
RESEARCH Open Access

Segmentation of moving objects in image
sequence based on perceptual similarity of
local texture and photometric features
K. L. Chan

Abstract

The segmentation of moving objects in image sequence can be formulated as a background subtraction problem—the
separation of objects from the background in each image frame. The background scene is learned and modeled.
A pixelwise process is employed to classify each pixel as an object or background based on its similarity with the
background model. The segmentation is challenging due to the occurrence of dynamic elements such as illumination
change and background motions. We propose a framework for object segmentation with a novel feature for
background representation and new mechanisms for updating the background model. A ternary pattern is
employed to characterize the local texture. The pattern and photometric features are used for background
modeling. The classification of pixel is performed based on the perceptual similarity between the current pixel
and the background model. The segmented object is refined by taking into account the spatial consistency
of the image feature. For the background model update, we propose two mechanisms that are able to adapt
to abrupt background change and also merge new background elements into the model. We compare our
framework with various background subtraction algorithms on video datasets.

Keywords: Moving object segmentation, Background subtraction, Local ternary pattern, Video surveillance,
Dynamic background

1 Introduction
Moving objects such as humans or vehicles are often the
focus of image sequence analysis. The segmentation of
moving objects is the first key problem which can be for-
mulated as a background subtraction. In that sense, the
background scene is modeled. Object pixels are seg-
mented when they are found to be different from the
background model. A common background subtraction
framework contains background modeling, joint back-
ground/foreground classification, and background model
updating. Survey on background subtraction techniques
can be found in [1]. Sobral and Vacavant [2] presented a
recent review and evaluation of 29 background subtrac-
tion methods. Background subtraction techniques can be
categorized based on the ways to model the background
scene. For instance, the background scene can be charac-
terized in terms of statistical parameters. Bouwmans [3]

presented a survey on statistical background modeling.
Alternatively, the background model is represented as a
bag of visual words—intensities or colors sampled over a
short image sequence. Texture-based methods model the
background scene by analyzing the relationship between
the neighboring pixels.

1.1 Parametric methods
In [4], pixelwise background colors are modeled by a sin-
gle Gaussian distribution. Stauffer and Grimson [5] pro-
posed a modeling of background colors using a mixture of
Gaussian (MoG) distributions that can tackle repetitive
background motions and illumination changes. The back-
ground model is initialized using K-means which approxi-
mate an EM algorithm. Pixel value that does not match
any of the most probable background distributions is
regarded as foreground. Parameters of the MoG model
are updated after background/foreground classification.
Since its introduction, MoG has gained widespread popu-
larity and inspired many improvements. For instance, in
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contrast with a fixed number of Gaussians in the original
MoG model, Zivkovic [6] proposed an algorithm for
selecting the number of Gaussian distributions using the
Dirichlet prior. A comprehensive survey on the improve-
ments of the MoG model can be found in [7].

1.2 Non-parametric methods
This category of background subtraction methods does
not assume the pdf of the scene follows a known paramet-
ric form. Elgammal et al. [8] proposed an algorithm for es-
timating the pdf directly from the previous pixels using
kernel estimator. Kim et al. [9] proposed to represent the
background by codebooks which contain quantized back-
ground colors. Barnich and Van Droogenbroeck [10] pro-
posed a sample-based background subtraction algorithm
called ViBe. The background model is initialized by ran-
domly sampling the pixels on the first image frame. The
pixel of the new image frame is classified as background
when there is a sufficient number of background samples
similar to the new pixel. It defines a fixed sphere centered
at the current pixel value and searches for similar back-
ground samples. If the sphere is too large, a foreground
pixel may be wrongly labeled as background. If the sphere
is too small, a background pixel may not find matched
samples. Hofmann et al. [11] proposed a similar
non-parametric sample-based background subtraction
method with nine tunable parameters. Van Droogen-
broeck and Paquot [12] introduced some modifications
for improving ViBe. Haines and Xiang [13] presented a
non-parametric background modeling method based on
Dirichlet process Gaussian mixture models. Gao et al. [14]
and Liu et al. [15] regarded the observed video frames as a
matrix, which can be decomposed into a low-rank matrix
of background and a structured sparse matrix of the fore-
ground. Monnet et al. [16] proposed an online
auto-regressive model to predict the new image frame.
Change is detected as a difference between the prediction
and actual observation. Mahadevan and Vasconcelos [17]
proposed to model the background by dynamic texture
(DT) features obtained in the center and surrounding win-
dows. Background subtraction is performed by calculating
the mutual information between DT features and classes
(background, foreground). Sheikh and Shah [18] presented
a non-parametric density estimation method to model the
background. In [19], dynamic background is modeled by a
local dependency histogram which characterizes the
spatial dependencies between a pixel and its neighbors.

1.3 Texture-based methods
Recent research showed that modeling background by local
patterns can achieve higher accuracy. Heikkilä and Pietikäi-
nen [20] proposed to model the background of a pixel by
local binary pattern (LBP) histograms estimated around
that pixel. Their method can segment moving objects

correctly in indoor image sequence even though the colors
of the foreground and the static background are similar. It
also can segment moving objects in outdoor image se-
quence with dynamic elements because the pattern exploits
information over a larger area than a single pixel. Liao et al.
[21] proposed the scale invariant local ternary pattern
(SILTP) which can tackle illumination variations. It can per-
form poorly in flat regions and produces holes in the seg-
mented objects. St-Charles et al. [22] proposed a pixelwise
background modeling method using local binary similarity
pattern (LBSP) estimated in the spatio-temporal domain.
Ma and Sang [23] proposed the multi-channel SILTP
(MC-SILTP), which is an improvement of SILTP, with a
pattern computed from RGB color channels. As shown in
our experimentation in Section 6, it still results in many
misclassifications. Background modeling by analyzing the
neighboring pixels using neural networks and Markov ran-
dom fields is also proposed. Spatiotemporal background
modeling has gained more attention recently, e.g., [24, 25],
because it also contains motion information—the variation
of the local pattern over time.

1.4 Background model update and object refinement
Object segmentation can be improved via background model
updating or foreground model. Many background subtraction
methods like [5] update parameters of matched background
model with a fixed learning factor. In [11], the foreground de-
cision threshold and model update rate can be adaptively ad-
justed along the video sequence. In [10], a random policy is
employed for updating the background model at the pixel lo-
cation and its neighbor. Van Droogenbroeck and Paquot [12]
inhibited the update of neighboring background model across
the background-foreground border. In [22], a pixel-level feed-
back scheme can adjust some parameters to respond to the
background changes. That makes the modeling method cap-
able of tackling both static and dynamic background. Kim et
al. [26] proposed a PID tracking control system for the fore-
ground segmentation refinement. In [27], MoGs are used to
model the color distribution of swimmer pixels. Sheikh and
Shah [18] also used a non-parametric density estimation
method to model the foreground.
In [28], we proposed a novel perception-based local

ternary pattern for background modeling. In this paper,
our first contribution is to extend the perception-based
local ternary pattern and its features. Instead of summing
the pattern codes to form one feature as in [28], in this
paper, each pattern is represented by the cardinalities of
individual pattern codes, and the dimension of the pattern
feature is increased to nine. Our perception-based local
ternary pattern makes full use of color information which
is better than other texture-based methods like [21] using
only gray values. With thorough explanation and real ex-
amples, we demonstrate that the texture pattern is more
informative, and its features can be used effectively to
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characterize various dynamic circumstances in the scene.
In our second contribution, we propose a new background
model update and object refinement processes. Many back-
ground subtraction methods have very simple background
model updating. For instance, [10] updates the background
model at the pixel location and its neighbor randomly. The
sensitivity to background change may be slow. Our back-
ground model update can tackle abrupt background change
and also merge new elements (e.g., non-moving objects)
into the background model. Many background subtraction
methods, e.g., [22], devise complex feedback scheme for
background model update. However, they lack any object
refinement process. In our method, the segmented object
can be refined by taking into account the spatial
consistency of the image feature. This step can result in a
more accurate segmented shape of the object.

2 Method
Many background subtraction methods assume that the
scene is stationary or changes slowly. Background subtrac-
tion becomes harder under various complex circum-
stances—camouflage, illumination changes, background
motions, intermittent object motion, shadows, camera jitter,
etc. It is a challenging task to achieve accurate background/

foreground segregation in videos containing those dynamic
scenes and over a long duration. The features for modeling
the background scene, which are also used in the
background-foreground classification, are very important.
A pattern, with multiple pixels, can characterize the local
texture more effectively than an individual pixel. Also, the
refinement process is needed for improving the segmented
object. To detect a moving object in a long image sequence,
background model updating is necessary.
Our method, as shown in Fig. 1, contains three se-

quential parts (background model initialization, moving
object segmentation, object refinement) and a feedback
scheme (background model update). The background
model is generated by analyzing the initial frames of the
image sequence. The background model contains local
texture and photometric features per pixel. The principle
of perception-based local ternary pattern and the estima-
tion of texture features are explained in the following
section. The computation of the photometric feature
and the generation of the initial background model are
presented in Section 4. The background model is then
used to segment moving objects in each frame of the
image sequence. The object segmentation framework is
described in Section 5. The moving objects just

Fig. 1 Overview of our moving object segmentation method
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segmented can be refined by the probabilistic scheme.
Finally, the background model is updated based on the
segmentation result. Object refinement and background
model update are explained in Section 6. We test and
compare our method with various background subtrac-
tion algorithms using common video datasets. The nu-
meric and visual results are demonstrated and discussed
in Section 7. Finally, we draw a conclusion in Section 8.

3 Perception-based local ternary pattern
We propose a novel perception-based local ternary pat-
tern (P-LTP) which can be used effectively to characterize
various dynamic circumstances in the scene. Figure 2
shows a block of 3 × 3 pixels. Each pixel of the block, n1 to
n8 (except the center pixel), is compared with the confi-
dence interval (CI) of the center pixel b. CI(b) is defined
by (CIl, CIu) where CIl and CIu are the lower bound and
upper bound of CI, respectively. The pattern value p is set
according to the following equation:

pk ¼
0;
1;
−1;

8<
:

CIl ≤nk ≤CIu
nk > CIu
nk < CIl

; 1≤k ≤8 ð1Þ

The confidence interval CI(b) can be defined as (b− d1, b
+ d2). According to Weber’s law [29], d1 and d2 depend on
the perceptual characteristics of b. That is, they should be
small for darker color and large for brighter color. Haque
and Murshed [30] derived the linear relationship d1 = d2 =
c× b, where c is a constant. The background model is repre-
sented by the confidence interval centered at the mean value
or the intensity of a recently observed background pixel. A
new pixel is identified as a background if its intensity falls
within the confidence interval. We adopt the human visual
perception characteristics in transforming pixel colors into a
local ternary pattern. In P-LTP, CI(b) is defined as (b− c1b, b
+ c2b). Using peak signal-to-noise ratio (PSNR) measure, b
and b− c1b are just perceptually different from each other if:

20 log10
Imax

b−c1b
−20 log10

Imax

b
¼ Tp ð2Þ

where Imax is the maximum intensity, and Tp is the per-
ceptual threshold. Similarly, b and b + c2b are just per-
ceptually different from each other if:

20 log10
Imax

b
−20 log10

Imax

bþ c2b
¼ Tp ð3Þ

To determine c1 and c2, the equations are simplified.

c1 ¼ 10
Tp
20−1

10
Tp
20

ð4Þ

c2 ¼ 10
Tp
20−1 ð5Þ

Assume that Tp is 1.0 dB, c1 = 0.1087, and c2 = 0.1220.
Figure 3a illustrates the formation of a conventional

local binary pattern from a block of 3 × 3 pixels. The

Fig. 2 A block of pixels with center pixel b and neighbors n1 to n8 is
transformed into a ternary pattern

a b

Fig. 3 Formation of local pattern a LBP. b P-LTP
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first row shows the formation of LBP for a noise-free
image. The second row indicates that LBP is not ro-
bust to additive random noise in the image. The third
row also shows that LBP cannot keep its invariance
against random noise plus scale transform of inten-
sity. Figure 3b illustrates the formation of P-LTP
using Eq. (1) and the estimated c1 and c2 just men-
tioned under the same circumstances as in Fig. 3a.
The confidence intervals for the patterns in the first
and second rows are 57 and 72. The confidence inter-
vals for the pattern in the third row are 114 and 144.
It can be seen that P-LTP is always the same which
means it is robust against random noise and scale
transform.
For each color component, pixel values are trans-

formed into ternary pattern codes as mentioned previ-
ously. The pattern is concisely represented by the
cardinalities of individual pattern codes.

Pc;t ¼ pk ¼ tj j; 1≤k ≤8; t ¼ −1; 0; 1f g; c ¼ R;G;Bf g
ð6Þ

Finally, a nine-dimension P-LTP feature vector is
formed. The advantage of the P-LTP feature over the
original pixel value can be seen in Fig. 4. Figure 4a–
c shows some image frames, and the selected point
is indicated by the “x” mark. The illumination of the
scene is gradually increasing. Figure 4d shows the
plots in red, green, and blue for the R, G, and B
pixel values, respectively, of the selected point. It is
clear that magnitudes of the color components are
increasing along the image sequence due to lighting
up of the scene. Figure 4e–g shows the plots of car-
dinalities of pattern codes “− 1,” “0,” and “+ 1,” re-
spectively, along with the image sequence. Each
figure shows the plots in red, green, and blue for the
cardinalities of a pattern code estimated from the R,
G, and B pixel values, respectively. In contrary to
the magnitudes of color components, the nine P-LTP
features are quite stable along the image sequence
due to their invariance to intensity change. The se-
lected point is on a smooth texture region. Cardinal-
ity of “0” pattern code is higher than that of “− 1”
and “+ 1” pattern codes. Liao et al. [21] proposed a
scale invariant local ternary pattern (SILTP) to

Fig. 4 Frames of an image sequence and plots of pixel values
and P-LTP features for three color components (in red, green,
and blue lines). a Frame 0. b Frame 74. c Frame 149. d
Magnitudes of R, G, and B versus frame number. e Cardinality
of “− 1” pattern code. f Cardinality of “0” pattern code. g
Cardinality of “+ 1” pattern code
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represent the gray levels of the pixels. However, as
shown in Fig. 5a, SILTP feature is not rotation invari-
ant. For instance, if the image is rotated 90° clock-
wise, the feature value becomes 97. The P-LTP
feature, as shown in Fig. 5b, is rotation invariant. The
range of P-LTP feature for one color component is 9!,
which is much larger than that of SILTP feature with
256-bin histogram representation.

4 Background model initialization
Many computer vision systems demand accurate seg-
mentation of moving objects in the video. It is common
that the method involves a learning process, and the
background model is generated from the video. The
background model must be versatile since simple or
complex scenes may be encountered. The features repre-
senting the background scene are very important. In our
framework, the background is modeled using textural
and photometric features.
We observed various challenges in real scenes.

Dynamic background elements such as tree and water
produce many false-positive errors. Camera jitter also
produces false-positive errors. It is because the
background model does not contain sufficient and
representative samples. Same as [21], we use 150
image frames in the background model initialization.
At each pixel, the P-LTP features are computed with
a fixed block size of 3 × 3 pixels. Only distinctive
P-LTP features are entered into the background
model. If a similar P-LTP feature already exists in the
background model, it will be discarded. Let B be the
background model and b is the number of P-LTP fea-
tures in the background model. Let N be the number
of initialization image frames and n is the frame

index. The algorithm for P-LTP feature selection is
given below.

The similarity between the current P-LTP feature and
the existing P-LTP feature in the background model is
calculated by:

p dist Pn
c;t; P

i
c;t

� �
¼

X
t¼ −1;0;1f g

Pn
c;t−P

i
c;t

��� ��� ð7Þ

If the cardinality of a pattern code differs by one, there
is also another discrepancy of one in the cardinality of

a b

Fig. 5 Pattern feature estimation: (a) SILTP and (b) P-LTP
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another pattern code. We assume that if two sets of P-LTP
features are similar, the discrepancy of pattern code cardin-
ality should not occur more than twice. Therefore, we fixed
εp as 4. Also, we count the number of occurrences oi for
each distinctive P-LTP feature. In case the initialization se-
quence contains a moving object, its P-LTP feature should
not be included in the background model. Assume that the
moving object P-LTP feature occurs less often than the
background P-LTP feature. We fixed the filter threshold εo
as 10% of the length of the initialization sequence.
Besides P-LTP features, we also enter photometric fea-

tures into the background model. We observed that for
homogeneous textures, the P-LTP feature is not suffi-
cient to differentiate the background and object even
though they are of different color. Figure 6 shows two
homogeneous textures, their colors and P-LTP features.
The first row shows some image frames, and the se-
lected point is indicated by the “x” mark. Figure 6d
shows the color values of the selected point. Colors of
the human are different from the background colors.
The P-LTP features (Fig. 6e–g) are more or less the
same for the two textures. The photometric features
used for background modeling are the color components
C = {R, G, B} and intensity I which is calculated by:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2

p
ð8Þ

Only distinctive photometric features are entered into
the background model. The algorithm for photometric
feature selection is given below.

We adopted [9] to measure the similarity between the
current pixel color and the existing photometric feature
in the background model:

c dist Cn;Ci
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cnk k2− Cn∙Ci

� �2
Ci
�� ��2

vuut ð9Þ

We fixed εc as 10.

5 Moving object segmentation
Moving objects in the image sequence are segmented by
comparing each pixel of the image frame with the back-
ground model. It is a background/foreground segregation
process. If features of the pixel match with the background
model, it is classified as background. Otherwise, it is a fore-
ground (object) pixel. The algorithm for moving object seg-
mentation is shown below.

Under the default condition (segment_cond = 1), all
features (P-LTP, color, and intensity) of the pixel are
used. The segmentation can reduce false-negative errors
due to the homogeneous textures within the object re-
gion. However, when the condition (e.g., illumination) of
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the scene changes drastically, photometric features are
not invariant and will not be used in the classifica-
tion. Control of segment_cond will be explained in the
next section. The similarity of the intensity is mea-
sured with respect to the confidence interval of the
current pixel’s intensity. The lower and upper bounds
are computed based on the constants c1 and c2 as ex-
plained in Section 3. If the current pixel is classified
as background, its features are saved temporarily. If it
is classified as foreground, we save and count the
number of occurrences for each distinctive feature.
This foreground model F will be analyzed in the
background model update process as explained in the
following section.

6 Object refinement and background model
update
The background/foreground segregation result may
contain false-positive and false-negative errors. For in-
stance, isolated scene pixels may have features deviate
from the background model due to illumination
change or background motion. As they are not con-
nected to form a region, they can be discarded with-
out affecting the detection of real moving objects.
Therefore, foreground regions less than 15 pixels are
eliminated. The remaining foreground regions may
have holes. The object’s silhouette may be distorted.
These false-negative errors are usually caused by the
similarity of the object’s feature to the background
model. We analyze the spatial consistency of the
image feature and refine the object probabilistically.
Let x be a foreground (FG) pixel. Its neighboring
background (BG) pixels y are defined by:

y j dist x; yð Þ < D; x ¼ FG; y ¼ BG ð10Þ

where dist() is the city block distance and D is fixed as
1. y is changed to FG when they have image features
more similar to neighboring FG pixels than neighboring
BG pixels. If segment_cond is 1, the image feature to be
analyzed is P-LTP.

yi ¼ FG if log
P yi ¼ FGð Þ
P yi ¼ BGð Þ > T f ð11Þ

Fig. 6 Two homogeneous textures and the corresponding colors
and P-LTP features (in red, green, and blue lines). a Frame 110. b
Frame 184. c Frame 259. d Magnitudes of R, G, and B versus frame
number. e Cardinality of “− 1” pattern code. f Cardinality of “0”
pattern code. g Cardinality of “+ 1” pattern code
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P yi ¼ FGð Þ ¼ exp −
X
j

P
y j
c;t−P

yi
c;t

��� ���
 !

; dist yi; y j
� �

< D; y j ¼ FG

ð12Þ

P yi ¼ BGð Þ ¼ exp −
X
j

μ P
y j
c;t

� �
−Pyi

c;t

��� ���
 !

; dist yi; y j
� �

< D; y j ¼ FG

ð13Þ
where μ() is the mean of the P-LTP features in the back-
ground model. If segment_cond is 2, the consistency of
the color component is checked.

P yi ¼ FGð Þ ¼ exp −
X
j

Cy j−Cyij j
 !

; dist yi; y j
� �

< D; y j ¼ FG

ð14Þ

P yi ¼ BGð Þ ¼ exp −
X
j

μ Cy jð Þ−Cyij j
 !

; dist yi; y j
� �

< D; y j ¼ FG

ð15Þ
Tf is fixed as 2. Figure 7 shows the original image

frame and the segmented human with and without prob-
abilistic refinement. Many holes inside the human region
are filled up. The silhouette is also improved.
We devise two mechanisms to adapt the back-

ground model to complications such as a sudden
global change in the scene and appearance of new
background features. They are important to ensure
accurate object segmentation over a long image se-
quence. In the short-term background model update,
an abrupt and extensive scene change is identified
by analyzing the current segmented result St and a
previous segmented result St-k, where t is the current

time instant and k is fixed as 15. Normally, the
background model will allow all stored features
(P-LTP, color, and intensity) being used in the mov-
ing object segmentation (segment_cond = 1). It will
be changed (segment_cond = 2) such that only P-LTP
features are used when the following two conditions
are met:

X
XOR St ; St−kð Þ > TS ð16Þ

μ Itð Þ−μ It−kð Þj j
μ Itð Þ > TI ð17Þ

where TS is fixed as 0.3 times the image frame size, μ(I)
is the mean intensity, and TI is fixed as 0.2. Figure 8
shows the original image frames and the segmented re-
sults before and after the sudden scene change. Initially,
all the background pixels are identified correctly. When
some lights are turned off, many pixels are wrongly clas-
sified as foreground. With short-time background updat-
ing, many pixels are correctly identified as background
immediately.
In the long-term background model update, we accu-

mulate the outcomes of background/foreground classifi-
cation over a period of time. We choose the same
duration for background initialization which is 150
frames. During this period, if the current pixel is classi-
fied as background, its features are considered as reliable
background features and will be stored temporarily. If it
is classified as foreground, there are two possibilities. It
may be a true object pixel or a new background pixel.
Each distinctive foreground pixel will have its features
saved into the foreground model F. We also count the
number of occurrences for each distinctive foreground
feature. By the end of the period, if the number of occur-
rences is large enough (we fixed the threshold as 0.8
times the update period), those foreground features, to-
gether with all the temporary background features, are
saved as the updated background model. Figure 9 shows
the original image frames and the segmented results

Fig. 7 Probabilistic object refinement. a Original image frame. b Segmented human without refinement. c Segmented human with
probabilistic refinement
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before and after the long-term background update. The
illumination of the scene is increasing and causes more
false-positive errors. At time instant 450, the long-term
background update is carried out. All the background
pixels are correctly identified.

7 Results and discussion
We evaluated the performance quantitatively in terms of
Recall, Precision, and F-Measure (F1). Recall gives the
ratio of detected true-positive pixels to a total number of
foreground pixels present in the ground truth which is
the sum of true-positive and false-negative pixels. Preci-
sion gives the ratio of detected true-positive pixels to a
total number of foreground pixels detected by the
method which is the sum of true-positive and
false-positive pixels. F1 is the weighted harmonic mean
of Precision and Recall. It can be used to rank different

methods. The higher the value of F1, the better is the
accuracy.
We compared our method with other background

subtraction algorithms on three publicly available data-
sets. The Wallflower dataset [31] contains six videos.
Each video comes with one manually labeled ground
truth. They have the same image frame size of 160 × 120
pixels. The Star dataset [32] contains nine videos. Each
video comes with 20 manually labeled frames as ground
truths. The videos have a different image frame size,
from 160 × 120 pixels to 320 × 256 pixels. Finally, we
tested our method and compared with other algorithms
on ChangeDetection.net dataset [33]. Each video comes
with large amount of labeled ground truths. They have
larger image frame size, from 320 × 240 pixels to 720 ×
576 pixels.
As for our method, the first 150 image frames of the

video are used for background model initialization which

Fig. 8 Short-term background model update. a–c Original image frames 124, 126, and 128. d–f Segmented results

Fig. 9 Long-term background model update. a–c Original image frames 370, 410, and 450. d–f Segmented results
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is the same as the best setting in [21]. Other parameters
are: Tp = 1.0, εp = 4, εo = 15, εc = 10, Tf = 2, TS = 0.3 ×
image frame size, and TI = 0.2. The perceptual threshold
of 1.0 dB corresponds to just visually observable differ-
ence between neighboring pixels. If a pattern is a back-
ground, we assume that any one pattern code cardinality
should not differ from the existing background pattern
by more than 2. Therefore, the total difference between
the pattern features should not be more than 4. Through
experimentation, we observed that moving object pat-
tern occurs less than 10% of the length of the
initialization sequence. The photometric feature similar-
ity threshold is set the same as [9]. False-negative error
is rectified when its features are more likely to be fore-
ground than background. Through experimentation, we
found that the threshold for the log-likelihood ratio can
be set as 2 properly. To detect a global change in the

Table 1 F1 results on the Wallflower dataset

Sequence Our method ViBe SILTP MC-SILTP

Bootstrap 0.867 0.478 0.766 0.740

Camouflage 0.975 0.931 0.927 0.896

ForegroundAperture 0.693 0.644 0.849 0.665

LightSwitch 0.700 0.159 0.730 0.745

TimeOfDay 0.832 0.394 0.175 0.181

WavingTrees 0.952 0.933 0.712 0.946

Average 0.836 0.590 0.693 0.695

Variance 0.015 0.095 0.071 0.075

The best results are shown in italics

Fig. 10 Background subtraction results on the Wallflower dataset—original image frames (first column), results obtained by ViBe (second
column), results obtained by SILTP (third column), results obtained by MC-SILTP (fourth column), results obtained by our method (fifth
column), and ground truths (last column)
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scene and appearance of new background features, we
found that the conditions of 30% change in the segmen-
tation result and fractional change of mean intensity of
0.2 are suitable for all testing image sequences.

7.1 Wallflower dataset
We selected non-parametric method ViBe [10],
texture-based method SILTP [21], and MC-SILTP
[23] for comparison. Based on sample consensus,
ViBe can achieve very good results with very few
tunable parameters. It was showed that ViBe per-
forms better than many state-of-the-art parametric
and non-parametric algorithms such as [6, 9]. ViBe
uses RGB color model and a fixed spherical distance
of 30 in matching new pixel with background sam-
ples. It keeps 20 background samples, and the new
pixel is identified as background with two matches.
SILTP employs scale invariant local patterns. It was
showed [21] that it performs better than other
LBP-based methods [20]. MC-SILTP is one latest
texture-based method and can perform even better
with pattern obtained by cross-computation on RGB
color channels. We implemented SILTP with the
same set of parameters as reported in [21]. The only
parameter value which was not mentioned is the
number of training frames. Through experimenta-
tion, we find that the number of training frames is
best fixed as 150. Similarly, we implemented MC-
SILTP with the same setting as reported in [23]. The
Wallflower dataset contains videos exhibiting gradual
illumination change (TimeOfDay), sudden illumin-
ation change (LightSwitch), similar background and
object color (Camouflage), moving background ele-
ments (Waving Trees), etc.
Table 1 shows the F1 results of our method, ViBe,

SILTP, and MC-SILTP. The best result in a given row is
highlighted. No method can achieve the highest F1 on

all videos. Our method can achieve the highest F1 on
four videos. Overall, texture-based methods perform bet-
ter than ViBe. MC-SILTP performs slightly better than
SILTP. Our method achieves the highest average F1
which is 14% higher than the second best method
MC-SILTP. Also, our method can achieve consistently
high F1 as indicated by the lowest variance.
Figure 10 shows the visual results. In “Bootstrap,”

humans already exist in the initialization image sequence.
ViBe produces more false-negative errors. Our method
and SILTP relatively have lesser false-negative errors. Our
method also has lesser false-positive errors than
MC-SILTP. In “Camouflage,” the difficulty is that the
monitor and the clothing have a similar color. Therefore,
ViBe, SILTP, and MC-SILTP produce many false-negative
errors. With probabilistic refinement, our method can
drastically reduce false-negative error. In “ForegroundA-
perture,” the human remains stationary and stooped over
the desk for some time. Features of the human are in-
cluded in the background model. When the human rises,
all methods produce false-negative errors. In “LightSwitch,”
ViBe cannot adapt to the sudden change of light. Other
methods can quickly respond. In “TimeOfDay,” the room
is very dark in the beginning. The light is turned on grad-
ually, and a human enters the room. SILTP and MC-SILTP
cannot adapt to the change and result in a large amount of
false-positive errors. ViBe performs better, but the seg-
mented human is small. Benefit by the P-LTP feature, our
method can segment a larger human with a minimal
false-positive error. In “WavingTrees,” ViBe and SILTP
produce many false-positive errors in the trees behind the
human. MC-SILTP still produces a moderate amount of
false-positive error. As the P-LTP feature is rotational in-
variant, our method is quite effective in identifying the
waving trees as background. In summary, our method can
achieve a consistent and accurate performance under vari-
ous kinds of complication in the background scene.

Table 2 F1 results on the Star dataset

Sequence Our method ViBe SILTP MC-SILTP MoG LBP-B LBP-P

AirportHall 0.728 0.496 0.681 0.659 0.579 0.477 0.503

Bootstrap 0.790 0.514 0.754 0.649 0.541 0.528 0.520

Curtain 0.885 0.775 0.912 0.707 0.505 0.661 0.714

Escalator 0.569 0.445 0.639 0.439 0.366 0.591 0.539

Fountain 0.809 0.425 0.835 0.504 0.779 0.705 0.753

ShoppingMall 0.813 0.522 0.796 0.513 0.670 0.547 0.629

Lobby 0.765 0.029 0.788 0.690 0.684 0.503 0.523

Trees 0.727 0.345 0.425 0.222 0.554 0.629 0.606

WaterSurface 0.934 0.801 0.743 0.570 0.635 0.768 0.822

Average 0.780 0.483 0.730 0.550 0.590 0.601 0.623

Variance 0.011 0.052 0.019 0.024 0.014 0.010 0.013

The best results are shown in italics

Chan EURASIP Journal on Image and Video Processing  (2018) 2018:62 Page 12 of 16



7.2 Star dataset
We selected ViBe [10], SILTP [21], MC-SILTP [23],
parametric method MoG [5], texture-based methods
blockwise LBP (LBP-B) [34], and pixelwise LBP (LBP-P)
[20] for comparison. Table 2 shows the F1 results. The
numeric results of SILTP, MoG, LBP-B, and LBP-P are
from [21]. Our method can achieve the highest F1 on
five videos and second best on three videos. Overall, our
method achieves the highest average F1 than all compar-
ing methods which is 5% higher than the second best
method SILTP. Our method has the second lowest vari-
ance which is very near to LBP-B.

Figure 11 shows the visual results of our method, ViBe,
SILTP, and MC-SILTP. Some videos contain busy human
flows (AirportHall, Bootstrap, Escalator, ShoppingMall).
“Curtain” has a slowly moving curtain in the back-
ground. “Fountain” and “WaterSurface” contain moving
water. In “Lobby,” the light is dimmed and turned on
later. “Trees” has waving trees and banner in the back-
ground. In “AirportHall,” ViBe and MC-SILTP produce
more false-negative errors. The results of our method
and SILTP are close, only that the latter method has
more false-positive and negative errors. A similar com-
parison can be observed in “Bootstrap.” In “Curtain,”

Fig. 11 Background subtraction results on the Star dataset—original image frames (first column), results obtained by ViBe (second column),
results obtained by SILTP (third column), results obtained by MC-SILTP (fourth column), results obtained by our method (fifth column), and
ground truths (last column)
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other methods produce many false-negative errors.
MC-SILTP also produces many false-positive errors. “Es-
calator” is a difficult video. ViBe, MC-SILTP, and our
method can model the background. In “Fountain,” our
method takes advantage of the rotational invariant
P-LTP feature and accurately identifying the fountain as
background. Our method can segment all humans in
“ShoppingMall” with low false-positive and negative er-
rors. In “Lobby,” ViBe cannot adapt to the change of
light while the results of our method are close to SILTP
and MC-SILTP. ViBe, SILTP, and MC-SILTP produce a

large amount of false-positive errors in “Trees.” Our
method has no problem in tackling the waving trees as
well as the window of the bus. Similarly, the P-LTP fea-
ture can model the moving water in “WaterSurface.” In
ViBe, the legs are almost missing completely, and
MC-SILTP also produces many false-negative errors.
Our method can segment the whole figure of the hu-
man. In this experiment, it can be seen that our method
can achieve a stable performance in all videos.

7.3 ChangeDetection.net dataset
We compared our method with ViBe, SILTP, and
MC-SILTP on image sequences of the dynamic back-
ground category. Due to larger frame size, background
scene changes are more vigorous than the videos of pre-
vious datasets. The testing image sequences contain
complex backgrounds such as swaying trees, camouflage,
fountain, and water surface. Table 3 shows the F1 re-
sults. Fountain01 is a very difficult image sequence with
small foreground object and large regions of changing
background. All methods achieve very low F1 results.
Overall, our method can achieve the highest F1 on all
image sequences, and the average F1 is 14% higher than
the second best method ViBe.

Table 3 F1 results on the ChangeDetection.net dataset dynamic
background image sequences

Sequence Our method ViBe SILTP MC-SILTP

boats 0.566 0.178 0.015 0.127

canoe 0.850 0.783 0.107 0.695

fountain01 0.196 0.061 0.008 0.050

fountain02 0.632 0.563 0.024 0.098

overpass 0.704 0.685 0.066 0.209

Average 0.590 0.454 0.044 0.236

Variance 0.059 0.101 0.002 0.069

The best results are shown in italics

Fig. 12 Background subtraction results on the ChangeDetection.net dataset dynamic background image sequences—original image frames (first
column), results obtained by ViBe (second column), results obtained by SILTP (third column), results obtained by MC-SILTP (fourth column), results
obtained by our method (fifth column), and ground truths (last column)
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Figure 12 shows the visual results of our method, ViBe,
SILTP, and MC-SILTP. “Boats” has water surface, people,
and cars in the background. “Canoe” has water surface
and trees in the background. SILTP cannot model the
background well. MC-SILTP performs much better than
SILTP, but like ViBe, produce many false-positive errors
in the water surface. Our method can effectively model
the whole background and segment the boat and canoe.
“Fountain01” and “fountain02” have flowing water in
front and moving cars behind the fountain. Again, SILTP
cannot model the fountain well. MC-SILTP still pro-
duces many false-positive errors in the fountain. ViBe
results in a smaller foreground region. Our method can
model the flowing water and segment the foreground in
sufficient large size and good shape. “Overpass” contains
a human walk along the bridge with swaying trees in the
background. The legs and bridge have a similar color.
SILTP cannot model the trees well. MC-SILTP and ViBe
produce many holes (false-negative errors). Our method
can effectively model the swaying trees and segment the
human.

8 Conclusions
We propose a method for the segmentation of moving
objects in the video. The background model is repre-
sented by perception-based local ternary pattern and
photometric features. The local ternary pattern is robust
to random noise and invariant to scale transform. The
feature derived from the local pattern is also rotational
invariant. Each pixel of the image frame is classified as
either background or object by matching the image fea-
ture with the background model. The segmented object
can be refined by taking into account the spatial
consistency of the image feature. The background model
is updated periodically along the image sequence for
adapting to the changes of the scene. We devise two
mechanisms—short-term update to respond to a sudden
global change in the scene and long-term update for in-
corporating new background features. We compare our
method with various background subtraction algorithms.
Testing is performed on three common video datasets,
containing many types of complication. The quantitative
and visual results show the consistency and accuracy of
our method over others.
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