,7,8,9,10, 11, 12b, 13, 14, 15, and 16a).

RW [17] assumes that user scribbles should not
cross object boundaries and thus generates depth
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artifacts around cross-boundary labeled regions (see
Figs. 4, 5,6,7,8,9, 10, 11, 12, 13, 14, 15, and 16¢). These
artifacts cause distortions when a new view is synthe-
sized from the depth as shown in Figs. 13, 14, 15, and 16f.
HGR [18] relies on GC to preserve depth boundaries.
However, GC is sensitive to the outliers. The quality of
depth-maps produced from HGR thus degrades signifi-
cantly when user scribbles cross object boundaries (see
Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12f, 13, 14, 15, and 16g),
which leads to significant degradation of quality in syn-
thesized views (see Figs. 13, 14, 15, and 16h). Although
introducing non-local constraints, NRW [22] is difficult

Fig. 15 Results of Teddy with cross-boundary input. a User labeled image. b Sparse depth. ¢ Groundtruth depth. d synthesized view using c.

e Depth of RW. f Synthesized view using e. g Depth of HGR. h Synthesized view using g. i Depth of NRW. j Synthesized view using i. k Depth of OPT.
I Synthesized view using k. m Depth of OCP. n Synthesized view using m. o Depth of SDF. p Synthesized view using 0. q Depth of £;. r Synthesized
view using q. s Depth of the proposed method. t Synthesized view using s. Please zoom in to see details
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S

Fig. 16 Results of Cones with cross-boundary input. a User-labeled image. b Sparse depth. ¢ Groundtruth depth. d synthesized view using c.

e Depth of RW. f Synthesized view using e. g Depth of HGR. h Synthesized view using g. i Depth of NRW. j Synthesized view using i. k Depth of OPT.
I Synthesized view using k. m Depth of OCP. n Synthesized view using m. o Depth of SDF. p Synthesized view using 0. q Depth of £;. r Synthesized
view using q. s Depth of the proposed method. t Synthesized view using s. Please zoom in to see details

to remove depth artifacts caused by cross-boundary user
scribbles (see Figs. 4, 5, 6,7, 8, 9, 10, 11, 12g, 13, 14, 15,
and 16i), which results in distortions in synthesized views
(see Figs. 13, 14, 15, and 16j). OPT [24] constrains the
estimated depth values of labeled pixels to be consistent
with the user input; thus, unwanted information propa-
gates to the neighbors (see Figs. 4, 5, 6, 7, 8, 9, 10, 11,
12h, 13, 14, 15, and 16k). Distortions in synthesized views
caused by input errors are shown in yellow rectangles
of Figs. 13, 14, 15, and 16l. OCP [31] can remove some

depth artifacts caused by cross-boundary user input, but it
fails when the cross-boundary-labeled pixels have similar
color distributions; thus, residual artifacts are still visi-
ble (see Figs. 4, 5, 6, 7i, 10, 11, 12i, 13, and 14m). OCP
may also consider some expected scribbles as unwanted
ones [31], which yields distortions as shown in the pur-
ple rectangles of Figs. 7, 8, 9i, 14, 15, and 16m. SDF
[33] can reduce depth artifacts caused by structural dif-
ferences between color and depth images by using the
Welsch function as a regularizer. However, SDF is hard to
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Table 3 SSIM of estimated depth on RGBZ datasets when cross-boundary scribbles are absent

RW HGR NRW OPT oCpP SDF A Proposed
RGBZ_01 0.925 0913 0.936 0.932 0.924 0933 0.863 0.934
RGBZ_02 0.932 0917 0.934 0.928 0.919 0.880 0.920 0.928
RGBZ_03 0.876 0.892 0.890 0.888 0.872 0.881 0817 0.890
RGBZ_04 0.928 0.936 0.938 0.944 0.907 0.934 0.821 0.945
RGBZ_05 0.925 0919 0.930 0.928 0911 0.927 0.934 0.932
RGBZ_06 0.923 0.895 0.921 0.908 0.890 0.908 0913 0.921
RGBz_07 0.910 0.892 0.905 0.910 0.910 0.907 0.904 0.915
RGBZ_08 0.949 0.920 0.951 0.949 0.950 0.948 0.939 0.951
RGBZ_09 0.946 0.877 0.953 0.943 0.938 0918 0.902 0.951
Average 0.924 0.907 0.929 0.926 0914 0915 0.890 0.930

The first and second best SSIM at each row are shown in bold and italics, respectively

handle artifacts introduced by the cross-boundary scrib-
bles (see Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12j, 13, 14, 15,
and 160), which leads to distortions in synthesized views
as shown in Figs. 13, 14, 15, and 16p. £¢; [34] tends
to produce a nearly piecewise constant depth-map with
sparse structures. Therefore, it generates artifacts when
depth discontinuities do not coincide with object bound-
aries (see purple rectangles of Figs. 4, 5, 6, 7, 8, 9k, 14q,
and 16q), which causes distortions in synthesized views
(see purple rectangles of Figs. 14r and 16r). The pro-
posed method alleviates the influence of cross-boundary
user scribbles successfully and produces high-quality
depth-maps (see Figs. 4, 5, 6, 7, 8, 9, 10, 11, and 12I,
and 13, 14, 15 and 16s). Therefore, the proposed method
can reduce distortions in synthesized views caused by
cross-boundary input as shown in Figs. 13, 14, 15
and 16t.

3.3 Experiments without cross-boundary user scribbles

In this section, the user carefully draws on an input image,
ensuring that scribbles do not cross object boundaries.
In this case, unwanted scribbles are usually inside objects
when depth discontinuity occurs. Tables 3 and 4 show
the SSIM obtained from different methods on RGBZ and

Middlebury datasets, respectively. It can be seen from
Table 3 that the proposed method gives the highest aver-
age SSIM on RGBZ datasets. As shown in Table 4, both
the proposed method and OPT [24] obtain the high-
est average SSIM on Middlebury datasets. Therefore, the
proposed method has comparable performance to the
state-of-the-art methods when user scribbles do not cross
object boundaries.

4 Conclusion

To remove unwanted input from cross-boundary scrib-
bles in semi-automatic 2D-to-3D conversion, this paper
proposes a residual-driven energy function for depth
estimation from user input. The residual between the
estimation and user-specified depth value will be large
at the unwantedly labeled pixel due to inconsistency
with its neighbors and be small at expectedly labeled
pixel due to consistency with the neighbors. Therefore,
the residual can differentiate unwanted scribbles from
the user input. The experimental results demonstrate
that the proposed method eliminates the depth artifacts
caused by cross-boundary scribbles effectively and out-
performs existing methods when cross-boundary input is
present.

Table 4 SSIM of estimated depth on Middlebury datasets when cross-boundary scribbles are absent

RW HGR NRW OPT ocpP SDF al Proposed
Tsukuba 0.731 0.725 0.729 0.733 0.711 0.733 0.726 0.731
Venus 0.975 0.970 0972 0.974 0.966 0.972 0972 0.975
Teddy 0.865 0.860 0.867 0.866 0.860 0.862 0.869 0.865
Cones 0.904 0.888 0.902 0.905 0.858 0.902 0.892 0.905
Average 0.869 0.861 0.868 0.870 0.849 0.868 0.865 0.870

The first and second best SSIM at each row are shown in bold and italics, respectively
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