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Abstract

Image denoising is an important first step to provide cleaned images for follow-up tasks such as image segmentation
and object recognition. Many image denoising filters have been proposed, with most of the filters focusing on one
particular type of additive or multiplicative noise. In this article, we propose a novel neighborhood regression
approach. Using the neighboring pixels as predictors, our approach has superb performance over multiple types of
noises, including Gaussian, Poisson, Gaussian and Poisson, salt & pepper, and stripped noise. Our L2 regression filter
can be parallelized to significantly speed up the denoising process to process a large number of noisy images.
Meanwhile, our regression approach does not need tuning parameters or any training images, and it does not need
any prior knowledge of the variance of the noise. Instead, our regression filter can accurately estimate the variance of
the added Gaussian noise. We have performed extensive experiments, comparing our regression filter with the
popular denoising filters, including BM3D, median filter, and wavelet filter, to demonstrate the superb performance of
our proposed regression filter.

Keywords: Image denoising, Neighborhood L2 regression filter, Poisson noise, Stripped noise, Salt & pepper noise,
Gaussian noise

1 Introduction
Several works in the literature have addressed image
restoration and noise reduction; however, most models
address Gaussian noise. Many state-of-the-art denoising
algorithms utilize structures and characteristics pertain-
ing to the noisy image such as the image self-similarity
sparsity and fixed representations to filter out the noise
and in some cases require a database of images of the same
object. Other methods use supervised learning and prede-
termined characteristics to attenuate the noise. Nonethe-
less, most denoising tools have difficulties tackling severe
noise or non-Gaussian noise. In this paper, we develop
an efficient statistical model for image denoising that is
based on regressing the noising pixel on its neighbor-
ing pixels. Our regression filter is a novel approach and
new concept for image denoising. The basic idea of the
regression filter incorporates the neighboring noisy pixels
to predict the value of the given pixel. The fundamen-
tal statistical concept is there is strong association among
the neighboring pixels. The underlying regression models
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make no assumption about the statistical characteristics
pertaining to the noise distribution, which makes it capa-
ble of handling different types of noises at varying levels
of severity.
The model has proven to compete with popular and

stellar image denoising algorithms including the median
filter [21], wavelet filter [10, 11], and BM3D [9]. Unlike the
BM3D filter that uses collaborative filtering or wavelet fil-
ters that use hard-thresholding, the regression filter does
not rely on sparse representation in transform domain
and patches of sub-images called blocks grouped into 3D
arrays to reduce the noise. Also, the regression filter does
not require a tuning parameter, or a threshold value. Com-
putationally, the regression filter does not require training
on large sets of images as in most deep learning or neural
networks algorithms [6]. Our regression filter is compu-
tationally efficient and returns superb denoising results.
We have done extensive experiments on different types
of noise, such as Gaussian, Poisson, mixture of Gaussian
and Poisson, salt & pepper, and stripped noise, and at
different levels of noise severity. Due to the robustness
of the regression model, our filter handles severe noise
efficiently and effectively. Meanwhile, a most significant
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contribution of the regression filter is its ability to accu-
rately estimate the variance of Gaussian noise. In the end,
we perform experiments with our regression filter on 100
images.
The road map for the paper is as follows: Section 2

discusses image denoising algorithms in the literature.
In Section 3, we present our regression filter. The gen-
eral neighborhood regression approach is adjusted for
each type of noise to achieve the best denoising results.
Section 4 discusses the selected neighborhood size, which
balances the regression model size and its performance.
In Section 5, we run extensive experiments on 100 images
to demonstrate the superb performance of our regression
filter. Section 6 concludes the paper.

2 Related work
A large number of denoising algorithms solely work

on Gaussian noise. Literature has documented differ-
ent approaches to tackle noise, but many need a tun-
ing parameter related to the variance of Gaussian noise.
The non-local mean filter takes the mean of points
whose Gaussian neighborhood resembles the neighbor-
hood of a given pixel [4, 5]. The Gaussian smoothing
model is introduced in [22]. In [15], the noise could be
reduced by introducing a Gaussian kernel density. The
Anisotropic Filtering method [32] convolves the image
pixel in the direction orthogonal to the gradient of the
pixel. Other filtering techniques include the Gaussian
scale mixture modeling in [29], the principal component
analysis approach in [34], the fast iterative shrinkage and
thresholding method in [2, 23], and a model based on the
Euler-Lagrange equations to reduce the noise [3].
There are many models that use sparse and redundant

representations over trained dictionaries. Elad et al. [12]
obtain a dictionary to describe image content. Extensions
of this approach train a sparse dictionary for the noisy
image [33]. The Principal Neighborhood Dictionary [35]
is another dictionary-based approach for image denoising.
Mairal et al. [26] implement simultaneous sparse coding
which combines between non-local means approach and
dictionary learning.
Patch-based filters implement a linear combination of

image patches from the noisy image, which fit in the
total least square sense [18]. An optimal spatial adaptation
for patch-based image denoising method uses point-wise
selection of small image patches [19]. The patch-based
Wiener filter exploits patch redundancy [7]. Ghimpeteanu
et al. [16] describe a method in which an image decom-
position technique is implemented. Levin and Nadler [20]
is a non-parametric approach that incorporates the distri-
bution of natural images based on a huge set of patches.
The popular image denoising algorithm BM3D is a block-
matching and 3D filtering approach [8], in which the
denoising is based on enhanced sparse representation in

transformed domain [6, 8, 9]. The enhancement of the
sparsity is achieved by grouping similar 2D image frag-
ments called blocks into 3D data arrays [9]. BM3D effec-
tively filters the noise in 3D transformed domain. BM3D
requires knowing the value of the variance of the Gaussian
noise, and if no value is given, the algorithm assumes the
default value σ = 50.
Wavelet-based filters are very popular for image denois-

ing too. Parrilli et al. [31] use non-local filtering and
wavelet domain shrinkage. Yu et al. [41] incorporate
wavelet-based trivariate shrinkage with a spatial-based
filter. Yaroslavsky and Eden [39] and Yaroslavsky [40]
utilize the neighborhood filtering method to attenuate
the noise. Stein’s unbiased risk estimate approach [24] is
an orthonormal wavelet thresholding approach. Eslami
and Radha [13] implement the contourlet transform. The
bilateral filter [42] is a nonlinear filter performing spatial
averaging. Yan et al. [38] explore the sparsity of wavelets
and employ hierarchical dictionary learning in each level
of the wavelets.
Several work in the literature have addressed Poisson

noise such as the linear expansion of thresholds for mixed
Poisson-Gaussian noise in [25] and the optimal inversion
of the Anscombe transformation in low-count Poisson
image denoising in [27]. As for salt & pepper noise, the
median filter [21] is a popular approach.
Regression approach has been used in image denoising

as well as face recognition area. Wright et al. [36] utilize
sparse representation for robust face recognition. Zhang
et al. [43] use matrix norm-based regression models for
robust face recognition. Gu et al. [17] use a weighted
nuclear norm minimization algorithm for denoising. Xie
et al. [37] use a weighted Schatten p-norm minimization
algorithm for denoising.

3 Methods—a neighborhood regression
approach

In this paper, we introduce an L2 regression filter to
remove multiple types of noises with superb performance.
For every pixel, our regression filter uses the square neigh-
borhood of a radius d as the predictors, with the pixel itself
as the response in the L2 regression filter. Therefore, our
filter utilizes all available squared patches to denoise an
image.

Multiple types of noises LetU be the a sharp image. For
Gaussian noise, noise η is added to the sharp image to
produce a noisy image P. The noisy model is defined by
P = U + η. The noisy image P is what is observed. The
matrices P, U, and η have the same dimensions. Gaussian
noise, also known as electronic noise, occurs while record-
ing the digits on the device or camera. Poisson noise,
also known as photon noise, is a transformation where
a Poisson distribution with the mean value equal to the
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pixel value is applied to each pixel. Pixel-wise, we have
P = Poisson(U). And then, one can have a mixture of
first Poisson then Gaussian noise during the process of
capturing and writing the image on the device. We have
P = Poisson(U) + η. Salt & pepper noise is a type
of noise in which the image contains corrupted black and
white pixels. P equals to the sharp image U with a per-
centage p of corrupted pixels. Some images have stripped
noise in which we observe horizontal or vertical lines of
corrupted pixels due to malfunction in the sensor. Table 1
provides a general description of different types of noises
addressed in this paper.

L2 Regression—weighted sum of orthogonal axes We
present our regression filter for removing multiple types
of noises. Our filter has superb performance, since there
is strong association between a pixel and its neighboring
pixels. Our regression filter estimates the denoised value
of a pixel P(i, j) using the noisy pixels in a square neighbor-
hood of radius d of pixel (i, j). The square neighborhood
of radius d has 4d(d + 1) pixels contained in the ball, i.e.,
pixels P(i ± k, j ± l), 0 ≤ k, l ≤ d, excluding P(i, j). We
convert a 2D noisy image P into a response vector Y and a
predictor matrix X for the regression model, and then, we
regress the matrix X on the response Y.
We assume the boundaries of an image are reflective;

that is to say, points outside the boundary have the same
values as pixels in the interior of the image. With regards
to the boundary noisy pixels, we implement the exten-
sion theorem and use symmetry for points outside the
boundary.
The actual relationship between a pixel and its neigh-

boring pixels in a noisy image P depends on the type
of noise. Hence, we have different regression models for
different types of noises. The response vector Y and pre-
dictor matrixX for each type of noise is described in detail
in Sections 3.1 to 3.5. Here is a general description for the
procedure to obtain the denoised image.
In general, we use the following regression model:

Y = X · ω + ε,

where ω is the regression coefficient vector, i.e., the
weights, and ε ∼ N(0, σ 2 · I) is the error vector.

Table 1 Description of Poisson noise, salt & pepper noise,
stripped noise, Gaussian noise, and Gaussian and Poisson noise

Poisson Poisson transformation of pixels

Salt & pepper Corrupted black or white pixels

Stripped Horizontal or vertical lines

Gaussian Additive normal noise

Gaussian and Poisson Poisson followed by Gaussian

The denoised pixels are based on Ŷ .

Ŷ = X
(
X′X

)−1 X′Y

The denoised pixel values are based on a weighted sum of
the neighboring noisy pixels. The weights are estimated
using the least squared method as

ω̂ = (
X′X

)−1 X′Y .

The normality of the error term is one of the main
assumptions in regression analysis. Yet one advantage of
the regression model lies in the fact it is robust to minor
violations of normality and works well for mild skewness.
It is because of this property our regression filter outper-
forms other algorithms for severe noise levels and tackles
multiple types of noises. We can easily have a parallel
implementation of our regression filter [1, 28] for efficient
processing of a large number of noisy images. For the best
denoising results, we run 3–4 passes of our regression fil-
ter for a noisy image. More passes do not significantly
improve the denoising result. A noisy image can be sliced
into several pieces, and the regression filter applies to each
piece for better denoising results too. Next, we present the
regression models for each type of noise.

3.1 Regression model for Poisson noise
Poisson noise is applied on the image pixel-wise. Each
pixel has a Poisson noise drawn from a Poisson distribu-
tion with mean equal to the pixel value.1
The regression model for removing Poisson noise,

YP = XP · ωP + ε,

is a cubic regression model of the neighboring pixels with
a square root transformation on the response. Below is a
detailed description of the response and the predictors in
the regression model:

• Length of the response vector YP is the number of
pixels in a noisy image P, n2. For Poisson noise, an
element of the response vector is the square root of
pixel (i, j) of the noisy image P, YP[r] = √

P(i, j).
The square root transformation is derived from the
Box-Cox procedure.

• The number of rows of matrix XP is also n2. For an
element in the response vector, YP[r] = √

P(i, j), the
corresponding row XP[r, :], contains 1 (for intercept),
P(i ± k, j ± l), P2(i ± k, j ± l), and P3(i ± k, j ± l),
with 0 ≤ k, l ≤ d excluding (k, l) = (0, 0). That is
the linear, the squared, and the cubic term of the
noisy pixels in P(i, j)’s radius d square neighborhood.
The size of matrix XP is n2 × (12d(d + 1) + 1).

• Length of ωP is 12d(d + 1) + 1. The denoised
pixels are

(
Ŷ P

)2
.
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Noisy Image (SSIM = 0.58, PSNR = 27.22) Regression Filter (SSIM = 0.83, PSNR = 32.29)

Median Filter (SSIM = 0.82, PSNR = 29.87) BM3D Filter (SSIM = 0.81, PSNR = 29.02) Wavelet Filter (SSIM = 0.81, PSNR = 30.29)

Fig. 1 Applied Poisson noise. From left to right: a clean Lena, b noisy image, c denoised image using our L2 regression filter, d denoised image using
median filter, e denoised image using BM3D, and f denoised image using wavelet filter

Our L2 regression filter is efficient for removing Poisson
noise because the regression model is robust against slight
skewness and minor violations of normality assumption.
In Fig. 1, we compare our regression filter with median

filter2, BM3D3, and wavelet filter4. We set radius d = 5.
We measure the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) of each image. Our L2

regression filter outperforms all other filters and has the
best denoising results in PSNR and SSIM, 32.29 and 0.83,
respectively. More extensive experiments are in Section 5.

3.2 Regression model for salt & pepper noise
Salt & pepper noise corrupts a number of pixels, creating
either completely black or white colors.5 The denoising

Noisy Image (SSIM = 0.06, PSNR = 10.36) Regression Filter (SSIM = 0.97, PSNR = 35.52)

Median Filter (SSIM = 0.90, PSNR = 26.62) BM3D Filter (SSIM = 0.07, PSNR = 11.27) Wavelet Filter (SSIM = 0.34, PSNR = 20.59)

Fig. 2 Added salt & pepper noise with p = 0.3. From left to right: a clean cameraman, b noisy image, c denoised image using our L2 robust
regression filter, d denoised image using median filter, e denoised image using BM3D, and f denoised image using wavelet filter
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Fig. 3 Clean pumpkins

process of salt & pepper noise involves two steps. In the
first stage, we replace the pixels with value 0 or 255 by the
median of the neighboring pixels of radius 1 (8 pixels in
noisy image P). Next, we apply the regression model,

YSP = XSP · ωSP + ε,

which is a linear regression model. Below is a detailed
description of the response and the predictors:

• Length of YSP is n2. An element of the response
vector is YSP[r] = P(i, j).

• For an element YSP[r] = P(i, j), the corresponding
row XSP[r, :] contains 1 (for intercept), and
P(i ± k, j ± l), with 0 ≤ k, l ≤ d excluding
(k, l) = (0, 0). The predictors have only the linear
term of the noisy pixels in P(i, j)’s radius d square
neighborhood. Higher order terms significantly

increase the model size, yet yield litter gain in
denoising results. The size of matrix XSP is
n2 × (4d(d + 1) + 1).

• Length of ωSP is 4d(d + 1) + 1. The denoised
pixels are Ŷ SP .

Figure 2 shows the denoising results using our regres-
sion filter and three other filters. We set radius d = 5.
There are 30% corrupted pixels. Note the median fil-
ter is a classical filter with very good performance
for salt & pepper noise. However, our regression filter
has much better denoised PSNR and SSIM measures
of 35.52 and 0.97, respectively, compared to all other
filters. The regression filter has the cleanest denoised
image, while the median filter still shows some grainy
pixels.
To further understand the performance of our regres-

sion filter for an increasingly larger number of corrupted
pixels, we measure our regression filter performance and
the other three filters over six 512 × 512 frequently used
images in the literature.6 The six sharp images are (1)
Lena in Fig. 1a, (2) cameraman in Fig. 2a, (3) peppers in
Fig. 5a, (4) house in Fig. 7a, (5) mandrill in Fig. 9a, and (6)
pumpkins in Fig. 3.
Figure 4 with radius d = 5 shows the average of

denoised PSNR and SSIM over six images for increasing
p from 0.1 to 0.9 (e.g., p = 0.1 means 10% of corrupted
pixels). Our regression filter has far better performance
than all other filters, even though the median filter is
considered a stellar filter for salt & pepper noise. More
extensive experiments are in Section 5.

3.3 Regression model for stripped noise
In some applications, the noise induced on the image is
stripped in which a noisy line is formed horizontally or
vertically across the image. Stripped lines are especially
present in earth imaging due to malfunction in censors
that creates a form of dark stripes [30]. In this section,
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Fig. 4 Average denoised PSNR and average denoised SSIM using Median, BM3D, wavelet and regression filters for a given salt & pepper noise p;
averaging over six images
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Noisy Image (SSIM = 0.33, PSNR = 21.61) Regression Filter (SSIM = 0.73, PSNR = 27.82)

Median Filter (SSIM = 0.54, PSNR = 24.16) BM3D Filter (SSIM = 0.53, PSNR = 23.83) Wavelet Filter (SSIM = 0.46, PSNR = 24.08)

Fig. 5 Added 20% stripped noise. From left to right: a clean peppers, b noisy image, c denoised image using our L2 regression filter, d denoised
image using median filter, e denoised image using BM3D, and f denoised image using wavelet filter

we have horizontal lines. The procedure is the same for
vertical stripes.
Below is the regression filter for stripped noise.

YS = XS · ωS + ε.

The noisy pixel P(i, j) is the response. Because of mul-
ticollinearity issues for the stripped noise, the horizon-
tal neighboring pixels are excluded. We use the linear
term of the rest of the neighboring pixels in a square
neighborhood as predictors. Next is a detailed description
of the response and the predictors:

• Length of YS is n2. An element of the response vector
is YS[r] = P(i, j).

• Because of multicollinearity issues for the stripped
noise, the horizontal neighboring pixels are excluded.
For YS[r] = P(i, j), the corresponding row XS[r, :]
contains 1 (for intercept), P(i ± k, j + l) and
P(i ± k, j − l), with 0 ≤ k ≤ d and 1 ≤ l ≤ d,
only the linear term. The size of matrix XS is
n2 × (2d(2d + 1) + 1).

• Length of ωS is 2d(2d + 1) + 1. The denoised
pixels are Ŷ S.
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Fig. 6 Average denoised PSNR and average denoised SSIM using Median, BM3D, wavelet and regression filters for stripped noise versus noise level
p; averaging over six images
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Noisy Image (SSIM = 0.03, PSNR = 16.26) Regression Filter (SSIM = 0.71, PSNR = 29.83)

Median Filter (SSIM = 0.26, PSNR = 22.08) BM3D Filter (SSIM = 0.81, PSNR = 28.58) Wavelet Filter (SSIM = 0.29, PSNR = 22.54)

Fig. 7 Added Gaussian noise with σ = 100. From left to right: a clean house, b noisy image, c denoised image using our L2 regression filter, d
denoised image using median filter, e denoised image using BM3D, and f denoised image using wavelet filter

For stripped noise, we divide a noisy image into four
quarters and apply the regression filter to each quarter to
enhance the performance.
Figure 5 shows a 20% additive stripped noise. Our

regression filter has the best denoising results in both
measures with a PSNR value of 27.82 and SSIM of 0.73.
The size of the strip equals to the width of the image.
We further use six images to compare our regression

filter with the other three filters, with the percentage of
horizontal lines p increasing, as shown in Fig. 6. Our
regression filter has far better denoising results, measured
in the average of denoised PSNR and SSIM, compared
with median, BM3D, and wavelet filters. More extensive
experiments are in Section 5.

3.4 Regression model for Gaussian noise
Gaussian noise is the most common noise among the
several types of noises considered in this paper. Gaussian
noise is determined by its variance σ 2.7
We use a cubic regression model for Gaussian noise.

YG = XG · ωG + ε.

Next is a detailed description of the response and the
predictors:

• Length of the response vector YG is n2. An element
of the response vector is YG[r] = P(i, j).

• For YG[r] = P(i, j), the corresponding row XG[r, :]
contains 1 (for intercept), P(i ± k, j ± l),
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Fig. 8 Average denoised PSNR and average denoised SSIM using Median, BM3D, wavelet and regression filters for an added Gaussian noise with
variance σ 2; averaging over six images
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Noisy Image (SSIM = 0.07, PSNR = 15.83) Regression Filter (SSIM = 0.42, PSNR = 23.58)

Median Filter (SSIM = 0.29, PSNR = 18.97) BM3D Filter (SSIM = 0.46, PSNR = 20.76) Wavelet Filter (SSIM = 0.31, PSNR = 20.51)

Fig. 9 Applied Poisson and added Gaussian noise with σ = 100. From left to right: a clean mandril, b noisy image, c denoised image using our L2
regression filter, d denoised image using median filter, e denoised image using BM3D, and f denoised image using wavelet filter

P2(i ± k, j ± l), and P3(i ± k, j ± l), with
0 ≤ k, l ≤ d excluding (k, l) = (0, 0). That is the
linear, the squared, and the cubic term of the noisy
pixels in P(i, j)’s radius d square neighborhood. The
size of matrix XG is n2 × (12d(d + 1) + 1).

• Length of ωG is 12d(d + 1) + 1. The denoised
pixels are ŶG.

For Gaussian noise, we divide a noisy image into four
quarters and apply the regression filter to each quarter to
enhance the performance.
Figure 7 demonstrates the performance of our regres-

sion filter with radius d = 5 (120 pixels in a square neigh-
borhood). We compare our regression filter with median,
BM3D, and wavelet filters. We measure PSNR and SSIM
of each image. Our regression filter has the highest PSNR
value of 29.83. We notice the regression model has an
adjusted R2 value of 0.6235 and all coefficients add up to
approximately 1.
We then evaluate the performance of our regression fil-

ter for increasingly severe noise using six images. More
extensive experiments are in Section 5. BM3D takes the
true σ of the added noise. Average of the denoised PSNR
and SSIM over six images, comparing regression filter
with other filters, are shown in Fig. 8. The average of
PSNR in Fig. 8a shows our regression filter surpasses the
median and wavelet filters for all values of σ , and it pro-
vides better performance compared to the BM3D filter at
σ ≥ 90. Meanwhile, the average of SSIM in Fig. 8b shows

our regression filter surpasses the BM3D filter at σ ≥ 150
and outperforms the median and wavelet filters for all σ

values. Most importantly, Fig. 8 indicates our regression
filter has robust performance especially for severe noise.
While the other filters eventually decline for increasing σ ,
our regression filter continues with stable denoised PSNR
values around 25 to 26 as the noise level increases. At high
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50 100 150 200 250

E
st

im
at

ed
 

50

100

150

200

250
Min
Median
Max

Fig. 10 Estimated standard deviation vs. true standard deviation for
Gaussian noise
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Fig. 11 Average denoised PSNR and SSIM for Gaussian, salt & pepper, and stripped noise for different radii d using six images

noise level, our regression denoising rate shows robust
and better performance compared with the other three
filters.

3.5 Regression model for a mixture of Gaussian and
Poisson noise

The mixture of Poisson and Gaussian noise is another
type of noise as we mentioned earlier in this paper. It is
normally induced on the image U by applying the Poisson
noise first then addingGaussian noise to get the final noisy
image P.8
We use a cubic regression model for Gaussian and

Poisson noise, same as for Gaussian noise alone.

YGP = XGP · ωGP + ε.

Next is a detailed description of the response and the
predictors:

• Length of the response vector YGP is n2. An element
of the response vector is YGP[r] = P(i, j).

• For an element YGP[r] = P(i, j), the corresponding
row XGP[r, :] contains 1 (for intercept),
P(i ± k, j ± l), P2(i ± k, j ± l), and P3(i ± k, j ± l),
with 0 ≤ k, l ≤ d excluding (k, l) = (0, 0). That is
the linear, the squared, and the cubic term of the

Table 2 PSNR and SSIM averaging over six images for increasing
radius d on Poisson noise

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

PSNR 31.21 31.93 32.09 32.18 32.22 32.25

SSIM 0.813 0.839 0.842 0.844 0.845 0.845

noisy pixels in P(i, j)’s radius d square neighborhood.
The size of matrix XGP is n2 × (12d(d + 1) + 1).

• Length of ωGP is 12d(d + 1) + 1. The denoised
pixels are ŶGP .

Figure 9 shows a noisy mandril with a mixture of
applied Poisson then additive Gaussian noise (σ = 100).
The regression filter has the highest PSNR.

3.6 Gaussian noise variance estimation
Another significant contribution of our L2 regression fil-
ter is its ability to accurately estimate the variance of
the Gaussian noise. The mean square error (MSE) of the
regression model for Gaussian noise provides an accurate
estimate of the variance of the noise induced on the image
as shown in Fig. 10. Using 100 images as in Section 5, the
plot shows the minimum, median, and maximum MSE,
which are all close to the true Gaussian noise standard
deviation.

4 Neighborhood size
In this section, we implement the regression filter on six
sample images, as shown in Section 3.2, to determine

Table 3 Average computation time in seconds over six images
for removing different types of noises

Reg. BM3D Wav. Med.

Poisson 0.70 2.81 0.33 0.15

Salt & pepper 0.68 1.20 0.33 0.15

Stripped 0.71 2.36 0.64 0.14

Gaussian 0.93 2.34 0.35 0.16

Gaussian and Poisson 0.93 3.06 0.34 0.16
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the neighborhood radius d value needed to achieve
good denoising results. We use the models described in
Section 3 for each type of noise.
We use the radius d value from 1 to 6 in our regres-

sion filter and examine the average denoised PSNR and
SSIM for Gaussian noise, salt & pepper, stripped noise,
and Poisson noise. Figure 11 and Table 2 show the aver-
age denoised PSNR and SSIM for radius d from 1 to 6.
The plots show a nonlinear decay in SSIM as the per-
cent of noise increases; more noise implies the images
undergo more structural damage as demonstrated by the
blue curve. Similar pattern is observed for PSNR as noise
level changes. The regression filter increases the SSIM by
attenuating the noise. It is shown that higher radius val-
ues improve the denoising percentage, yet the difference
in the denoising rate is insignificant between d = 5 and
d = 6. Meanwhile, every time we increase the radius by
1, the regression model size doubles.
We recommend d = 5 to be the optimal choice,

since further increase in d adds little gain in PSNR and
SSIM while doubling the regression model size. Since the
average denoised PSNR and SSIM for these four types of
noises show a consistent pattern, we then recommend the
same radius value d = 5 for the mixture of Gaussian
and Poisson noise too. Radius d = 5 is used consis-
tently throughout this paper. With d = 5 in Table 3,
we measure the computation time averaging over six
images for removing different types of noises on a Sam-
sung 870Z5E laptop computer with Inter core i7-3635QM
CPU at 2.4 GHz and 8 GB RAM. It is worth mentioning
that the wavelet and median filters are built in functions
in Matlab.

5 Results and discussion—experiments
In this section, we conduct extensive experiments to
demonstrate the performance of the regression filter
against BM3D, median, and wavelet filters for the differ-
ent types of noise. We examine the denoising rate on a

sample of 100 test images from [14] to show the superb
performance of our regression filter.
We compare the performance of our regression fil-

ter with median, BM3D, and wavelet for Poisson noise
applied to a sample of 100 images. Figure 12 shows the
100 denoised PSNR and SSIM values for the four fil-
ters sorted in increasing order based on the denoised
regression filter results. The denoised PSNR and SSIM
values for our L2 regression have the best denoising
results compared to the other three filters. Ninety-eight
percent and 90% of our regression denoised PSNR and
SSIM results are better than the wavelet filter respec-
tively. Ninety-eight percent and 97% of our regres-
sion denoised PSNR and SSIM results are better than
the median filter. Ninety-eight percent and 70% of our
regression denoised PSNR and SSIM results are better
than BM3D.
Figure 13 shows the performance of our regression fil-

ter against the median, BM3D, and wavelet filters for 20%
of salt & pepper noise. Both the denoised SSIM and PSNR
values show our regression filter outperforms all three fil-
ters 100% of the times based on both measures. Although
the median filter is often considered very effective for salt
& pepper noise because it puts little weight on outliers,
our regression filter’s performance surpasses all the other
three filters.
Figure 14 portrays the performance of the regression

filter against median, BM3D, and wavelet filters for an
added 50% stripped noise that has line size equals the
width of the image. The denoised PSNR and SSIM val-
ues using our regression filter have the best denoising
rates. Our regression filter outperforms BM3D 100%
of the time based on both measures. Ninety-five per-
cent and 99% of our regression denoised PSNR and
SSIM results are better than the wavelet filter respec-
tively. Ninety-eight percent and 100% of our regression
denoised PSNR and SSIM results are better than the
median filter.
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Fig. 12 One-hundred sample images denoised using our L2 regression filter, median filter, BM3D, and wavelet filters with Poisson noise
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Fig. 13 One-hundred sample images denoised using our regression filter, median, BM3D, and wavelet filters with salt & pepper noise with 20% of
corrupted pixels, i.e., p = 0.2
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Fig. 14 One-hundred sample images denoised using our L2 regression filter, median, BM3D, and wavelet filters with 50% of stripped noise
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Fig. 15 One-hundred sample images denoised using our L2 regression filter, median, BM3D, and wavelet filters with Gaussian noise σ = 150
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Fig. 16 One-hundred sample images denoised using our regression filter, median, BM3D, and wavelet filters with Gaussian (σ = 175) and Poisson
noise

We examine the performance of our regression filter
for Gaussian noise with σ = 150, approximately 60%
white noise, using 100 images. Figure 15 shows the per-
formance of the denoised PSNR and SSIM values sorted
in increasing order based on our regression filter results.
Our regression filter outperforms the median filter 100%
of the time based on both measures. Ninety-eight per-
cent and 100% of our regression denoised PSNR and
SSIM results are better than the wavelet filter. Ninety-
nine percent and 15% of our regression denoised PSNR
and SSIM results are better than BM3D respectively. As
shown in Fig. 7, our regression filter has much better
denoised PSNR than BM3D but smaller denoised SSIM
values, given BM3D uses the true σ value.We observe that
if BM3D does not use the true σ value, its performance
becomes significantly worse according to the degree of
bias in the estimated σ value. Notice our regression filter
provides very accurate estimation of the σ value for added
Gaussian noise. The estimated σ value can be used to
improve BM3D performance.
Figure 16 compares the performance of our regression

filter with the median, BM3D, and wavelet filters for a
mixture of Gaussian (σ = 175) and Poisson noise. For the
denoised PSNR values, our regression filter outperforms
the other three filters 100% of the times. For the denoised
SSIM values, our regression filter outperforms median
and wavelet filters 100% of the times, while it outperforms
BM3D in 56% of the images.
As shown in Figs. 4, 6, and 8, we further demonstrate

the superb performance of our approach for removing five
different types of noises over one-hundred images in this
section. BM3D has better performance for light Gaussian
noise. However, our approach is much more robust. Our
performance degrades much slower for Gaussian noise as
the noise intensity increases. Our approach out-performs
BM3D for σ > 100. For Gaussian noise, our approach
is able to accurately estimate σ . The estimated σ helps

BM3D to improve its performance. Here, we summarize
the experimental results. Our approach has the best per-
formance compared with the other three approaches for
Poisson noise, salt & pepper noise with noise level up to
90%, stripped noise with noise level up to 90%, Gaussian
noise with σ > 100, and Gaussian and Poisson noise with
σ > 100.

6 Conclusions
In this work, we present a novel neighborhood regres-
sion approach to tackle different types of noise, including
Gaussian, Poisson, mixture of Gaussian and Poisson, salt
& pepper, and stripped noise. Since regression model is
robust against mild violation of normality assumption of
the noise term, our regression filter is able to efficiently
filter out different types of noise. Increasing the neigh-
borhood size improves the performance of our regression
filter but also increases the model size. Balancing the two
factors, we recommend radius d = 5. Meanwhile, there
are established methods for parallel implementation of L2
regression model, which can be applied to our approach
to efficiently process a large number of noisy images.
Our regression filter does not require any tuning

parameter, such as an estimated variance of the added
Gaussian noise. It does not need a decision such as
soft-thresholding or hard-thresholding either. Instead, our
regression model is able to accurately estimate the vari-
ance of the added Gaussian noise, which can be used in
BM3D to optimize its performance. Our regression fil-
ter does not require a pre-training over a large set of
images either. The performance of the regression filter as
we have demonstrated in extensive experiments surpasses
state-of-the-art denoising filters.

Endnotes
1Matlab function imnoise with option ’poisson’
2Matlab function medfilt2
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3 BM3D code is from https://github.com/glemaitre/
BM3D

4Matlab function ddencmp and wdencmp
5Matlab function imnoise with option ’salt &

pepper’
6 imageprocessing-

place.com/root_files_V3/image_databases.htm
7Matlab code P = U + σ×randn(size(U))
8P=imnoise(U, ’poisson’);

P=P+σ×randn(size(U))

Abbreviations
MSE: Mean square error; PSNR: Peak signal-to-noise ratio; SSIM: Structural
similarity
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