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Abstract

Material recognition is the process of recognizing the constituent material of the object, and it is a crucial
step in many fields. Therefore, it is valuable to create a system that could achieve material recognition
automatically. This paper proposes a novel approach named ensemble learning for material recognition with
convolutional neural networks (CNNs). In the proposed method, firstly, a CNN model is trained to extract the
image features. Secondly, knowledge-based classifiers are learned to get the probabilities of the test sample
that belongs to different material categories. Finally, we propose three different ways to learn the ensemble
features, which achieves higher recognition accuracy. The great difference from the prior work is that we
combine the knowledge-based classifiers on probability level. Experimental results show that the proposed
ensemble feature learning method performs better than the state-of-the-art material recognition methods and
can archive a much higher recognition accuracy.
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1 Introduction
In our daily life, the scenes consist of all kinds of
materials such as leather, fabric, and wood. We deal
with all kinds of categories and apperceive the ma-
terial categories. For example, we would try to avoid
stepping on the puddles of water when we walk on
the road. So material recognition plays a critical role
in real world and exerts great influence on human
life. Therefore, it is valuable to design a system that
could achieve material recognition automatically. It
could provide valuable cues to numerous applications, in-
cluding product search and human-machine systems. For
example, an autonomous vehicle or a mobile robot can

make decisions on whether a forthcoming terrain is asphalt,
gravel, or grass. A cleaning robot can distinguish among
wood, tile, or carpet.
In the past few decades, so many methods were pro-

posed for material recognition; however, no satisfactory
accuracy has been achieved. And the traditional method
for material recognition is modeling the characteristic
appearance of different materials or the context informa-
tion. However, quite a few categories of materials would
have abundant surfaces and are visually very wealthy.
And the visual characteristic would perform differently
due to the lighting and scene. The challenge in material
recognition is largely due to the wide variety of appear-
ances which each material may exhibit, such as plastic,
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which may appear in a number of different colors, tex-
tures, and reflectance. There are also many other influen-
cing factors for material recognition, such as reflection
estimation, the illumination condition, and other condi-
tions. All of them would have a huge influence on material
recognition performance.
In recent years, a major breakthrough in material

recognition is that large-scale databases combined
with convolutional neural networks (CNNs). CNN has
proved its success in vision tasks such as object de-
tection and recognition and has recently achieved the
state-of-the-art results in object classification and de-
tection. Many advanced architectures have been intro-
duced, such as GoogLeNet [1] and VGG [2]. It is also
used for per-pixel segmentation. Farabet et al. [3]
proposed multi-scale CNNs to predict category on
pixel level for segmentation. Recently, a fully convolu-
tional framework [4] has been proposed; it predicts
from the image directly. The recent work includes
R-CNNs [5] and overfeat [6]. On the other hand, the
material recognition has been facilitated by the
large-scale databases. There are already many
large-scale databases; the detail introduction of the
databases would be shown in the next part. The com-
mon ground of these databases is that they contain
so many kinds of categories, and each of the categor-
ies contains a large number of images. And these da-
tabases may consider the illumination, angle, and
other factors.
One of the major contributions of our paper is that

we achieve higher recognition accuracy than the prior
methods by combining some knowledge-based classi-
fiers. The great difference from the previous work is
that we make use of the category probabilities, not the
category label. We combine these probabilities through
three ways to increase the probability of correct cat-
egory, and reduce the probability of error category, that
is to say, achieve higher recognition accuracy. Mean-
while, a new algorithm is proposed for learning the
weights for these knowledge-based classifiers. Experi-
ment results show that ensemble learning for material
recognition with convolutional neural network could
get higher accuracy than a knowledge-based classifier.
And we also do some experiments with the prior
methods; the results show that the way we proposed to
combine the knowledge-based classifiers would have a
better performance than the prior methods.
The contributions of this new approach can be sum-

marized as follows:

(1) We introduce three ways of ensemble learning for
material recognition to get higher accuracy.

(2) A new algorithm is proposed to learn weights for
knowledge-based classifiers.

The remainder of this paper is organized as follows.
Section 2 is the related work, and Section 3 describes
the ensemble learning for material recognition with
CNNs. Experiment results and discussion on the mater-
ial database are presented in Section 4. Section 5 draws
the conclusion of this paper.

2 Related work
In this paper, we recognize material categories with
CNNs and improve the recognition accuracy by ensem-
ble learning. There are already some perfect methods for
every part.

2.1 Material recognition
As described above, the material database plays an
important role in the material recognition. There are
already various material databases, and the material
databases would have a major impact on the recogni-
tion accuracy. CUReT database [7] contains 61 ma-
terial samples, and each sample is captured under
205 different lighting and view conditions. Flicker
Material Database (FMD) [8] contains ten categories,
and each category contains 100 images, which is very
choosy to contribute to the rich visual variation in
each category. Although FMD has already been ap-
plied to material recognition, it is not enough for the
material recognition in the real world. Bell et al. [9]
released OpenSurfaces that contains more than
20,000 real-world-labeled scenes; this database is a
large number material database. The Materials in
Context Database (MINC) [10] contains more than 3
million patches, and these patches are classified into
23 material categories (Fig. 1). There are also many
large image sets collected in the wild [11–13]. The
more detailed information is shown in Table 1.
And in the past few decades, many material recogni-

tion methods had been proposed. The major method is
modeling the characteristic appearance of different ma-
terials or the context information. And many prior
methods of material recognition have focused on the
classification problem, which would be divided into two
categories, the first one is based on the object reflect-
ance [14–17]. Cula and Dana [14] proposed 3D texture
recognition using bidirectional feature histograms. Liu
and Gu [15] proposed to use coded illumination to dir-
ectly measure discriminative feature for material classi-
fication. Lombardi and Nishino [16] forced on single
image that consists of multiple materials and proposed
to constrain the possible solutions so that the recovered
reflectance conform with those real-world materials.
Zhang et al. [17] introduced a framework called reflect-
ance hashing that modeled the reflectance disks with
dictionary learning and binary hashing. Most of this
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work would require some added condition, such as
the scene geometry [18, 19] or illumination [20, 21]
should to be known ahead of time, or others [22].
The other kind of the prior method is extracting fea-
tures from the image appearance directly. For ex-
ample, Liu et al. [23] proposed a method that
package a few features into reflectance-based edge
feature. Hu et al. [24] proposed features based on

variances of oriented gradients. Qi et al. [25] studied
the transform invariance (TI) of co-occurrence fea-
tures and introduced a pairwise local binary pattern
(LBP) feature. Schwartz and Nishino [26] introduced
visual discriminative object-specific information. And
in the recent days, Cimpoi et al. [27] achieved
state-of-art on FMD by combining object descriptors
and texture descriptors. Recently, many methods

Table 1 Comparison of the publicly available material databases

Database Sample Categories Source Time

CUReT 61 Unknown 1999

KTH-TIPS 11 11 Unknown 2004

FMD 100 10 Flick 2009

Open-Surface 105,000 (segmentations) 22 Flick 2013

UBO2014 84 7 Unknown 2014

Reflectance disk 190 19 Unknown 2015

MINC 3,000,000 23 Flick Houzz 2015

4D Light-field 1200 12 Unknown 2016

NISAR 100 100 Unknown 2016

GTOS 606 40 Unknown 2016

Fig. 1 Some examples in the MINC database, FMD database, and DTD database
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based on deep learning are proposed. For example,
Xue et al. [13] propose to take a middle-ground ap-
proach for material recognition that takes advantage
of both rich radiometric cues and flexible image cap-
ture. Xu et al. [28] propose a material recognition
approach based on both transfer learning and a
mainstream deep convolutional neural network
(D-CNN) model used for foreign object debris (FOD)
material recognition. Younis et al. [29] utilized the
advances in deep learning to build a system for ma-
terial recognition.

2.2 Ensemble learning
Ensemble learning [30] is the machine learning that
combines various classifiers to achieve better predic-
tion performance. That is to say, the ensemble learn-
ing approaches attempt to predict some results and
package the results to generate a new final result
[31]. The prior methods show that the ensemble per-
formed better than the knowledge-based classifiers.
Generally speaking, the ensemble learning methods
are constructed in two steps. First, build some
knowledge-based classifiers, and then combine these
classifiers. The main algorithms are divided into
boosting, bagging, and stacking. Bagging is the
method that involves different types of classifiers.
Each knowledge-based classifier has its own training
set that generated from using random draw method
with replacement [32]. Build a model for each classi-
fier after all the training sets are generated. The final
prediction result is combined by voting. This ensem-
ble learning method reduces the overfitting problem,
and it will be more effective on unstable learning al-
gorithms. Boosting also has a superior performance

on improving the prediction accuracy of some ma-
chine learning models. In all boosting algorithms,
during each learning phase, the instances are
reweighted [33]. The wrong classified instances would
be selected in the next step, so that they could be
classified correctly in this step. All the results of the
classifiers are combined by the majority voting [34].
Stacking is to make the predicted results of the classi-
fiers as new features and train the final model on the
new training set. Last but not the least, be sure to
choose the different knowledge-based classifiers for
your ensemble learning.

3 Proposed method
We start with three proposed ways to combine these
knowledge-based classifiers on the probability level.
Next, we propose a new algorithm for learning the
weights for these knowledge-based classifiers. Then,
we describe the application of the proposed methods
to material recognition. Finally, we provide recogni-
tion accuracy computational analysis, which is a proof
that the ensemble learning classifier can achieve
higher recognition accuracy than a knowledge-based
classifier.
Figure 2 shows an overview of our ensemble learning

method for recognizing materials. Given a CNN that
can extract feature for training these knowledge-based
classifiers, so these knowledge-based classifiers are
trained for ensemble learning. Then, we use the pro-
posed methods to combine these knowledge-based clas-
sifiers. Specifically, we use a new algorithm for learning
the weights of these knowledge-based classifiers in the
third method. The biggest distinction from the pre-
vious methods is that in our method we realize the

Fig. 2 An overview of the material recognition pipeline used for our experiments. In the ensemble learning part, we proposed three ways to
combine these knowledge-based classifiers
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ensemble learning on the probability level and we
would recalculate the probabilities of the test sam-
ple that belongs to the 23 material categories. The
label corresponding to the maximum value of the
23 predicted probabilities is the predicted label for
the test sample. The results show that the ensemble
learning would get a higher accuracy than the
knowledge-based classifiers, and our proposed en-
semble learning ways would get a higher accuracy
than the prior ways.

3.1 Training procedure for knowledge-based classifiers
First, we train our CNN model with the classifier of
Softmax. Then, the CNN feature is extracted for
training the knowledge-based classifiers. In the
training procedure of the support vector machine
(SVM) [35] classifier, we should generate the train
set and test set from the original data, and prepro-
cessed the data as

y ¼ ymax−yminð Þ � x−xminð Þ � xmax−xminð Þ þ ymin ð1Þ

Then, we train the SVM classifier on the train set, and
the decision function as

f xð Þ ¼ sgn
X

i¼1
n

Wi exp −gamma∥xi−x∥2� �þ bÞ
�

ð2Þ

We train the Random Forest [36] model to obey the
Gini value.

Gini ¼ 1−
X

PðiÞ2 ð3Þ

P(i) is the data set of the present node. And we also
train the other knowledge-based classifiers like the ex-
treme learning machine model [37], Treebagger model.

3.2 Our proposed ensemble learning
As for the ensemble learning methods, different from
the previous methods, we achieve the goal of combining

various knowledge-based classifiers on the probability
level. In our approach, the predicted results of these
knowledge-based classifiers could be obtained after
training the knowledge-based classifiers; the predicted
results would contain the predicted probabilities of the
material categories and the predicted labels. Lastly, we
propose three ways to compute the final probability
map on the basis of the probability maps of the
knowledge-based classifiers.

� The first way is to compute the mean value of the
predicted probabilities of different material
categories, then the final probability map would be
generated. For a test sample, the label corresponding
to the maximum value of each row is the predicted
label of this test sample.

Pði; jÞ ¼
Xn

z¼1
Pzði; jÞ=n ð4Þ

n = (1,2,..., m), P (i, j) means the probability of sample i
belongs to material category j. z means the zth
knowledge-based classifier.

� The second way is maximum value algorithm. The
first step is comparing these predicted probabilities
of each knowledge-based classifier, and build a new
probability map that contains the maximum pre-
dicted probabilities of each knowledge-based classi-
fier. The predicted label is the label corresponding to
the maximum value of these maximum predicted
probabilities for this test sample.

P ið Þ ¼ max max Pz i; :ð Þð Þð Þ ð5Þ

z means the zth knowledge-based classifier. P (i,:)
means the predicted probabilities that the sample i be-
longs to the material categories.
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� The third way is setting weights wz for every
knowledge-based classifier. A new learning
algorithm is proposed to learn the weights of
the knowledge-based classifiers. The algorithm is
described as follows:
1) The main idea of this algorithm is choosing
one of the knowledge-based classifiers as the
original classifier and improving recognition
accuracy by making use of the other knowledge-
based classifiers;
2) Set the initial weights wz for each knowledge-
based classifier, and set the step;
3) Compare the predicted labels to the correct
test labels. When the predicted label of the
knowledge-based classifier Cz is right, the pre-
dicted labels of the other knowledge-based clas-
sifiers are wrong, the weight wz adds the step
and the weight wj(j ≠ z) reduces the step/n − 1.
The weights will be maintained in other cases;
4) Normalize the weights. The whole method of the
proposed learning process is summarized in
Algorithm 1.

The final predicted probability map is the sum of the
product of the knowledge-based classifiers and their cor-
responding weights. The label corresponding to the
maximum value of these predicted probabilities is the
predicted label of this test sample.

P i; jð Þ ¼
Xn

z¼1
wzPz i; jð Þ ð6Þ

z = (1,2,..., n) means the zth knowledge-based classifier,
P (i, j) means the probability of sample i belongs to ma-
terial category j.

4 Results and discussion
In this section, we evaluate the effect of many different
parameters for training knowledge-based classifiers.
Then, the best performance parameters are chosen to

train the knowledge-based classifiers, which are prepared
for the ensemble learning. And we also evaluate our pro-
posed ensemble learning methods and compare with the
prior ensemble learning methods, including the stacking
and voting. All of our experiments were carried on
MINC [10] database.

4.1 Training procedure
We choose the MINC [10] for this database contains
3 million patches that split into 23 categories. And
each category contains the same number of samples.
And we train our CNN model with the AlexNet net-
work framework [38], the champion of the challenge
on ImageNet image classification on 2012. Like Bell
et al. [10], when training AlexNet [38], we use sto-
chastic gradient descent with batch size 128, dropout
rate 0.5, momentum 0.9, and a base learning rate of
10−3 that decreases by a factor of 0.25 every 50,000
iterations. The network is showed in Fig. 3. After the
training process, we would get the predicted labels of
Softmax classifier. And we extract the CNN feature
and get the predicted probabilities of the test sample
that belongs to the 23 categories when recognized by
the Softmax classifier.
We choose 2125 patches form each category as the

train set and 250 patches from each category as the
test set. The feature is the output of the first fully
connected layer (fc6) of the CNN model, and the fea-
tures are used for training the knowledge-based clas-
sifiers, such as SVM [35] and Random Forest [36]. In
the training procedure of the SVM classifier, the train
set and test set should be normalized firstly, then the
SVM classifier trained with the LIBSVM [39] toolbox,
and the acquisition of optimum parameter within a
possible range is attributed the success to the cross
validation (CV) method. Finally, the SVM classifier is
trained on the train set.
In order to train the Random Forest classifier, we

use the Random Forest open source toolbox, which

Fig. 3 The illustration of the architecture of AlexNet we used. The kernel size of the three max pooling is 3. The last layer is the Softmax; the
output of the network is the predicted label. And we choose the output of the layer FC6 as the CNN feature
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was proposed by Abhishek Jaiantilal of the University
of Colorado Boulder, to train the model. It is worth
mentioning that in the classification and recognition
area, CART (classification and regression tree) obeys
the Gini value. And we also train the extreme learn-
ing machine classifier, Treebagger classifier, and other
knowledge-based classifiers.

4.2 Ensemble learning
In the ensemble learning part, some classifiers are
chosen as the knowledge-based classifiers. In our
experiments, we choose the Softmax classifier, SVM
classifier, and Random Forest classifier as the
knowledge-based classifiers. Softmax has a very wide
application in machine learning; it is a lay of convo-
lutional neural networks and always follows with
fully connected layer to achieve the problem of clas-
sification. Softmax classifier is a simple and con-
venient algorithm, and it has a good performance.
SVM is a common classifier, and it used to be a hot
research filed. The core idea of the SVM is to struc-
ture the hyperplanes to separate the samples. And it
is robust. SVM has a great advantage in solving the
high-dimensional problem.
After inputting our test set to these knowledge-based

classifiers, the predicted results could be obtained, which
contains two kinds of data. The first one is the pre-
dicted label for every test sample, and the other one
is the probability maps that represent the probabil-
ities of each test sample that belongs to the differ-
ent material categories. In our experiments, each
test sample has 23 predicted probabilities that mean
the probabilities belong to these 23 material cat-
egories. After the test set was imported into the
CNN model and knowledge-based classifiers, three
5175*23 probability maps are generated. Then, the
new final probability map is computed on the three
probability maps with proposed methods. And we
also do some experiments with the prior methods,
including the stacking and voting.

4.3 Material recognition accuracy

� The recognition accuracies of the knowledge-based
classifiers

We train the knowledge-based classifiers, includ-
ing the Softmax classifier and SVM classifier. The
accuracies of these knowledge-based classifiers are
shown in Fig. 4. And the recognition accuracies
showed in this figure are the best performance on
accuracy of these knowledge-based classifiers. These
knowledge-based classifiers showed in this figure are
Softmax, SVM, Random Forest, ELM, and Treebag-
ger. The Softmax classifier has a better performance
than others.
In the training procedure of the ELM classifier, dif-

ferent numbers of neuron had been set to get the
state-of-the-art result. The recognition accuracies of
the ELM classifier with different neuron numbers are
showed in Table 2.
Similarly, we also train the Treebagger classifier with

different decision tree numbers. The recognition accur-
acies are shown in Table 3.
From Table 2 and Table 3, we can find that as the

neuron number or the decision tree number grows,
the recognition accuracy will be improved firstly, but
when it comes to a certain recognition accuracy, the
recognition accuracy will be reduced. Meanwhile, the
training time will increase. So, how to choose the

Table 2 Varying neuron number. Train EML model with
different number of neurons

The number of neuron Accuracy (%)

100 78.22

300 79.04

400 79.09

500 79.04

1000 78.59

2000 77.81

3000 77.45

4000 77.13

Fig. 4 The recognition accuracies of the knowledge-based classifiers

Table 3 Varying decision tree number. Train the Treebagger
classifier with different number of decision tree

The number of tree Accuracy (%)

200 73.49

500 74.72

700 74.90

1000 75.44

1500 75.08

2000 75.17
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number of the neuron or the number of the decision
tree is still a difficult topic.

� The recognition accuracies of the ensemble classifiers

In this part, we compare the recognition accur-
acies of our proposed three ways to combine these
knowledge-based classifiers. And we also compare
the recognition accuracies of our methods with the
prior methods, including the stacking and voting.
The recognition accuracies of the five methods are
described in Fig. 5. From the figure, we could see
that our methods to combine the knowledge-based
classifiers have a better performance than the prior
methods.
And the 23 categories recognition accuracies of the

five ensemble learning methods are showed in Fig. 6.
We can see that there is a large range among the 23 rec-
ognition accuracies.

The results show that our proposed methods obvi-
ously perform better than the prior methods in most
number of the material categories. And these specific
values of the 23 categories of the five ensemble classi-
fiers are showed in Table 4.

� Ensemble learning methods with VGG16

In order to further prove the superiority of our pro-
posed methods. We have carried experiments on the
same train set and test set with VGG16. Firstly, the
CNN features are extracted from the trained VGG16
model. Then, we train these knowledge-based classi-
fiers and combine them with our proposed methods
and the prior methods. The recognition accuracies
of these knowledge-based classifiers are shown in
Fig. 7.
These knowledge-based classifiers are the Softmax

classifier, SVM classifier, and Random Forest classi-
fier. We can see that the recognition accuracy of
Softmax classifier is still the highest, but the
recognition accuracy of Random Forest classifier
improves obviously. After these knowledge-based
classifiers are trained, we combine them with our
proposed methods. And to prove the superiority of
our proposed methods, we also carried experiments
with the prior methods. The accuracies of these en-
semble learning methods are shown in Fig. 8.
From Fig. 8, we can see that the recognition accuracies

of our proposed methods are higher than the prior en-
semble learning methods. And the 23 categories recogni-
tion accuracies of the three proposed ensemble learning
methods are showed in Fig. 9. There also is a large range
among the 23 recognition accuracies.

Fig. 6 The 23 categories recognition accuracies of different ways to combine the knowledge-based classifiers are shown in the figure. The first
three are our proposed methods to combine the knowledge-based classifiers; the last two are the prior methods

Fig. 5 The recognition accuracies of different ways to combine
the knowledge-based classifiers. The first three are our proposed
method to combine the knowledge-based classifiers; the last two
are the prior methods
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� Our proposed weight learning method vs. prior method

This paper also proposes an arithmetic for learning
the weights of these knowledge-based classifiers. In
order to prove the superiority of our proposed
method, we have conducted experiment with the
prior weight learning method. The recognition accur-
acies of our proposed method and normalize weights
arithmetic are shown in Table 5. From this table, we
can see our proposed arithmetic is superior to the
normalize weights arithmetic.

5 Conclusions
Material recognition is a long-standing and challen-
ging problem. In this paper, we introduce the
ensemble learning for material recognition with con-
volutional neural networks (CNNs). We combine
these trained knowledge-based classifiers on the prob-
ability level, and we introduce a new arithmetic for
weight learning. In our new method, ensemble
learning-based convolutional neural networks (CNNs)
is proposed to improve the accuracy of material

Fig. 7 The recognition accuracies of the knowledge-based classifiers
trained with VGG16 fc6 vector

Table 4 The recognition accuracies of the 23 categories for these five methods to combine these knowledge-based classifiers

Category

Brick Carpet Ceramic Fabric Foliage Food Glass

Vote 0.852 0.888 0.784 0.672 0.904 0.916 0.776

Stacking 0.828 0.896 0.700 0.588 0.876 0.852 0.712

Mean 0.852 0.884 0.768 0.684 0.908 0.916 0.792

Max 0.848 0.856 0.772 0.668 0.908 0.920 0.804

Weight 0.840 0.876 0.764 0.664 0.908 0.920 0.808

Category

Hair Leather Metal Mirror Other Painted Paper Plastic

Vote 0.932 0.844 0.672 0.740 0.820 0.848 0.800 0.620

Stacking 0.9 0.832 0.652 0.748 0.768 0.836 0.716 0.524

Mean 0.94 0.840 0.680 0.744 0.832 0.840 0.816 0.640

Max 0.932 0.836 0.680 0.740 0.828 0.840 0.832 0.652

Weight 0.94 0.844 0.676 0.736 0.828 0.844 0.840 0.668

Category

Polished stone Skin Sky Stone Tile Wallpaper Water Wood

Vote 0.812 0.904 0.980 0.796 0.712 0.860 0.924 0.672

Stacking 0.764 0.884 0.976 0.752 0.688 0.852 0.904 0.588

Mean 0.832 0.900 0.980 0.820 0.716 0.852 0.940 0.684

Max 0.836 0.900 0.980 0.828 0.720 0.844 0.940 0.692

Weight 0.824 0.912 0.980 0.840 0.720 0.852 0.932 0.684

Fig. 8 The recognition accuracies of our proposed ensemble
learning methods and the prior ensemble learning methods are
showed in this figure. CNNs: VGG16
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recognition. Then, a new weight learning method is
applied to learn the weights of these knowledge-based
classifiers. The great difference from the prior work is
that we learn the ensemble classifier on probability
level. The experimental results show that the ensem-
ble classifier can achieve higher recognition accuracy
than the knowledge-based classifiers, and our pro-
posed ensemble learning methods are superior to the
prior methods. Meanwhile, our proposed arithmetic
for weight learning is superior to the other methods.
Many future avenues of work remain. One of the fu-
ture works is that we will try to propose a new deep
feature learning method for the pixel-level material
recognition task so that better recognition accuracy
can be achieved.

Abbreviations
CNN: Convolutional neural network; FMD: Flicker Material Database;
LBP: Local binary pattern; MINC: Materials in Context Database
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