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Abstract

Signal and image separation is an important processing step for accurate image reconstruction, which is
increasingly applied to many medical imaging applications and communication systems. Most of the conventional
separation approaches are based on frequency domain and time domain. These approaches, however, are sensitive
to noise and thus often produce undesirable results.
In this paper, we propose a novel method of image separation. It incorporates the property of pyramid component
extracted from the image and a finite ridgelet transform (FRT) to obtain a precise analysis of the images and thus
correctly separate the images even in a highly noisy environment. We obtain the multiple components of the
target images by employing a pyramid processing, which operates in the various domains and thus can
decompose the image into multiple components.
In addition, the pyramid decomposition in the proposed method can eliminate information redundancy in the
target image and thus can substantially enhance the quality of image separation. We have conducted extensive
simulations, which demonstrate that the proposed pyramid structure with FRT outperforms the conventional
methods based on time domain and trigonometric transforms.
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1 Introduction
Blind source separation (BSS) has been one of the major
research areas for over a decade and is receiving growing
attention due to its processing applications in image and
signal processing. It aims at extracting a set of source
signals from an observed mixture of signals with little or
no information about either the mixing environment or
the mixing process and sources. The applications of BSS
range from medical engineering to neuroscience and
also from telecommunications to financial time series
analysis. For example, its recent applications include
astronomical imaging, remote sensing, medical imaging,
biological data analysis, image and speech signal pro-
cessing, etc. [1–3].
Independent component analysis (ICA) has been often

regarded as an attractive solution to the BSS problem. Its
process is based on non-Gaussianity method, and so, it can
utilize its statistical independence of the sources to calculate

the de-mixing matrix and extract the source signals with a
scaling factor and permutation [4, 5].
In biomedical applications, ICA has been applied to the

functional magnetic resonance imaging (fMRI) data ana-
lysis applies ICA. For example, in the article of [6], tem-
poral dynamics and their spatial sources have been
successfully recognized by real-valued ICA. In addition,
the ICA has been applied to [7] for classification in elec-
troencephalography (EEG) which has a two-state output
(fatigue state vs. alert state). ICA has been also used in gait
activity analysis, which usually relies on multiple sensors
such as pressure, gyroscope, and accelerometer. The mul-
tiple sensors often incur crosstalk problem sensors where
each sensor interferes with another sensor. ICA has also
been exploited in [8] to enhance an automated classifica-
tion technique to recognize toe walking gait from normal
gait in idiopathic toe walking (ITW) children.
The simplest BSS model assumes the existence of n in-

dependent sources s1, s2,..., sn, and the same number of
linear and instantaneous mixtures of these sources, x1,
x2,..., xn, that is,
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x j ¼ aj1s1 þ aj2s2 þ :…þ ajNsN ; 1≤ j≤N ð1Þ
In vector-matrix notation, the above mixing model in

the presence of noise can be expressed as

x ¼ Asþ n ð2Þ
Here, A is an N ×N square mixing matrix.
Equation (2) can be expressed in matrix form as

follows:
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The model described above is represented in Fig. 1.
The de-mixing process [9–11] can be represented by

calculating the separating matrix W, which is the inverse
of the mixing matrix A, and computing the independent
sources, which are obtained by

s ¼ Wx ð4Þ
In this paper, we introduce a novel (differential) image

separation algorithm that separates mixed images by
extracting the components of the images using a pyra-
mid technique. In this way, the image structure can be
decomposed into multiple images of different scales.
The proposed method creates different levels of
scaled-down images in a pyramid structure. We there-
fore conduct the separation process on each level of the
pyramid. While the lowest scale image at the top of the
pyramid has same features, it incurs lower redundancy
than the original image at the bottom of the pyramid.
Our separation process conducted on the scaled images
of the pyramid can, therefore, lead to better separation
performance with lower redundancy in the resulting sep-
arated images.
Our method has the following two advantages over

the most of ICA methods. Its first advantage is the high
performance under noisy condition. Most of the ICA
techniques consider only noiseless data; hence, they
often lead to poor results in the presence of noise [12,
13]. In contrast, our method can separate the mixed
image under a noisy condition and still provide high
peak signal-to-noise ratio (PSNR). The second advantage
is its fast processing and yet accurate separation results.
Since it removes the redundancy in the image informa-
tion, it can obtain the estimated image sources faster
and more accurately than the ICA methods. The key
contribution of proposed algorithm extracts the
scaled-down images of the pyramid, in a way that

Fig. 1 The mixing and de-mixing models

Fig. 2 Pyramid technique effect
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maintains the important information of the original
image, while reducing the redundant information.
The remainder of this paper is organized as follows. In

Section 2, we provide the related work. Section 3 illus-
trates various techniques including the principle of pyra-
mid image, finite ridgelet transform, and trigonometric
transforms. In Section 4, the proposed image separation
approach is presented. To demonstrate the effectiveness
of the proposed technique, an extensive set of simulation
experiments and performance comparison is reported in
Section 5. Finally, Section 6 presents the concluding
remarks.

2 Related work
In literature, there have been several papers published,
which propose various approaches to the source image
separation problem. The method in [14] considers a
nonlinear real-life mixture of document images that
occur when a page of a document is scanned and the
back page shows through. It used a separation method
based on the fact that the high-frequency components of
the images are sparse and are stronger on one side of
the paper than on the other one. Astrophysical image
separation has been considered for a blind source separ-
ation method in [15]. In the work of [16], feedback
sparse component analysis of image mixture was devel-
oped to extract the image sources by utilizing a feedback

mechanism and sparse component analysis (SCA). In
[17], a wavelet packet transform method was proposed
in combination with a geometric de-mixing algorithm. It
decomposes the mixed images by a wavelet transform
(WT) and then uses the most relevant component as an
input to its de-mixing geometric algorithm.
In the article of [18], columns or rows of mixed images

were concatenated to arrange them into a 1-D mixed
image. Then, a source separation of frequency-time ap-
proach with mutual diagonal was introduced to enhance
these 1-D signals to resolve their components. Then,
two-dimensional (2-D) astrophysical image components
were achieved by segmenting separated 1-D original sig-
nals and rearranging these segments as columns or rows.
Recently, researchers implemented sparse component
analysis (SCA) to improve the method of blind image
separation [19, 20]. These approaches could accurately
separate the image mixtures using linear clustering when
the linear clustering has less run time than super-plane
clustering techniques, and the image sources are sparse
enough [21].
The work of [22] applied the discrete cosine transform

(DCT) as an approach to get the information in the fre-
quency domain. It uses a block-segmented DCT
reorganization to get the information in the segmented
blocks while selecting the sparsest block by comparing
the linear strength in each block. Moreover, the authors

Fig. 3 Ridgelet transform calculation using FFT in rectopolar
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of [22] used the geometric characteristic of sparse blocks
to study the linear orientations that match with the mix-
ing matrix columns.

3 Methods of the proposed scheme
3.1 Principle of pyramid image enhancement
An image can be decomposed and analyzed in a form of
a pyramid with a few levels of scaled-down images. The
pyramid places the original image at the first level and
adds scaled-down images at the higher levels [23] as il-
lustrated in Fig. 2.
The pyramid scales down an image using the low-pass

filter with a Gaussian mask expressed by Eq. 5.
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The motivation behind our pyramid technique is that the
surrounding pixels within a certain area often have the
similar characteristics, and thus, they are highly correlated
with each other. To estimate the inverse matrix from
Eq. (4) directly, the mixed image is converted from 2-D sig-
nal to 1-D signal. It is, therefore, inefficient to apply ICA

algorithm to the pixel values, since most of the information
around neighboring pixels is redundant, and the entropy of
the pixels in the same area is low. Therefore, as a more effi-
cient method to calculate the inverse matrix, we proposed a
new technique that can remove the redundancy without af-
fecting the information, and that can increase the entropy,
while maintaining the features. The pyramid technique has
been proposed in this paper, which scales down the image
while maintaining the main features such as salient features
and removing the redundant information. In the presented
work, we use three levels to construct pyramid levels as
shown in Fig. 2. Level 1 is the input image. Level 2 is the
output after applying the filter based on Eq. (5), followed by
a downsampling step. The above steps are then repeated to
produce level 3. The ratio between the image outputs of
the two consecutive levels determines the scale of the pyra-
mid levels with respect to the original image. We can use
these scales for further processing using ICA separation.

3.2 Transform techniques
3.2.1 Ridgelet transform
Ridgelet transform (RT) is a highly effective approxima-
tion approach to represent an image object as described
by Candes and Donoho [24, 25]. It has a discontinuity
across a line, and a curvelet, which is adopted in their pa-
pers as a type of RT, and is an effective transform for

Fig. 4 Ridgelet transform flowchart
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objects with discontinuities across curves. The approxima-
tion quality of RT is very close to the ideal Lagrangian con-
dition and is in general better than any other algorithms
such as Fourier transform (FT) and wavelet transform
(WT). Due to such advantage, RT is widely used in image
analysis, such as watermarking, image enhancement, image
de-noising, and texture classification [26, 27].
Suppose that there is a function ψ:R→ R satisfying the

admissibility condition

Z
R
ψ̂ ξð Þj j2= ξj j2dξ < ∞ ð6Þ

where ψ̂ stands for the Fourier transform of the function
ψ. For each a > 0, b ∈ R, and θ ∈ [0, 2π], a bivariate RT
ψa,b,θ:R

2→ R2 is defined as

ψa;b;θ x1; x2ð Þ ¼ a−1=2:ψ x1 cosθ þ x2 sinθ−bð Þ=að Þ
ð7Þ

For a fixed θ, ψa, b, θ(x1, x2) is constant along the line
x1 cos θ + x2 sin θ = constant.

Given an integrable signal f(x1, x2), the RT is defined
as

RT f a; b; θð Þ ¼
Z

R2
f x1; x2ð Þψa;b;θ x1; x2ð Þdx1dx2 ð8Þ

It follows that

ψa;b;θ x1; x2ð Þ ¼
Z

R2
ψa;b tð Þδ x1 cosθ þ x2 sinθ−tð Þdt

ð9Þ

where ψa, b(t) = a−1/2. ψ((t − b)/a).
Then the RT can be expressed as

RT f a; b; θð Þ ¼
Z

R2
ψa;b tð Þ

Z
R2
f x1; x2ð Þδ x1 cosθ þ x2 sinθ−tð Þdx1dx2dt

¼
Z

R
ψa;b tð ÞRf θ; tð Þdt

ð10Þ

As a result, the formula is represented by

(a)

(b)

(c)

Fig. 5 Reconstruction and decomposition based on wavelet. a Full decomposition-reconstruction of two band filter bank. b Decomposition tree
of wavelet packet. c Reconstruction tree of wavelet packet
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R f θ; tð Þ ¼
Z

R2
f x1; x2ð Þδ x1 cosθ þ x2 sinθ−tð Þdx1dx2

ð11Þ

From signal f(x1,x2), we can calculate Radon transform
(RAT). Thus, the RT space can be expressed as an im-
plementation of a 1-D wavelet transform to the slices of
the Radon space.
It is known that approximate RAT for an image can be

effectively computed with the fast Fourier transform
(FFT). This approach is summarized by [28–30]:

(a) 2-D FFT step: calculate the 2-D FFT of the image.
(b) Cartesian to polar conversion step: obtain samples

on the recto polar as shown in Fig. 3.
(c) 1-D inverse FFT step: calculate the 1-D inverse FFT

on each angular line.

For the implementation of the Cartesian to polar con-
version, we use a rectopolar coordinate plane. The
geometry of this coordinate plane is presented in Fig. 3,
where the data points are marked with circles. Here, for
an image of size n × n, there are 2n radial lines in the
frequency plane selected by connecting the origin to the
vertices lying on the boundary of the array. The grid
lines of the rectopolar coordinate plane are the intersec-
tions between the set of radial lines and that of Cartesian
lines parallel to the axes. Thus, there are 2n × n points
(marked with circles) on the rectopolar grid lines, and
the corresponding data structure is a rectangular format
with n × 2n elements.

To complete the RT, we perform a 1-D wavelet trans-
form along the radial variable in Radon space. Figure 4
displays the flow graph of the RT.
Do and Vetterli supposed a different execution of the

ridgelet transform called finite ridgelet transform.
It has numerical exactness like the RT with little com-

putational complications. As supposed above, a separate
RT can be realized via a Radon transform and a 1-D
discrete wavelet transform (DWT) as presented in Fig. 4.
The finite Radon transform (FRAT) is simply an

addition of image pixels over a certain set of lines. Those
lines are known in a limited geometry in a similar
scheme to the lines for the constant Radon transform
(RAT) in the Euclidean geometry [12–16].
We denote Zp = {0, 1, 2 ... p − 1}, where p is a prime

number. Note that Zp is a limited field with modulo p
processes.
Then, the FRAT of a real function f on the limited grid

Zp
2 is given by

rk lb c ¼ FRAT f k; lð Þ ¼ 1=
ffiffiffi
p

p� � X
i; jð ÞεLK ;i

f i; jð Þ ð12Þ

Here, Lk,l denotes the group of points that make up a
line on the lattice Zp

2.

Lk;l ¼ i; jð Þ : j ¼ kiþ l modpð Þ; i ∈Zp
� �

; 0≤k≤p−1
i; jð Þ : j∈Zp

� �
; k ¼ p

�
ð13Þ

The lines of the FRAT show a wrap-around effect in
the transform. This means that the FRAT deals with the
input image as one period of a periodic picture. In the

Fig. 6 Block diagram of the proposed image separation algorithm
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FRAT domain, the energy is best compressed if the
mean is removed from the image f(i, j) prior to the
transform.
In Eq. (12), the factor 1=

ffiffiffi
p

p
is supplied in order to

normalize l2 standard between the result and input of the
FRAT. With an invertible FRAT and by using Eq. (13), we
can have an invertible separate finite ridgelet transform
(FRT) by taking the separate wavelet transform on each
repetition of FRAT projection repetition, (rk[0], rk [1], …

rk[p−1]), where the trend k is constant. The total record-
ing is known as the FRT as shown in Fig. 4.

3.2.2 Discrete wavelet transform
Wavelets have become an efficient tool in several signal
processing areas such as signal de-noising, image fusion,
and signal restoration and compression. The conven-
tional discrete wavelet transform (DWT) may be
regarded as the result of filtering the input signal with a
bank of band-pass filters whose impulse responses are
all approximately given by scaled versions of a mother
wavelet. The scaling factor between adjacent filters is
usually 2:1, which leads to octave bandwidths and center
frequencies that are one octave apart from each other as
illustrated by Fig. 5 [31]. The outputs of the filters are
usually maximally decimated so that the number of
DWT output samples equals the number of input sam-
ples and the transform is invertible as shown in Fig. 5.
The art of calculating a good wavelet lies in the design

of appropriate filters, H1, H0, G1, and G0, to realize vari-
ous trade-offs between frequency and spatial space char-
acteristics while satisfying the condition of perfect
reconstruction (PR) introduced by [31]. In Fig. 5, the
procedure of interpolation and decimation by 2:1 as the
result of H1 and H0 defines all odd components of these
signals to zero.
For the low pass branch, this is equivalent to multiply-

ing x0(n) by 1
2 ð1þ ð−1ÞnÞ.

Hence, X0(z) is converted to1
2 fX0ðzÞ þ X0ð−zÞg . Simi-

larly, X1(z) is converted to 1
2 fX1ðzÞ þ X1ð−zÞg.

Thus, the expression for Y(z) is given by the equation
below [31]:

Y zð Þ ¼ 1
2

X0 zð Þ þ X0 −zð Þf gG0 zð Þ

þ 1
2

X1 zð Þ þ X1 −zð Þf gG1 zð Þ

¼ 1
2
X zð Þ H0 zð ÞG0 zð Þ

þH1 zð ÞG1 zð Þ
� �

þ 1
2
X −zð Þ H0 −zð ÞG0 zð Þ

þH1 −zð ÞG1 zð Þ
� �

ð14Þ

The first PR condition requires aliasing cancelation
and forces the above term in X(−z) to be zero [31].
Hence, {H0(−z)G0(z) +H1(−z)G1(z)} = 0, which can be

achieved if:

H1 zð Þ ¼ z−kG0 −zð ÞandG1 zð Þ ¼ zkH0 −zð Þ ð15Þ

Here, k is limited to odd numbers (usually k = ± 1).
From X(z) to Y(z), the transfer function need to be

unity in the second condition of PR:

Fig. 7 Flowchart of the FastICA algorithm

Fig. 8 Original images, images from left are Cameraman
and Baboon

Abbass and Kim EURASIP Journal on Image and Video Processing  (2018) 2018:38 Page 7 of 16



H0 zð ÞG0 zð Þ þ H1 zð ÞG1 zð Þf g ¼ 2 ð16Þ

3.2.3 Trigonometric transform
The two primary trigonometric transforms are the
discrete cosine transform (DCT) and the discrete
sine transform (DST). Trigonometric transform has
an energy compaction feature. The properties of
these transforms are described below.

3.2.3.1 DCT The DCT is a 1-D transform with the cap-
ability of energy compaction. For a 1-D signal x(n), an
application example of DCT is given by [32].

x mð Þ ¼ ω mð Þ
Xk−1
k¼0

x kð Þ cos π 2k−1ð Þ m−1ð Þ
2k

	 

m ¼ 0; ::…; k−1 ð17Þ

where

ω mð Þ ¼
1ffiffiffi
k

p m ¼ 0ffiffiffi
2
k

r
m ¼ 1;…; k−1

8>><
>>:

ð18Þ

3.2.3.2 DST The DST is another transform and can be
calculated by Eq. (17). Application examples of the DST
can be found in [31]:

x mð Þ ¼ ω mð Þ
Xk−1
k¼0

x kð Þ sin πmk
k þ 1

	 

m ¼ 0; ::…; k−1 ð19Þ

4 The proposed image separation approach
As described in the prior sections, we merge the benefits
of the pyramid technique and FRT. First, the mixed

images are decomposed into frequency bands using differ-
ent transforms. Then, each frequency band is handled,
separately, using the pyramid technique to extract its
details.
A flow diagram of the proposed method is depicted in

Fig. 6, which is also described by the following steps:

Step 1: Decompose the mixed image into different
transforms using the finite ridgelet transform (FRT),
wavelet transform (WT), discrete sine transform (DST),
and discrete cosine transform (DCT).
Step 2: Apply a pyramid construction on each
transform to obtain the different scale components
of each transform in each pyramid level. We chose
three levels of pyramid construction in the present
work, while it can be extended to a larger number
of levels.
Step 3: Conduct a separation operation on all the
pyramid levels in each transform and calculate the
inverse matrix (un-mixing matrix). The operation
proceeds from level 3 (the smallest scale) towards level
1 (the largest scale). In level 3 of pyramid component,
we start with a random matrix to calculate the values
of inverse matrix. The output values of estimating
inverse matrix from level 3 are used as the input matrix
to update the inverse matrix values for level 2. The
updated output of the inverse matrix from level 2 is in
turn used as the input matrix for level 1 to calculate
the final values of the inverse matrix. The final
estimated values of the inverse matrix are applied to
the original mixed image to extract accurate separated
images in step 4.
Step 4: Calculate an estimate of the separated image using
the mixed image with the calculated inverse matrix.

Fig. 9 Mixing results at several noise level. a 4 dB. b − 5 dB. c − 10 dB. d − 15 dB
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Fig. 10 Estimated results of separated image at noise level 4 dB. a Proposed method (FRT with pyramid). b FRT without pyramid. c DWT with
pyramid. d Time with pyramid. e DWT without pyramid. f Time without pyramid. g DCT with pyramid. h DST with pyramid. i DCT without
pyramid. j DST without pyramid

Table 1 SNR of overall separation performances on image
mixtures

Algorithm Cameraman (dB) Baboon (dB)

Proposed method (FRT with pyramid) 7.2776 10.0862

FRT without pyramid 6.0783 8.2862

DWT with pyramid 2.3037 1.8058

DWT without pyramid − 0.8739 − 1.1538

Time domain with pyramid 2.9164 1.7148

Time domain without pyramid 1.1403 − 1.8537

DCT with pyramid 0.9739 − 0.0567

DCT without pyramid 0.7575 − 0.1537

DST with pyramid − 0.2865 0.7814

DST without pyramid − 0.1981 0.7665

Table 2 PSNR of overall separation performances on image
mixtures

Algorithm Cameraman (dB) Baboon (dB)

Proposed method (FRT with pyramid) 12.8952 15.4340

FRT without pyramid 11.6959 13.6340

DWT with pyramid 7.7732 7.1535

DWT without pyramid 7.9213 4.5781

Time domain with pyramid 7.7579 7.6330

Time domain without pyramid 7.5340 7.1717

DCT with pyramid 6.5915 5.1941

DCT without pyramid 6.3751 4.77

DST with pyramid 5.3311 6.1143

DST without pyramid 5.8157 5.1292
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ICA has been regarded as one of the most efficient ap-
proaches reported in different fields. It provides advantages
of fast convergence and straightforward implementation.
Figure 7 illustrates a flowchart that realizes the fast inde-
pendent component analysis (FastICA) approach [32]:
Next, we introduce several performance metrics to

evaluate the image separation results for each given
method, which are also described in [33–35].

(i) Signal-to-noise ratio (SNR):

SNR ¼ 10 log10

PM−1
x¼0

PN−1
y¼0 f

2 x; yð Þ
PM−1

x¼0

PN−1
y¼0 f x; yð Þ−~f x; yð Þ

� �2

0
B@

1
CAdB ð20Þ

Here, the size of the image is N ×M, while f(x, y) rep-

resents the original image and ~f ðx; yÞ an estimated
image.

(ii) Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM−1

x¼0

XN−1

y¼0
f x; yð Þ−~f x; yð Þ

� �2
r

ð21Þ
RMSE is to measure the square error between two im-

ages. It considers image degradation as perceived vari-
ation in information.

(iii)Peak signal-to-noise ratio (PSNR):

PSNR ¼ 20 log10
1

RMSE

	 

dB ð22Þ

PSNR is one of the most widely used metrics for
evaluating the quality of estimated image. The higher
the PSNR values are, the higher quality the estimation
output provides.

(iv)Normalized cross-correlation (NCC):

NCC ¼
PM−1

x¼0

PN−1
y¼0 f x; yð Þ~f x; yð Þ

h �
�PM−1

x¼0

PN−1
y¼0 f x; yð Þð Þ2 ð23Þ

NCC is another common performance metric that is
useful to compare the estimation results from different
source images.

5 Experiment result and discussion
A computer simulation is presented in this section to
evaluate the performance of the proposed approach after
the image was mixed. In all experiments, test images
were used which were extracted from a standard image
database. We assumed that the mixed images are cor-
rupted by an additive white Gaussian noise (AWGN)
with zero mean and unit variance to illustrate the visual
aspect of the various mixed images; we reported in Fig. 9
one of each noisy mixture in several noise levels.
We have conducted experiments on the images of

Fig. 8 and obtained better image separation results from
the proposed separation method compared with other
separation methods. Due to the space restriction of the
paper, we summarize the detailed experiment results
with Cameraman and Baboon images. Figure 10 shows
the experimental results with Cameraman and Baboon
images using the proposed separation method and vari-
ous other methods.
These test images are created by a convolutional

mixing process using a set of mixing matrices gener-
ated randomly by MATLAB, and the criteria of this
matrix are normally distributed random numbers.

Table 3 RMSE of overall separation performances on image
mixtures
Algorithm Cameraman (dB) Baboon (dB)

Proposed method (FRT with pyramid) 0.2266 0.1692

FRT without pyramid 0.2601 0.2081

DWT with pyramid 0.4086 0.9618

DWT without pyramid 0.5133 0.4389

Time domain with pyramid 0.4094 0.8057

Time domain without pyramid 0.2676 0.4379

DCT with pyramid 0.4681 0.0701

DCT without pyramid 0.4800 0.5499

DST with pyramid 0.5615 0.2186

DST without pyramid 0.5119 0.4946

Table 4 NCC of overall separation performances on image
mixtures
Algorithm Cameraman (dB) Baboon (dB)

Proposed method (FRT with pyramid) 0.9548 0.7777

FRT without pyramid 0.9234 0.7510

DWT with pyramid 0.4001 0.3191

DWT without pyramid − 0.2206 − 0.1886

Time domain with pyramid 0.4991 0.1902

Time domain without pyramid 0.2192 − 0.4878

DCT with pyramid 0.1109 − 0.0611

DCT without pyramid − 0.0842 0.0141

DST with pyramid − 0.0896 1.1536

DST without pyramid 0.0264 0.0848
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Fig. 11 Output SNR vs. input SNR for Cameraman image overall separation performances

Fig. 12 Output SNR vs. input SNR for Baboon image overall separation performances
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Fig. 13 Output PSNR vs. input SNR for Cameraman image overall separation performances

Fig. 14 Output PSNR vs. input SNR for Baboon image overall separation performances
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Fig. 15 Output RMSE vs. input SNR for Cameraman image overall separation performances

Fig. 16 Output RMSE vs. input SNR for Baboon image overall separation performances
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Fig. 17 Output NCC vs. input SNR for Cameraman image overall separation performances

Fig. 18 Output NCC vs. input SNR for Baboon image overall separation performances
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Also, Fig. 9 shows the result of mixing process at dif-
ferent noise level.
As a result of the experiments, the separated images

are shown in Fig. 10. The numerical results of these
experiments are included in Tables 1, 2, 3, and 4 at
noise level 4 dB. These tables give an image quality
comparison between separation algorithms, revealing
the superiority of the proposed algorithm at noise
level 4 dB. We used SNR, PSNR, RMSE, and NCC to
evaluate the estimation quality of separated images.
As illustrated by Fig. 10 and from Tables 1, 2, 3, and 4,

the proposed approach performs preliminary separation
better than the conventional separation methods based
on the time domain, wavelet transform, and trigonomet-
ric transform. We can observe that the resulting images
of Fig. 10a separated by the proposed RT with homo-
morphic method has better quality than other images of
Fig. 10b–j separated by various different methods.
From Tables 1, 2, 3, and 4, it can be observed that the

proposed RT with pyramid operation produces higher
quality and efficiency compared with all other ap-
proaches tested in our experiments. Tables 1 and 2
prove that the SNR and PSNR of the images separated
by the proposed method are higher than those of all the
other methods. Table 3 indicates that the RMSE of the
resulting images separated by the pyramid operation
with FRT is the best compared with all other methods
considered in our experiments. In addition, as illustrated
in Table 4, the NCC of the proposed technique shows a
value closer to 1 than any other methods do. Here, an
NCC result of 1 is the best possible result. From the ex-
perimental results of Tables 1, 2, 3, and 4, it is observed
that the separation quality of the time domain-based
method is relatively low. This result follows from the
fact that the sources must satisfy statistical independ-
ence to allow FastICA methods to achieve high-quality
separation results.
Figures 11, 12, 13, 14, 15, 16, 17, and 18 plot an

extensive set of simulation results measured with a
wide range of noise levels. These results compare the
separation quality of the tested images using various
evaluation metrics including SNR, PSNR, RMSE, and
NCC. Figures 11 and 12 present the SNR output of
the separated images for Cameraman and Baboon, re-
spectively. These figures demonstrate the performance
comparison of the proposed BSS method with respect
to the other methods at different input noise levels. It
shows that the proposed method provides the highest
performance. For example, the proposed FRT with
pyramid method achieves an SNR of higher than
7 dB for the Baboon image, whereas the DCT with-
out pyramid method gives an SNR as low as 0.5 dB.
Figures 13 and 14 illustrate the PSNR measurement
of the separated images, where the proposed method

can obtain PSNR values of 15 dB or higher, whereas
other methods provide much poorer PSNR values in
the range of 4~14 dB.
On the other hand, Figs. 15 and 16 demonstrate the

output of RMSE. In the RMSE results, the lowest curve
indicates the best result. We can observe that the pro-
posed method produces an RMSE value of 0.25 or lower,
which is 0.2~0.6 lower than other methods. Figures 17
and 18 illustrate the simulation results of NCC. It is ob-
served that the proposed method produces an NCC
value very close to 1, while other methods provide much
NCC values in the range of − 0.1~ 4.

6 Conclusions
This paper addressed the blind image separation
problem by introducing a new image separation
technique based on a novel concept of pyramid pro-
cessing and ridgelet transform. The proposed ap-
proach first uses FRT domain coefficients to obtain
the frequency components. It then applies a pyramid
processing to estimate the mixing matrix by con-
structing the different level scales to extract more
details in information and remove redundant infor-
mation. We conducted an extended set of simulation
experiments using various image separation methods
that employ the proposed FRT as well as other
methods including DWT, time domain, DCT, and
DST along with pyramid and non-pyramid opera-
tions, respectively. The experimental results demon-
strate that the proposed method outperforms all
other methods that we tested. In summary, it pre-
sents PSNR values of 12~16 dB under a wide range
of noise condition, while all other methods provide
much poor PSNR values of 4~10 dB under the same
noise condition. The proposed method, therefore,
appears to be an efficient approach to separate
mixed images even under noisy conditions.
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