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Abstract

Digital image tampering operations destroy inbuilt fingerprints and create own new fingerprint in the tampered region.
Considering the Internet speed and storage space, most of the images are circulated in the JPEG format. In a single
compressed JPEG image, the first digits of DCT coefficients follow a logarithmic distribution. This distribution is not
followed by DCT coefficients of DCT grid aligned double compressed images. In a tampered image, the major portion of
the original JPEG image is aligned double JPEG compressed. Hence, untampered region does not follow this logarithmic
distribution. Due to the nonalignment of DCT compression grids, tampered region still follows this logarithmic distribution.
Many tampering localization techniques have investigated this fingerprint, but the majority of them uses SVM classifier,
specifically trained for the respective primary and secondary compression qualities of the test images. The efficiency of
these classifiers is dependent on the knowledge of tampered image compression history. Hence, these approaches are
not fully automated. In this paper, we have investigated a method, which does not require prior compression quality
knowledge. Our experimental analysis shows that the addition of Gaussian noise can make the probability distribution of
an aligned double compressed image similar to a nonaligned double compressed image. We divided the test image and
its Gaussian version into sub-images and clustered them using K-means clustering algorithm. The application of K-means
clustering algorithm does not require compression quality knowledge. This makes our approach more practical as
compared to the other first digit probability distribution-based algorithms. The proposed algorithm gives compatible
performance with the other approaches, based on different JPEG fingerprints.

Keywords: First digit probability distribution, JPEG forgery detection, Passive digital image forensic, Double compression,
Gaussian noise

1 Introduction
With the sophisticated image editing tools, digital im-
ages can be easily tampered with the great professional
quality. This creates a big dilemma in the authenticity of
the digital images. An image tampered and distributed
through such tools may cause adverse effect on the
society. Passive digital image forensic techniques investi-
gate such digital images in the absence of any embedded
security information. There exist various statistics such
as CFA interpolation, resampling artifacts, motion blur,
lightning intensity, reflections, edges, and JPEG fingerprint,
which are consistent in the untampered images [1, 2]. Re-
cently in [3], the authors provided a comprehensive survey

of different forgery detection techniques such as copy-
move forgery, splicing, resampling, and image retouching.
Mostly, they covered pixel-based techniques, as these
techniques do not require any a priori information about
the type of tampering. In [4], the authors extracted sensor
pattern noise from various images and clustered it using
pairwise correlations among them. Thus, they clustered
images captured by the same camera into the same cluster.
Each SPN was treated as a random variable, and a Markov
random field approach was employed to iteratively assign a
class label to each SPN. However, they have validated their
approach only on the gray images. In [5], the authors
segmented image into small patches and computed noise
variance of each patch using kurtosis concentration-based
pixel-level noise estimation method. Later, suspicious
region was identified by searching those conjunct patches,
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which are out of the linear constraint. In [6], the authors
applied Gabor Wavelets and Local Phase Quantization to
extract texture features at different scales and orientations
to train SVM classifier. They claimed a comparable per-
formance with much reduced feature dimensions. Being
default image distribution format, JPEG fingerprint has
emerged as one of the most important fingerprints. To
hide the visual traces of image tampering, rotation and
scaling are often applied to the tampered region. These
basic tampering operations can be located in the double
compressed images using JPEG fingerprints [7]. Most of
the JPEG fingerprint-based forgery detection techniques
locate aligned double JPEG (ADJPEG) compression arti-
facts [7–12].
It is difficult to create a good tampering by aligning

8 × 8 DCT compression grids of the tampered region. At
least some portion of the tampered region undergoes
nonaligned double JPEG (NADJPEG) compression,
where double compression artifacts are missing. Figure 1
shows an example of tampering, where star segment
from the source image (a) (compressed at qualityQ1) is
copied and pasted into the destination image (b) (com-
pressed at qualityQ2) to create composite double com-
pressed image (c) (compressed at qualityQ3). Grids in
Fig. 1 represent 8 × 8 DCT grid (shown with dark edges)
used for compression. Star shape copied from source
image (a) shows significant shifting within 8 × 8 grids in
figure (c). Hence, the pasted star shape undergoes
NADJPEG compression, while smiley shape and all
remaining components of background image undergo
ADJPEG compression. A tampered region is identified
as a region, where aligned double JPEG compression ar-
tifacts are missing.
The author in [8] used the difference between test

image and its recompressed versions for locating
ADJPEG compressed regions. He found the difference
minimum, at the primary compression quality as well as
at the secondary compression quality, called as ghost
effect. In [9], the authors investigated the periodicity in
the histogram of double quantized DCT coefficients in

ADJPEG compressed images. In [10], the authors used
these periodicities and expectation maximization algo-
rithm to generate the probability of each 8 × 8 block being
DJPEG/NADJPEG compressed. In [13], the authors plot-
ted the histogram of DCT coefficients inside the 8 × 8
blocks and at the edges of blocks. They showed that both
the histograms overlap with each other for uncompressed
images and show significant difference for the compressed
images. In [14], the authors called this histogram differ-
ence as a block artificial characteristic matrix (BACM).
They have detected NADJPEG compressed images by
investigating symmetry of this matrix. DCT coefficients of
single compressed images follow a generalized Benford’s
model; aligned double compressed images do not follow
this model [15]. This model was further investigated in
[11, 12, 16] for tampering localization. The authors in
[11, 12, 16] used first digit probability distribution
(FDPD) of single compressed images and their double
compressed counterparts for training the SVM classifier.
Thus, such investigation needs primary compression quality
of the test image, without which accurate forensic investiga-
tion is not possible. In [12], the authors showed that the
probability distribution of the first digits “2,” “5,” and “7” is
sufficient for forensic investigation. In [17], the authors
combined the moments of characteristic function features
with the FDPD features. They enhanced localization by
training an SVM classifier with 436-D vector. Factor histo-
gram of DCT coefficient shows double maxima in the
ADJPEG compressed images [18]. This double maximum
present in the factor histogram can be used to locate tam-
pering present in the double compressed images [7]. In
[19], the authors developed neuro-fuzzy inference system
by combining features retrieved from discrete wavelet
transformation (DWT) decompression and edge images
based on gray level co-occurrence. In [20], the authors used
CNNs for aligned and nonaligned double JPEG compres-
sion detection. In particular, they explored the capability of
CNNs to capture DJPEG artifacts directly from images.
Their forgery detection and localization were based on the
computation and analysis of a correlation matrix calculated

Fig. 1 a–c Tampering showing aligned and nonaligned double JPEG compression
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by recompressing the given (possibly tampered) image at dif-
ferent quality factors and then comparing the recompressed
versions with the given image. Our proposed scheme also
captures DJPEG artifacts directly from the image. However,
our scheme needs only single recompression, whereas algo-
rithm in [20] requires multiple recompression. In this paper,
we have explored the forensic application of FDPD, when
compression history is not available.
The paper is organized as follows. In Section 2, we

have discussed the FDPD of single and double com-
pressed images. Section 3 investigates the possibility of
blind NADJPEG compressed FDPD estimation. Based
on our empirical analysis, we have proposed FDPD-
based K-means clustering algorithm in Section 4. Since
the performance of the proposed algorithm is compared
to [7, 10–12], Section 5 shortly discusses these ap-
proaches, its limitations, and how our proposed scheme
overcomes these limitations. Experimental setup and
performance analysis are discussed in Section 6. Finally,
the paper concludes with the future work in Section 7.

2 FDPD-based SVM classifier
As per Benford’s law [21], in a set of naturally generated
data, the probability distribution of the first digits d(d = 1,
2..9) follows the logarithmic nature as shown in Eq. (1).

p dð Þ ¼ log10 1þ 1=dð Þ d ¼ 1; 2; :::9 ð1Þ

Where p(d) stands for the probability of first digit d.
DCT coefficients of an uncompressed image follow

this law, and DCT coefficients of single compressed
images can be fitted with a new logarithmic model using
Eq. (2). This modified model is called as generalized
Benford first digit probability distribution (GBFDPD)
model. ADJPEG compressed images show significant
divergence from this model [15].

p dð Þ ¼ N log10 1þ 1= sþ dqð Þð Þ d ¼ 1; 2; 3::9 ð2Þ

Where N is a normalization factor, which makes p(d) a
probability distribution, s and q are the model parame-
ters specific to the compression quality of an image.
Usually, secondary compression grids do not overlap

with the primary compression grids of the tampered
region. This leads to the logarithmic FDPD of the
tampered region [15]. Hence, FDPD-based tampering
localization techniques train SVM classifier using FDPD
of single compressed images and their aligned double
compressed counterparts [11, 12]. These techniques div-
ide the test image into sub-images and classify each of
the sub-images using earlier trained SVM classifier. As
these classifiers are trained using images at a specific
compression quality, this will give the best performance
for the test images compressed with the compression

quality of the training images. As the compression qual-
ities of the test images starts deviating, the performance
of the classifiers goes on decreasing. Whenever a new
test image arrives for tampering localization, compres-
sion quality on the scale of (0–100) is unknown.
Although it is possible to guess the compression quality
visually, it is not sufficient to apply the respective SVM
classifier. Hence, practically, it is difficult to use the
current FDPD-based forensic investigation techniques.

3 Blind estimation of FDPD of NADJPEG
As discussed in Section 2, most of the FDPD-based algo-
rithms use SVM classifier, which needs prior training
with FDPD of single compressed images and double
compressed images. FDPD of single compressed images
serves as a feature of tampered region and FDPD of
aligned double compress region serves as a feature of
the untampered region. These classifiers perform well
on tampered images with the same compression history.
The major problem while using these classifiers is the
knowledge of the primary and secondary compression
qualities of the test image. If SVM classifier trained with
different compression history than the test image is
applied to test the image, the performance severely
degrades. Although there exist some work to identify
primary quantization steps [8, 18, 22], it is not sufficient
to assess the exact primary compression quality. If these
images are custom quantized, even primary quantization
step computation is difficult [8].
We have used K-means clustering algorithm to elimin-

ate this compression quality prerequisite. As K-means
clustering algorithm does not require prior training, we
do not need FDPD features of single compressed images.
For a given test image, tampered region is NADJPEG
compressed and follows FDPD, while untampered region
being ADJPEG compressed does not follow it. Thus, an
image is divided into clusters following FDPD and those
not following FDPD, using K-means clustering algo-
rithm. An image is divided into B × B overlapping sub-i-
mages, and FDPD for the first 20 AC frequencies is
computed. K-means clustering algorithm uses interclus-
ter and intracluster distances for clustering features into
different classes. For a set of FDPD of m blocks (x1,
x2, .…xm), each distribution consists of probability of the
first digits 1 to 9 from the first 20 AC frequencies. These
180-D m observations are partitioned into two sets S
= {S1, S2} to minimize the within-cluster sum of square
distances. In other words, the objective is to find S, as
shown in Eq. (3).

arg min
s

Xk
i¼1

X
x∈si

x−μik k2 ð3Þ

Where μi is the mean of points in Si and k = 2.
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The K-means clustering algorithm uses an iterative
refinement technique. Initially, dataset is randomly parti-
tioned into two classes, and the initial means are
computed for both the classes. In the next phase, for an
initial set of means μ11; μ

1
2 , the algorithm proceeds by

alternating between assignment step and update step.
During assignment step, each observation xp is assigned
to the cluster whose mean has the least squared Euclid-
ean distance as shown in Eq. (4).

S nð Þ
i ¼ xp : xp−μ

nð Þ
i

��� ���2≤ xp−μ
nð Þ
j

��� ���2∀ j; 1≤ j≤2
� �

ð4Þ

Where n is the iteration number and p is the sample
number.
In the update state, the new means are updated as per

the centroids of the observation in the new cluster, as
shown in Eq. (5).

μ nþ1ð Þ
i ¼ 1

S nð Þ
i

��� ���
X
x j∈S

tð Þ
i

x j ð5Þ

The algorithm converges when the assignment no lon-
ger changes. Thus, this approach does not require know-
ledge of prior compression history and assign samples to
different classes iteratively. Generally, the size of the
tampered region is very small as compared to the
untampered region. For proper clustering, the number
of features should be sufficiently large. Hence, initially,
algorithm was not able to cluster these features. As the
size of untampered feature set was sufficiently large, we
have investigated the possibility of increasing the size of
a tampered feature set.

3.1 Impact of Gaussian noise on FDPD
JPEG compression involves 8 × 8 block DCT transform.
Resultant DCT distribution modeled as a Gaussian dis-
tribution, which follows generalized Benford’s model
[15]. JPEG compression uses 8 × 8 quantization steps for
quantizing each of the 8 × 8 DCT coefficients. When
uncompressed image gets single compressed, its DCT
coefficients c0 are quantized with step q1. After neglect-
ing quantization and rounding error, the resultant
dequantized coefficient c1 is shown in Eq. (6).

c1 ¼ c0=q1½ � � q1 ð6Þ

The operator [.] represents the rounding operation,
which maps the set of unquantized DCT coefficients to
the same value of dequantized coefficient c1. Due to the
property of rounding operation, the probability distribu-
tion of DCT coefficients at a specific frequency in 8 × 8
blocks can be shown in Eq. (7).

p1 c1; q1ð Þ ¼
Xq1 c1þ1=2ð Þ

c0¼q1 c1−1=2ð Þp0 c0ð Þ ð7Þ

During secondary compression, these coefficients c1
are quantized with step q2 and the resultant dequantized
coefficients c2 are shown in Eq. (8).

c2 ¼ c0=q1½ � � q1=q2½ � � q2 ð8Þ
Due to DCT grid aligned double JPEG compression, all

DCT coefficients present at a specific frequency in 8 × 8
blocks are quantized with the same set of quantization
steps q1 ∈Q1 and q2 ∈Q2 respectively, where Q1 and Q2

represents the primary and secondary quantization tables.
The resultant probability distribution of dequantized coef-
ficients can be shown using Eq. (9).

p2 c2; q1; q2ð Þ ¼
Xq2 c2þ1=2ð Þ

c1¼q2 c2−1=2ð Þp1 c1ð Þ ð9Þ

When q2 < q1, the set of unquantized DCT coefficients
c0 map to the same value of the secondary dequantized
DCT coefficient c2. This increases the numbers of
certain DCT coefficients, while certain DCT coefficients
are completely removed from the ADJPEG compresses
image. In [9], the authors proved this periodicity with a
set of one-dimensional data. Since the logarithmic FDPD
followed by naturally generated random data, periodic
aligned double compressed DCT coefficients show diver-
gence with it. When an image undergoes nonaligned
double compression, there is no fixed relationship
between quantization steps q1 and q2. Hence, periodic
quantization artifacts are not introduced in the secondary
dequantized DCT coefficients [13]. Random quantization
artifacts maintain randomness in the DCT coefficient
distribution, and logarithmic FDPD is maintained in these
coefficients.
Gaussian noise is introduced in the natural digital im-

ages due to sensor noise and poor illumination. Although
natural images are non-Gaussian, the distribution of DCT
coefficients can be well fitted with a generalized Gaussian
distribution [23]. In a single compressed image, DCT coef-
ficients at each of the frequencies present in 8 × 8 blocks
are assumed as 64 independent identically distributed
random variables. As per central limit theory, under nor-
mal conditions, the sum of many random variables will
have an approximately Gaussian distribution. In [24], the
authors used this Gaussian distribution for forensic inves-
tigation. Hence, we have added zero mean Gaussian noise
to the aligned double compressed image and recom-
pressed it at quality factor 100. At this compression qual-
ity, all the quantization steps are “one.” As quantization
step is “one,” no quantization occurs and rounding noise
does not get introduced in an image. The DCT and
inverse DCT operations are applied at the stage of com-
pression and decompression. Hence, the resultant DCT

Mire et al. EURASIP Journal on Image and Video Processing  (2018) 2018:18 Page 4 of 11



coefficients still follow Gaussian distribution and obey
logarithmic FDPD.

3.2 Empirical analysis of Gaussian noise on FDPD
The possibility of data modeling Benford’s law can be
verified using tests such as mantissa test, chi-square test,
and the geometric distribution. As these tests also
analyze the actual data values, there is no formal math-
ematical proof, which will confirm Benford’s model [25].
The logarithmic nature of FDPD is verified empirically
by actually plotting FDPD of the data [15, 16]. Hence, to
verify the above effect, we have added zero mean Gauss-
ian noise to the images from UCID database [26]. This
database consists of 1338 uncompressed images in TIFF
format. Each of the uncompressed images was single
compressed, ADJPEG and NADJPEG compressed at
various compression qualities. Figure 2 shows the aver-
age FDPD of all images in each category. Due to the
space constraint, it is not possible to show FDPD at all
qualities, but we found the same impact at other qual-
ities. This shows that, as per discussion in [11, 12, 15,
16], FDPD of ADJPEG images is non-logarithmic. After
adding Gaussian noise, FDPD becomes logarithmic.
Thus, it is verified that the addition of Gaussian noise
makes FDPD of ADJEPG compressed images logarith-
mic. This distribution can be used to increase the sam-
ple features of the NADJPEG compressed region. Thus,
features of both the classes become sufficiently large and
clustering algorithm can be applied.

4 Proposed approach
As per the earlier discussion, the proposed localization
algorithm creates a noisy version of the test image by
adding zero mean Gaussian noise to it. Test image and
noisy image are divided into B × B overlapping sub-
images, and FDPD for the first 20 AC frequencies is
computed. Thus, the features of both the classes become
sufficiently large for clustering. We have applied K-
means clustering algorithm on these features to cluster
them in two different classes as shown below.

If test image I is of size M ×N and block size consid-
ered is B, then algorithm will have (M − B + 1)(N − B + 1)
iterations for generating FDPD features of all the blocks.
All other FDPD-based algorithms will also require the

same number of iterations to generate these features. To
cluster n number of d dimensional samples into k
number of clusters, K-means clustering algorithm re-
quires time complexity O(ndk + 1). Hence, the proposed
algorithm has O([(M − B + 1)(N − B + 1)]2d + 1) time com-
plexity. Since we are considering nine FDPD of the first
20 frequencies, all the samples are 180 dimensional, and
accordingly, time complexity of the proposed algorithm
is O([(M − B + 1)(N − B + 1)]361).

5 Method of [7, 10–12]
Like most of the JPEG artifact-based forensic techniques,
algorithms in [7, 10–12] also use DCT coefficients at a re-
spective AC frequency. In [7], the primary quantization
table was computed using factor histogram. As discussed
earlier, aligned double quantization with step q1 followed by
q2 maps the set of primary DCT coefficients c1 to the same
secondary coefficients c2. The set of coefficients c1 mapping
to the same values ofc2 can be computed using
quantization step q2 and coefficient c2. The histogram of
the factors of this set is called as factor histogram [18]. It
has maximum frequency up to step q2 as well as at a step
q1. Thus, the primary quantization steps can be detected.
Similar to other approaches, [7] also has investigated DCT
grid aligned blocks. Tampered region was assumed as
NADJPEG compressed, while untampered region was
assumed as ADJPEG compressed. Each block was catego-
rized as tampered/untampered depending on the second
maxima in the block factor histogram. Ideally, the second
maxima in factor histogram should be available at primary
quantization step. However, it may not necessarily be
absent at nearby quantization step. In such cases, the com-
puted primary quantization step will be wrong and the per-
formance of the algorithm may degrade. As our proposed
algorithm is not computing any specific quantization step
and using distribution of DCT coefficients, it does not suf-
fer with little changes in DCT coefficients.
Although [10] uses probability distribution, it is not

FDPD. They used DCT coefficient periodicity in ADJPEG
compressed images. The FDPD is followed by NADJPEG
compressed image, while DCT coefficient periodicity is
followed by ADJPEG compressed images. Thus, this ap-
proach is completely different from techniques investigat-
ing FDPD. They used expectation maximization algorithm
to compute posterior probability map for each 8 × 8 block
being aligned/nonaligned double compressed. Both the
approaches [7, 10] computed primary quantization steps,
but [7] does not use sample NADJPEG distribution. In
[10], the authors showed that if double compressed image
is recompressed by aligning the DCT grid with the pri-
mary compression grid, histogram of the resultant DCT
coefficients shows higher magnitude. Hence, they shifted
DCT grid of the test image at different position in 8 × 8
block and computed probable grid shift. This primary
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position of DCT grid was further used to measure
quantization errors. Shifting DCT grid at different posi-
tions in 8 × 8 block means one has to try 64 positions of
recompression grids and analyze these 64 DCT coefficient
histograms. This increases the computational complexity
of the algorithm. Authors has used parallel processing
approach to reduce this time. Neither the proposed
approach nor [7, 12] needs to compute these errors. In
our proposed approach, single recompression is enough
to get the statistics of nonaligned double compressed re-
gion from the aligned double compressed image, after
adding Gaussian noise to it.

Forensic approach in [11, 12] has investigated FDPD,
but its use has a practical limitation. If the tampered test
image has the primary compression quality Q1 and sec-
ondary compression qualityQ2, an SVM classifier needs
to be trained using single compressed images of quality
Q1 and their double compressed counterparts at quality
Q2. In real life, one rarely knows the primary compres-
sion history of the test image. They trained SVM classi-
fier using FDPD of DCT coefficients at the first 20 AC
frequencies. They also had a forensic investigation by divid-
ing an image into DCT grid aligned sub-images. Each sub-
image was individually classified as tampered or

Fig. 2 a–d Probability distribution of ADJPEG compressed image, NADJPEG compressed image, and Gaussian noise-added ADJPEG compressed
image at various primary and secondary compression qualities Q1 and Q2, respectively
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untampered using FDPD. The authors in [12] used FDPD
of digits 2, 5, and 7 while in [11], all nine FDPD were used.
As [11] uses all nine FDPD (1,2...9), [12] cannot perform
better than [11]. As our proposed algorithm is not using
SVM classifier, it does not require classifier training, which
is very specific to the primary and secondary compression
qualities of test image. Since the test image is recom-
pressed using the secondary quantization table present in
the test image itself, the primary compression history at all
is not required. Thus, our proposed algorithm can work
even on an image having customized quantization table.
This is not possible with [11, 12], as it requires primary
quantization table while training SVM classifier.

6 Results and discussion
The proposed algorithm is implemented with MATLAB
(R2011a), 64-bit version, and P. Sallee MATLAB JPEG
toolbox [27] was used for reading DCT coefficients. Like
the other standard experimental setups [10–12, 16], we
have also created random tampered images using uncom-
pressed TIFF images from UCID database [26]. Each
image was compressed at the primary compression quality
Q1, and random 120 × 120 DCT grid nonaligned source
image blocks were copied to create tampered images.
While tampering an image, the pasted block borders are
aligned with the DCT grids of the destination image. Re-
sultant images were compressed at a secondary compres-
sion quality Q2(Q2 >Q1). For investigation, each of the test
images were divided into 40 × 40 non-overlapping sub-
images. Thus, we are aware that sub-images are actually
tampered (NADJPEG)/untampered (ADJPEG). The out-
put of the classifier can be directly compared to this.
Since [11, 12] needs special setup, we have trained vari-

ous quality-specific SVM classifiers using single com-
pressed and aligned double compressed images at
different compression qualities. As [11] is expected to per-
form better than [12], practical limitations are shown only

for [11]. For this, we have tested each of the test images by
applying SVM classifiers trained for different compression
qualities. The results of [12] are plotted by applying SVM
classifier trained with exact compression quality. Since [7, 10]
and proposed approach do not require a compression history
and prior training, no special setup was needed.
For each of the test sub-images, the output of the clas-

sifier was compared with its actual class to compute
misclassification error rate as shown in Eq. (10).

miserr ¼
XN
i¼1

T ið Þ≠C ið Þ=N

ð10Þ
Where T(i) represents the original class of the sub-

image i, C(i) represents the class assigned by supervised/
unsupervised classifier and N represents the total num-
ber of sub-images in the test case. Table 1 shows the
misclassification error rate generated by different algo-
rithms. The first column of this table mentions the pri-
mary and secondary compression qualities of the test
images. Remaining columns show the observed mis-
classification error rate for each of the algorithms. As
[11] was investigated by applying different trained SVM
classifiers, columns 6 to 14 show the respective mis-
classification error rate. Top of these columns mentions
the compression history of the training images. When
training and test images had a same compression his-
tory, misclassification rate is marked in bold.
Figure 3 shows a graphical representation of these

misclassification error rates. As [11] was tested by apply-
ing different SVM classifiers with different training his-
tory, we have plotted its best misclassification error rate
(represented in bold, when training and test image com-
pression qualities are same), as well as an average mis-
classification error rate (average of each row for [11] in
Table 1). Since [12] does not perform better than [11]
even when compression qualities of training and test

Table 1 Misclassification error rate for randomly tampered images

Q1–Q2 Proposed [7] [10] [12] [11]
60–65

[11]
60–70

[11]
60–75

[11]
60–80

[11]
60–85

[11]
65–85

[11]
70–85

[11]
75–85

[11]
80–85

60–65 0.3468 0.5704 0.6099 0.1949 0.1904 0.7885 0.8291 0.8201 0.8309 0.8221 0.8220 0.8237 0.6717

60–70 0.1304 0.2774 0.2940 0.1296 0.6525 0.1116 0.8382 0.8282 0.8247 0.8375 0.8373 0.8363 0.6476

60–75 0.2190 0.0948 0.2114 0.1525 0.8168 0.8318 0.1142 0.3255 0.1546 0.2504 0.3140 0.2278 0.3332

60–80 0.1944 0.2003 0.1707 0.1495 0.6763 0.8385 0.4128 0.0859 0.7329 0.1065 0.1006 0.1445 0.8089

60–85 0.2238 0.2575 0.1675 0.1310 0.8235 0.2221 0.1699 0.8285 0.0895 0.6289 0.8207 0.5750 0.3769

65–85 0.2166 0.2743 0.1799 0.1219 0.7148 0.8372 0.3762 0.1683 0.2571 0.0980 0.2744 0.1954 0.6036

70–85 0.2205 0.1939 0.1686 0.1872 0.6201 0.8451 0.4183 0.1326 0.7141 0.2305 0.0950 0.3201 0.8004

75–85 0.2965 0.2331 0.7668 0.1693 0.7439 0.8377 0.3582 0.2831 0.4030 0.2530 0.3533 0.1272 0.8053

80–85 0.2254 0.4861 0.8517 0.2719 0.4786 0.7091 0.7978 0.8433 0.8287 0.8325 0.8449 0.8392 0.1788

Q1- Primary compression quality of tampered image, Q2- Secondary compression quality of tampered image
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images are same, we have not shown its average mis-
classification error rate. From Fig. 3, we can conclude
that [11, 12] gives the best performance, but as test
image compression qualities divert from training qual-
ities, the performance degrades. All the remaining ap-
proaches, including our proposed algorithm, perform
differently at different compression qualities. At the
qualities 60–65, 60–70, and 80–85, our proposed algo-
rithm gives the best performance. At quality 60–75, [7]
gives the best performance. In between 60–80 and 70–
85, [10] performs best. Hence, there is not a single
method, which may perform better at all compression
qualities. Different compression artifacts have different

strength at different compression qualities. At lower
compression qualities and at lower quality differences,
most of the algorithms except [11, 12] fail (error rate
greater than 0.4). However, our proposed algorithm still
gives comparable performance.
We have also tested these algorithms on tampered

image database CASIA V.2 [28]. On some of the images,
we got very promising results. As the compression
history of these images was not available, it was difficult
to evaluate the performance of localization algorithms.
Figure 4a, b shows the original image and its tampered
version from CASIA V.2 [28]. Figure 4c–f shows the
tampering localization map generated by applying

Fig. 3 Misclassification error rate

Fig. 4 a–f Tampering localization natural image, CASIA V.2 database
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[7, 10, 11] and proposed algorithm on the tampered
image (b). For testing [11], we have applied various
SVM classifiers having different training compression
history. Figure 4e shows the best possible outcome
and respective training compression history for [11].
The output is represented as the probability of each
pixel being tampered. The higher value of probability
is assigned to NADJPEG tampered pixels (yellow
color), and untampered region appears with a lower
index value (shown with blue colors). The output
map generated by proposed algorithm is comparable
with the other algorithms. Algorithm in [10] locates
the sufficiently large tampered region, but it is diffi-
cult to select a final tampered region. For [10], the
yellow color untampered boat also comes out as
tampered, along with the tampered segment of the
ship. For [11], when we applied several classifiers hav-
ing a different training compression history, we could
get comparable output at a training quality sequence
70, 85. However, it locates very small portion of the
actual tampered region.
Figure 5 shows one more localization example. Here,

the map generated by [10] is at all not useful for forensic
investigation. Algorithm in [7] generates traceable map,
but it is not sufficient to make critical decisions. Due to
the unavailability of primary compression quality, we
could not get comparable output for [11]. Compara-
tively, our proposed algorithm has generated robust out-
put, sufficient to make a decision.
To evaluate algorithms against realistic tampering, 100

tampered images were blindly created using different
source images. Each image was tampered by pasting
segment from the same image as well as from the other
images using PIXLR online image editing tool [29]. To
make tampering convincing, different pre-processing

operations such as lightning adjustment, color balance,
contrast stretching, up sampling, down sampling, and
rotation were applied to the tampered region. Compres-
sion history was unknown to us. For [11], each image
needs to be investigated by applying classifiers with differ-
ent training history Q1 = 60..100, Q2 =Q1 + 1..100. Due to
this classifier training dependency, we could not compare
[11] for these images. For accurate localization, overlap-
ping block processing was very necessary. Hence, we have
applied these algorithms with 8 × 8 overlapping. Since
tampered region spans across 8 × 8 blocks nonuniformly,
the misclassification error rate was computed at pixel
level. If any of the 40 × 40 blocks classified as a tampered,
all overlapping pixels were classified as tampered, irre-
spective of the decision made by the other overlapping
blocks. Accordingly, in Eq. (8), T(i) represents the original
class of the pixel i, C(i)represents the class assigned by the
classifier, and N represents the total number of pixels in
an image. Table 2 shows the corresponding misclassifica-
tion error rate. Our proposed approach gives comparable
performance with other machine learning/non-machine
learning-based approaches.
Figure 6 shows one of the examples of such tampering

localization. In this tampered image (b), source (a) and
destination (a) of tampered region are the same. Seg-
ment of water is copied from an image and pasted into
the same image to hide the right leg of a man standing
in the sea. The copied region was resampled before past-
ing. Figure 6c shows the ground truth of the tampered
region. Figure 6d–g shows the outputs of various tam-
pering localization algorithms. Although [7] works with-
out prerequisite of compression quality knowledge, it
did not work for this tampered image. It locates very
small portion of the tampered region, along with some
other untampered region. The located true tampered

Fig. 5 a–f Tampering localization in scene images, CASIA V.2 tampered image database
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region and false tampered region have nearly the same
size, which makes it difficult to make any decision. As
compression qualities are not available, we have applied
various SVM classifiers with different training compres-
sion history for [11]. The output for [11] is plotted in
(e), which is again of no use to make decisions. The
algorithm in [10] locates only the tampered region.
However, the tampering probability assigned to the re-
gion is very low and not continuous. Our proposed algo-
rithm clearly locates the continuous tampered region.
Although there exist some small falsely identified tam-
pered regions, its size is very small. After considering
connected components, original tampered region will
appear as a largest connected component with high tam-
pering probability. Thus, although misclassification rate
of proposed scheme is a little bit more than [7, 10], its
output map is more useful than the other algorithms.
The proposed algorithm and the algorithm in [10] can
be used to cross validate each other.

7 Conclusions
The discrepancy in double compression artifacts is an
indicator for most of the tampering operations. We
have shown that the DCT coefficients of aligned
double compressed image do not follow first digit
probability distribution. However, DCT coefficients of
single compressed and nonaligned double compressed
image follow it. In addition, we have also shown that
the additive Gaussian noise in the aligned double
compressed images makes resultant first digit prob-
ability distribution logarithmic. Hence, proposed algo-
rithm does not need features of single compressed
images and is able to work in the absence of prior
knowledge of primary compression history of the test
image. Thus, its efficiency is not dependent on the
pre-trained classifier, specific to the compression his-
tory of the test images. Validity of the proposed algo-
rithm has been demonstrated by computing
misclassification error rate. The effectiveness of the
proposed algorithm is also confirmed by the realistic
test images in the absence of image compression his-
tory. Performance analysis shows that different com-
pression artifacts perform at different compression
qualities. Hence, multiple artifacts need to be fused to
devise an algorithm performing at all the compression

Table 2 Misclassification error rate for manually tampered
images

Proposed approach [7] [10]

Misclassification error rate 0.236585 0.214694 0.213455

Fig. 6 a–g Tampering localization in self-created tampered image
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qualities. Algorithms discussed here are not robust
against antiforensic attacks. In the future, we will try
to address these issues in our research.
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